Documentation Verification Report

CompositionIso

📁 Source: Mathlib/CategoryTheory/Adjunction/CompositionIso.lean

Statistics

MetricCount
DefinitionsleftAdjointCompIso, leftAdjointCompNatTrans, leftAdjointIdIso
3
TheoremsconjugateEquiv_leftAdjointCompIso_inv, conjugateEquiv_leftAdjointIdIso_hom, leftAdjointCompIso_assoc, leftAdjointCompIso_comp_id, leftAdjointCompIso_hom, leftAdjointCompIso_hom_app, leftAdjointCompIso_id_comp, leftAdjointCompIso_inv_app, leftAdjointCompNatTrans_app, leftAdjointCompNatTrans_assoc, leftAdjointCompNatTrans₀₁₃_eq_conjugateEquiv_symm, leftAdjointCompNatTrans₀₂₃_eq_conjugateEquiv_symm, leftAdjointIdIso_hom_app, leftAdjointIdIso_inv_app
14
Total17

CategoryTheory.Adjunction

Definitions

NameCategoryTheorems
leftAdjointCompIso 📖CompOp
7 mathmath: conjugateEquiv_leftAdjointCompIso_inv, leftAdjointCompIso_inv_app, leftAdjointCompIso_hom, leftAdjointCompIso_id_comp, leftAdjointCompIso_hom_app, leftAdjointCompIso_comp_id, leftAdjointCompIso_assoc
leftAdjointCompNatTrans 📖CompOp
5 mathmath: leftAdjointCompNatTrans₀₁₃_eq_conjugateEquiv_symm, leftAdjointCompIso_hom, leftAdjointCompNatTrans₀₂₃_eq_conjugateEquiv_symm, leftAdjointCompNatTrans_assoc, leftAdjointCompNatTrans_app
leftAdjointIdIso 📖CompOp
5 mathmath: conjugateEquiv_leftAdjointIdIso_hom, leftAdjointCompIso_id_comp, leftAdjointCompIso_comp_id, leftAdjointIdIso_inv_app, leftAdjointIdIso_hom_app

Theorems

NameKindAssumesProvesValidatesDepends On
conjugateEquiv_leftAdjointCompIso_inv 📖mathematical—DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Functor
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.conjugateEquiv
comp
CategoryTheory.Iso.inv
leftAdjointCompIso
CategoryTheory.Iso.hom
—Equiv.apply_symm_apply
conjugateEquiv_leftAdjointIdIso_hom 📖mathematical—DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Functor
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.id
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.conjugateEquiv
id
CategoryTheory.Iso.hom
leftAdjointIdIso
CategoryTheory.Iso.inv
—Equiv.apply_symm_apply
leftAdjointCompIso_assoc 📖mathematicalCategoryTheory.Iso.trans
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.isoWhiskerLeft
CategoryTheory.Iso.symm
CategoryTheory.Functor.associator
CategoryTheory.Functor.isoWhiskerRight
leftAdjointCompIso—CategoryTheory.Iso.ext
leftAdjointCompNatTrans_assoc
CategoryTheory.Category.assoc
leftAdjointCompIso_comp_id 📖mathematicalCategoryTheory.Iso.trans
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.Functor.isoWhiskerRight
CategoryTheory.Functor.leftUnitor
leftAdjointCompIso
CategoryTheory.Functor.isoWhiskerLeft
leftAdjointIdIso
CategoryTheory.Functor.rightUnitor
—CategoryTheory.Iso.ext
CategoryTheory.NatTrans.ext'
leftAdjointCompIso_hom_app
CategoryTheory.Category.id_comp
counit_naturality
left_triangle_components_assoc
leftAdjointIdIso_hom_app
CategoryTheory.Category.comp_id
leftAdjointCompIso_hom 📖mathematical—CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
leftAdjointCompIso
leftAdjointCompNatTrans
CategoryTheory.Iso.inv
——
leftAdjointCompIso_hom_app 📖mathematical—CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
leftAdjointCompIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Functor.id
unit
CategoryTheory.Iso.inv
counit
—CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
comp_counit_app
leftAdjointCompIso_id_comp 📖mathematicalCategoryTheory.Iso.trans
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.Functor.isoWhiskerLeft
CategoryTheory.Functor.rightUnitor
leftAdjointCompIso
CategoryTheory.Functor.isoWhiskerRight
leftAdjointIdIso
CategoryTheory.Functor.leftUnitor
—CategoryTheory.Iso.ext
CategoryTheory.NatTrans.ext'
CategoryTheory.Functor.congr_map
CategoryTheory.NatTrans.naturality
leftAdjointCompIso_hom_app
CategoryTheory.Category.id_comp
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.Functor.map_comp
left_triangle_components
CategoryTheory.Category.comp_id
leftAdjointIdIso_hom_app
leftAdjointCompIso_inv_app 📖mathematical—CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
leftAdjointCompIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Functor.id
unit
CategoryTheory.Iso.hom
counit
—comp_unit_app
CategoryTheory.Functor.map_comp
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.Category.assoc
leftAdjointCompNatTrans_app 📖mathematical—CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
leftAdjointCompNatTrans
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Functor.id
unit
counit
—CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
comp_counit_app
leftAdjointCompNatTrans_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.whiskerLeft
CategoryTheory.Functor.whiskerRight
CategoryTheory.Iso.hom
CategoryTheory.Functor.associator
leftAdjointCompNatTrans
CategoryTheory.Iso.inv
—leftAdjointCompNatTrans₀₁₃_eq_conjugateEquiv_symm
leftAdjointCompNatTrans₀₂₃_eq_conjugateEquiv_symm
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.comp_id
leftAdjointCompNatTrans₀₁₃_eq_conjugateEquiv_symm 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.whiskerLeft
leftAdjointCompNatTrans
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.conjugateEquiv
comp
CategoryTheory.Functor.whiskerRight
—Equiv.surjective
Equiv.injective
Equiv.symm_apply_apply
CategoryTheory.conjugateEquiv_whiskerLeft
CategoryTheory.conjugateEquiv_comp
leftAdjointCompNatTrans₀₂₃_eq_conjugateEquiv_symm 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Iso.inv
CategoryTheory.Functor.associator
CategoryTheory.Functor.whiskerRight
leftAdjointCompNatTrans
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.conjugateEquiv
comp
CategoryTheory.Functor.whiskerLeft
—Equiv.surjective
Equiv.injective
Equiv.symm_apply_apply
Equiv.apply_symm_apply
CategoryTheory.cancel_mono
CategoryTheory.IsSplitMono.mono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
CategoryTheory.conjugateEquiv_associator_hom
CategoryTheory.conjugateEquiv_whiskerRight
CategoryTheory.conjugateEquiv_comp
CategoryTheory.Iso.hom_inv_id_assoc
leftAdjointIdIso_hom_app 📖mathematical—CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
leftAdjointIdIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
CategoryTheory.Functor.comp
counit
—CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
leftAdjointIdIso_inv_app 📖mathematical—CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
leftAdjointIdIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
unit
CategoryTheory.Iso.hom
—CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp

---

← Back to Index