Documentation Verification Report

Left

๐Ÿ“ Source: Mathlib/CategoryTheory/Adjunction/Lifting/Left.lean

Statistics

MetricCount
DefinitionsconstructLeftAdjoint, constructLeftAdjointEquiv, constructLeftAdjointObj, counitCoequalises, otherMap
5
TheoremsconstructLeftAdjointEquiv_apply, constructLeftAdjointEquiv_symm_apply, instIsReflexivePairMapAppCounitOtherMap, isRightAdjoint_square_lift, isRightAdjoint_square_lift_monadic, isRightAdjoint_triangle_lift, isRightAdjoint_triangle_lift_monadic
7
Total12

CategoryTheory

Theorems

NameKindAssumesProvesValidatesDepends On
isRightAdjoint_square_lift ๐Ÿ“–mathematicalโ€”Functor.IsRightAdjointโ€”Adjunction.isRightAdjoint
Functor.isRightAdjoint_comp
isRightAdjoint_triangle_lift
isRightAdjoint_square_lift_monadic ๐Ÿ“–mathematicalโ€”Functor.IsRightAdjointโ€”Adjunction.isRightAdjoint
Functor.isRightAdjoint_comp
isRightAdjoint_triangle_lift_monadic
isRightAdjoint_triangle_lift ๐Ÿ“–mathematicalโ€”Functor.IsRightAdjointโ€”โ€”
isRightAdjoint_triangle_lift_monadic ๐Ÿ“–mathematicalโ€”Functor.IsRightAdjointโ€”instIsEquivalenceAlgebraToMonadMonadicAdjunctionComparison
Functor.isRightAdjoint_comp
Adjunction.isRightAdjoint
Functor.map_id
Category.id_comp
Monad.adj_counit
Monad.FreeCoequalizer.condition
isRightAdjoint_triangle_lift
Functor.isRightAdjoint_of_isEquivalence
Functor.isEquivalence_inv

CategoryTheory.LiftLeftAdjoint

Definitions

NameCategoryTheorems
constructLeftAdjoint ๐Ÿ“–CompOpโ€”
constructLeftAdjointEquiv ๐Ÿ“–CompOp
2 mathmath: constructLeftAdjointEquiv_symm_apply, constructLeftAdjointEquiv_apply
constructLeftAdjointObj ๐Ÿ“–CompOp
2 mathmath: constructLeftAdjointEquiv_symm_apply, constructLeftAdjointEquiv_apply
counitCoequalises ๐Ÿ“–CompOp
2 mathmath: constructLeftAdjointEquiv_symm_apply, constructLeftAdjointEquiv_apply
otherMap ๐Ÿ“–CompOp
3 mathmath: constructLeftAdjointEquiv_symm_apply, constructLeftAdjointEquiv_apply, instIsReflexivePairMapAppCounitOtherMap

Theorems

NameKindAssumesProvesValidatesDepends On
constructLeftAdjointEquiv_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
constructLeftAdjointObj
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
constructLeftAdjointEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.Adjunction.counit
Equiv.symm
CategoryTheory.Limits.Cofork.IsColimit.homIso
CategoryTheory.Limits.Cofork.ofฯ€
counitCoequalises
CategoryTheory.Adjunction.homEquiv
otherMap
CategoryTheory.Limits.colimit.cocone
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
CategoryTheory.Limits.colimit.isColimit
โ€”โ€”
constructLeftAdjointEquiv_symm_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
constructLeftAdjointObj
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
constructLeftAdjointEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.Adjunction.counit
otherMap
CategoryTheory.Limits.Cofork.IsColimit.homIso
CategoryTheory.Limits.colimit.cocone
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
CategoryTheory.Limits.colimit.isColimit
CategoryTheory.Adjunction.homEquiv
CategoryTheory.Limits.Cofork.ofฯ€
counitCoequalises
โ€”โ€”
instIsReflexivePairMapAppCounitOtherMap ๐Ÿ“–mathematicalโ€”CategoryTheory.IsReflexivePair
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Adjunction.counit
otherMap
โ€”CategoryTheory.IsReflexivePair.mk'
CategoryTheory.Functor.map_comp
CategoryTheory.Adjunction.right_triangle_components
CategoryTheory.Functor.map_id
CategoryTheory.Functor.map_comp_assoc
CategoryTheory.Adjunction.unit_naturality_assoc
CategoryTheory.Category.comp_id
CategoryTheory.Adjunction.left_triangle_components

---

โ† Back to Index