Documentation Verification Report

FullyFaithful

📁 Source: Mathlib/CategoryTheory/Adjunction/FullyFaithful.lean

Statistics

MetricCount
DefinitionscounitSplitMonoOfRFull, fullyFaithfulLOfIsIsoUnit, fullyFaithfulROfIsIsoCounit, unitSplitEpiOfLFull, whiskerLeftLCounitIsoOfIsIsoUnit, whiskerLeftRUnitIsoOfIsIsoCounit
6
Theoremscounit_epi_of_R_faithful, counit_isIso_of_R_fully_faithful, counit_isSplitMono_of_R_full, faithful_L_of_mono_unit_app, faithful_R_of_epi_counit_app, full_L_of_isSplitEpi_unit_app, full_R_of_isSplitMono_counit_app, instIsIsoAppCounitObjOfFaithfulOfFull, instIsIsoAppCounitOfFullOfFaithful, instIsIsoAppUnitObjOfFaithfulOfFull, instIsIsoAppUnitOfFullOfFaithful, instIsIsoFunctorCounitOfIsEquivalence, instIsIsoFunctorCounitOfIsEquivalence_1, instIsIsoFunctorUnitOfIsEquivalence, instIsIsoFunctorUnitOfIsEquivalence_1, instIsIsoMapAppCounitOfFaithfulOfFull, instIsIsoMapAppUnitOfFaithfulOfFull, inv_counit_map, inv_map_unit, isEquivalence_left_of_isEquivalence_right, isEquivalence_right_of_isEquivalence_left, isIso_counit_app_iff_mem_essImage, isIso_counit_app_of_iso, isIso_unit_app_iff_mem_essImage, isIso_unit_app_of_iso, mem_essImage_of_counit_isIso, mem_essImage_of_unit_isIso, unit_isIso_of_L_fully_faithful, unit_isSplitEpi_of_L_full, unit_mono_of_L_faithful, whiskerLeftLCounitIsoOfIsIsoUnit_hom_app, whiskerLeftLCounitIsoOfIsIsoUnit_inv_app, whiskerLeftRUnitIsoOfIsIsoCounit_hom_app, whiskerLeftRUnitIsoOfIsIsoCounit_inv_app, whiskerLeft_counit_iso_of_L_fully_faithful, whiskerLeft_unit_iso_of_R_fully_faithful, whiskerRight_counit_iso_of_L_fully_faithful, whiskerRight_unit_iso_of_R_fully_faithful
38
Total44

CategoryTheory.Adjunction

Definitions

NameCategoryTheorems
counitSplitMonoOfRFull 📖CompOp
fullyFaithfulLOfIsIsoUnit 📖CompOp
fullyFaithfulROfIsIsoCounit 📖CompOp
unitSplitEpiOfLFull 📖CompOp
whiskerLeftLCounitIsoOfIsIsoUnit 📖CompOp
2 mathmath: whiskerLeftLCounitIsoOfIsIsoUnit_hom_app, whiskerLeftLCounitIsoOfIsIsoUnit_inv_app
whiskerLeftRUnitIsoOfIsIsoCounit 📖CompOp
2 mathmath: whiskerLeftRUnitIsoOfIsIsoCounit_hom_app, whiskerLeftRUnitIsoOfIsIsoCounit_inv_app

