Documentation Verification Report

Right

๐Ÿ“ Source: Mathlib/CategoryTheory/Adjunction/Lifting/Right.lean

Statistics

MetricCount
DefinitionsconstructRightAdjoint, constructRightAdjointEquiv, constructRightAdjointObj, otherMap, unitEqualises
5
TheoremsconstructRightAdjointEquiv_apply, constructRightAdjointEquiv_symm_apply, instIsCoreflexivePairMapAppUnitOtherMap, isLeftAdjoint_square_lift, isLeftAdjoint_square_lift_comonadic, isLeftAdjoint_triangle_lift, isLeftAdjoint_triangle_lift_comonadic
7
Total12

CategoryTheory

Theorems

NameKindAssumesProvesValidatesDepends On
isLeftAdjoint_square_lift ๐Ÿ“–mathematicalโ€”Functor.IsLeftAdjointโ€”Adjunction.isLeftAdjoint
Functor.isLeftAdjoint_comp
isLeftAdjoint_triangle_lift
isLeftAdjoint_square_lift_comonadic ๐Ÿ“–mathematicalโ€”Functor.IsLeftAdjointโ€”Adjunction.isLeftAdjoint
Functor.isLeftAdjoint_comp
isLeftAdjoint_triangle_lift_comonadic
isLeftAdjoint_triangle_lift ๐Ÿ“–mathematicalโ€”Functor.IsLeftAdjointโ€”โ€”
isLeftAdjoint_triangle_lift_comonadic ๐Ÿ“–mathematicalโ€”Functor.IsLeftAdjointโ€”instIsEquivalenceCoalgebraToComonadComonadicAdjunctionComparison
Functor.isLeftAdjoint_comp
Adjunction.isLeftAdjoint
Functor.map_id
Category.comp_id
Comonad.adj_unit
Comonad.CofreeEqualizer.condition
isLeftAdjoint_triangle_lift
Functor.isLeftAdjoint_of_isEquivalence
Functor.isEquivalence_inv

CategoryTheory.LiftRightAdjoint

Definitions

NameCategoryTheorems
constructRightAdjoint ๐Ÿ“–CompOpโ€”
constructRightAdjointEquiv ๐Ÿ“–CompOp
2 mathmath: constructRightAdjointEquiv_apply, constructRightAdjointEquiv_symm_apply
constructRightAdjointObj ๐Ÿ“–CompOp
2 mathmath: constructRightAdjointEquiv_apply, constructRightAdjointEquiv_symm_apply
otherMap ๐Ÿ“–CompOp
3 mathmath: constructRightAdjointEquiv_apply, constructRightAdjointEquiv_symm_apply, instIsCoreflexivePairMapAppUnitOtherMap
unitEqualises ๐Ÿ“–CompOp
2 mathmath: constructRightAdjointEquiv_apply, constructRightAdjointEquiv_symm_apply

Theorems

NameKindAssumesProvesValidatesDepends On
constructRightAdjointEquiv_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
constructRightAdjointObj
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
constructRightAdjointEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Adjunction.unit
Equiv.symm
CategoryTheory.Limits.Fork.IsLimit.homIso
CategoryTheory.Limits.Fork.ofฮน
unitEqualises
CategoryTheory.Adjunction.homEquiv
otherMap
CategoryTheory.Limits.limit.cone
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
CategoryTheory.Limits.limit.isLimit
โ€”โ€”
constructRightAdjointEquiv_symm_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
constructRightAdjointObj
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
constructRightAdjointEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Adjunction.unit
otherMap
CategoryTheory.Limits.Fork.IsLimit.homIso
CategoryTheory.Limits.limit.cone
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
CategoryTheory.Limits.limit.isLimit
CategoryTheory.Adjunction.homEquiv
CategoryTheory.Limits.Fork.ofฮน
unitEqualises
โ€”โ€”
instIsCoreflexivePairMapAppUnitOtherMap ๐Ÿ“–mathematicalโ€”CategoryTheory.IsCoreflexivePair
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Adjunction.unit
otherMap
โ€”CategoryTheory.IsCoreflexivePair.mk'
CategoryTheory.Adjunction.left_triangle_components
CategoryTheory.Functor.map_id
CategoryTheory.Category.assoc
CategoryTheory.Functor.map_comp
CategoryTheory.Adjunction.counit_naturality
CategoryTheory.Adjunction.left_triangle_components_assoc
CategoryTheory.Adjunction.right_triangle_components

---

โ† Back to Index