Theorems

NameKindAssumesProvesValidatesDepends On
counit_epi_of_R_faithful 📖mathematicalCategoryTheory.Epi
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
counit
CategoryTheory.Functor.map_injective
Equiv.injective
homEquiv_counit
counit_naturality
counit_isIso_of_R_fully_faithful 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
counit
CategoryTheory.NatIso.isIso_of_isIso_app
instIsIsoAppCounitOfFullOfFaithful
counit_isSplitMono_of_R_full 📖mathematicalCategoryTheory.IsSplitMono
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
counit
faithful_L_of_mono_unit_app 📖mathematicalCategoryTheory.Mono
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
unit
CategoryTheory.Functor.FaithfulCategoryTheory.Mono.right_cancellation
Equiv.injective
homEquiv_counit
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
left_triangle_components
CategoryTheory.Category.comp_id
faithful_R_of_epi_counit_app 📖mathematicalCategoryTheory.Epi
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
counit
CategoryTheory.Functor.FaithfulCategoryTheory.Epi.left_cancellation
Equiv.injective
homEquiv_unit
CategoryTheory.Functor.map_comp
right_triangle_components_assoc
full_L_of_isSplitEpi_unit_app 📖mathematicalCategoryTheory.IsSplitEpi
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
unit
CategoryTheory.Functor.FullCategoryTheory.Category.comp_id
left_triangle_components
CategoryTheory.IsSplitEpi.id
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
homEquiv_unit
CategoryTheory.Category.assoc
CategoryTheory.Functor.map_comp
counit_naturality
left_triangle_components_assoc
full_R_of_isSplitMono_counit_app 📖mathematicalCategoryTheory.IsSplitMono
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
counit
CategoryTheory.Functor.FullCategoryTheory.Category.id_comp
right_triangle_components
CategoryTheory.Category.assoc
CategoryTheory.IsSplitMono.id
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
homEquiv_counit
CategoryTheory.Functor.map_comp
unit_naturality_assoc
instIsIsoAppCounitObjOfFaithfulOfFull 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
counit
CategoryTheory.isIso_of_hom_comp_eq_id
CategoryTheory.Functor.map_isIso
instIsIsoAppUnitOfFullOfFaithful
left_triangle_components
instIsIsoAppCounitOfFullOfFaithful 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
counit
CategoryTheory.isIso_of_epi_of_isSplitMono
counit_isSplitMono_of_R_full
counit_epi_of_R_faithful
instIsIsoAppUnitObjOfFaithfulOfFull 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
unit
CategoryTheory.isIso_of_comp_hom_eq_id
CategoryTheory.Functor.map_isIso
instIsIsoAppCounitOfFullOfFaithful
right_triangle_components
instIsIsoAppUnitOfFullOfFaithful 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
unit
CategoryTheory.isIso_of_mono_of_isSplitEpi
unit_mono_of_L_faithful
unit_isSplitEpi_of_L_full
instIsIsoFunctorCounitOfIsEquivalence 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
counit
isIso_counit_app_of_iso
CategoryTheory.Functor.IsEquivalence.faithful
CategoryTheory.Functor.IsEquivalence.full
CategoryTheory.Functor.IsEquivalence.essSurj
CategoryTheory.NatIso.isIso_of_isIso_app
instIsIsoFunctorCounitOfIsEquivalence_1 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
counit
isEquivalence_left_of_isEquivalence_right
instIsIsoFunctorCounitOfIsEquivalence
instIsIsoFunctorUnitOfIsEquivalence 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
unit
isIso_unit_app_of_iso
CategoryTheory.Functor.IsEquivalence.faithful
CategoryTheory.Functor.IsEquivalence.full
CategoryTheory.Functor.IsEquivalence.essSurj
CategoryTheory.NatIso.isIso_of_isIso_app
instIsIsoFunctorUnitOfIsEquivalence_1 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
unit
isEquivalence_right_of_isEquivalence_left
instIsIsoFunctorUnitOfIsEquivalence
instIsIsoMapAppCounitOfFaithfulOfFull 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
counit
CategoryTheory.isIso_of_hom_comp_eq_id
instIsIsoAppUnitOfFullOfFaithful
right_triangle_components
instIsIsoMapAppUnitOfFaithfulOfFull 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
unit
CategoryTheory.isIso_of_comp_hom_eq_id
instIsIsoAppCounitOfFullOfFaithful
left_triangle_components
inv_counit_map 📖mathematicalCategoryTheory.inv
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
counit
CategoryTheory.Functor.map_isIso
unit
CategoryTheory.IsIso.inv_eq_of_inv_hom_id
CategoryTheory.Functor.map_isIso
right_triangle_components
inv_map_unit 📖mathematicalCategoryTheory.inv
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
unit
CategoryTheory.Functor.map_isIso
counit
CategoryTheory.IsIso.inv_eq_of_hom_inv_id
CategoryTheory.Functor.map_isIso
left_triangle_components
isEquivalence_left_of_isEquivalence_right 📖mathematicalCategoryTheory.Functor.IsEquivalenceCategoryTheory.Equivalence.isEquivalence_functor
CategoryTheory.NatIso.isIso_app_of_isIso
instIsIsoFunctorUnitOfIsEquivalence
instIsIsoAppCounitOfFullOfFaithful
CategoryTheory.Functor.IsEquivalence.full
CategoryTheory.Functor.IsEquivalence.faithful
isEquivalence_right_of_isEquivalence_left 📖mathematicalCategoryTheory.Functor.IsEquivalenceCategoryTheory.Equivalence.isEquivalence_inverse
instIsIsoAppUnitOfFullOfFaithful
CategoryTheory.Functor.IsEquivalence.full
CategoryTheory.Functor.IsEquivalence.faithful
CategoryTheory.NatIso.isIso_app_of_isIso
instIsIsoFunctorCounitOfIsEquivalence
isIso_counit_app_iff_mem_essImage 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
counit
CategoryTheory.Functor.essImage
CategoryTheory.NatTrans.isIso_app_iff_of_iso
instIsIsoAppCounitObjOfFaithfulOfFull
isIso_counit_app_of_iso 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
counit
isIso_counit_app_iff_mem_essImage
isIso_unit_app_iff_mem_essImage 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
unit
CategoryTheory.Functor.essImage
CategoryTheory.NatTrans.isIso_app_iff_of_iso
instIsIsoAppUnitObjOfFaithfulOfFull
isIso_unit_app_of_iso 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
unit
isIso_unit_app_iff_mem_essImage
mem_essImage_of_counit_isIso 📖mathematicalCategoryTheory.Functor.essImage
mem_essImage_of_unit_isIso 📖mathematicalCategoryTheory.Functor.essImage
unit_isIso_of_L_fully_faithful 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
unit
CategoryTheory.NatIso.isIso_of_isIso_app
instIsIsoAppUnitOfFullOfFaithful
unit_isSplitEpi_of_L_full 📖mathematicalCategoryTheory.IsSplitEpi
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
unit
unit_mono_of_L_faithful 📖mathematicalCategoryTheory.Mono
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
unit
CategoryTheory.Functor.map_injective
Equiv.injective
homEquiv_unit
unit_naturality
whiskerLeftLCounitIsoOfIsIsoUnit_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
whiskerLeftLCounitIsoOfIsIsoUnit
CategoryTheory.Functor.id
counit
CategoryTheory.Functor.obj
CategoryTheory.Functor.map_isIso
CategoryTheory.NatIso.isIso_app_of_isIso
CategoryTheory.NatIso.isIso_inv_app
CategoryTheory.Functor.map_inv
inv_map_unit
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
whiskerLeftLCounitIsoOfIsIsoUnit_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
whiskerLeftLCounitIsoOfIsIsoUnit
CategoryTheory.Functor.map
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
unit
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
whiskerLeftRUnitIsoOfIsIsoCounit_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
whiskerLeftRUnitIsoOfIsIsoCounit
CategoryTheory.Functor.map
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
counit
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
whiskerLeftRUnitIsoOfIsIsoCounit_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
whiskerLeftRUnitIsoOfIsIsoCounit
CategoryTheory.Functor.id
unit
CategoryTheory.Functor.obj
CategoryTheory.Functor.map_isIso
CategoryTheory.NatIso.isIso_app_of_isIso
CategoryTheory.NatIso.isIso_inv_app
CategoryTheory.Functor.map_inv
inv_counit_map
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
whiskerLeft_counit_iso_of_L_fully_faithful 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.Functor.whiskerLeft
counit
left_triangle
CategoryTheory.Functor.isIso_whiskerRight
unit_isIso_of_L_fully_faithful
CategoryTheory.IsIso.eq_inv_comp
CategoryTheory.IsIso.comp_isIso
CategoryTheory.IsIso.inv_isIso
CategoryTheory.IsIso.id
whiskerLeft_unit_iso_of_R_fully_faithful 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.Functor.whiskerLeft
unit
right_triangle
CategoryTheory.Functor.isIso_whiskerRight
counit_isIso_of_R_fully_faithful
CategoryTheory.IsIso.eq_comp_inv
CategoryTheory.IsIso.comp_isIso
CategoryTheory.IsIso.id
CategoryTheory.IsIso.inv_isIso
whiskerRight_counit_iso_of_L_fully_faithful 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.Functor.whiskerRight
counit
right_triangle
CategoryTheory.Functor.isIso_whiskerLeft
unit_isIso_of_L_fully_faithful
CategoryTheory.IsIso.eq_inv_comp
CategoryTheory.IsIso.comp_isIso
CategoryTheory.IsIso.inv_isIso
CategoryTheory.IsIso.id
whiskerRight_unit_iso_of_R_fully_faithful 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.Functor.whiskerRight
unit
left_triangle
CategoryTheory.Functor.isIso_whiskerLeft
counit_isIso_of_R_fully_faithful
CategoryTheory.IsIso.eq_comp_inv
CategoryTheory.IsIso.comp_isIso
CategoryTheory.IsIso.id
CategoryTheory.IsIso.inv_isIso

---

← Back to Index