π Source: Mathlib/CategoryTheory/Adjunction/Mates.lean
conjugateEquiv
conjugateIsoEquiv
mateEquiv
conjugateEquiv_adjunction_id
conjugateEquiv_adjunction_id_symm
conjugateEquiv_apply_app
conjugateEquiv_associator_hom
conjugateEquiv_comm
conjugateEquiv_comp
conjugateEquiv_comp_assoc
conjugateEquiv_counit
conjugateEquiv_counit_symm
conjugateEquiv_id
conjugateEquiv_iso
conjugateEquiv_leftUnitor_hom
conjugateEquiv_mateEquiv_vcomp
conjugateEquiv_of_iso
conjugateEquiv_rightUnitor_hom
conjugateEquiv_symm_apply_app
conjugateEquiv_symm_comm
conjugateEquiv_symm_comp
conjugateEquiv_symm_comp_assoc
conjugateEquiv_symm_id
conjugateEquiv_symm_iso
conjugateEquiv_symm_of_iso
conjugateEquiv_whiskerLeft
conjugateEquiv_whiskerRight
conjugateIsoEquiv_apply_hom
conjugateIsoEquiv_apply_inv
conjugateIsoEquiv_symm_apply_hom
conjugateIsoEquiv_symm_apply_inv
iterated_mateEquiv_conjugateEquiv
iterated_mateEquiv_conjugateEquiv_symm
mateEquiv_apply
mateEquiv_conjugateEquiv_vcomp
mateEquiv_counit
mateEquiv_counit_symm
mateEquiv_hcomp
mateEquiv_square
mateEquiv_symm_apply
mateEquiv_vcomp
unit_conjugateEquiv
unit_conjugateEquiv_symm
unit_mateEquiv
unit_mateEquiv_symm
frobeniusMorphism_mate
Adjunction.conjugateEquiv_leftAdjointCompIso_inv
Adjunction.leftAdjointCompNatTransβββ_eq_conjugateEquiv_symm
Equivalence.inverseFunctor_map
Equivalence.symmEquivFunctor_map
Adjunction.conjugateEquiv_leftAdjointIdIso_hom
SheafOfModules.conjugateEquiv_pullbackComp_inv
Equivalence.congrLeftFunctor_map
AlgebraicGeometry.Scheme.Modules.conjugateEquiv_pullbackId_hom
AlgebraicGeometry.Scheme.Modules.conjugateEquiv_pullbackComp_inv
Adjunction.leftAdjointCompNatTransβββ_eq_conjugateEquiv_symm
SheafOfModules.conjugateEquiv_pullbackId_hom
Bicategory.toNatTrans_conjugateEquiv
Equivalence.symmEquivInverse_map_app
Bicategory.toNatTrans_mateEquiv
NatTrans.app
Functor.id
DFunLike.coe
Equiv
Quiver.Hom
Functor
CategoryStruct.toQuiver
Category.toCategoryStruct
Functor.category
EquivLike.toFunLike
Equiv.instEquivLike
Adjunction.id
CategoryStruct.comp
Functor.obj
Functor.comp
Adjunction.counit
Category.id_comp
Functor.whiskerRight_comp
Category.assoc
Category.comp_id
Equiv.symm
Adjunction.unit
Functor.map
Adjunction.comp
Iso.hom
Functor.associator
NatTrans.ext'
Adjunction.comp_unit_app
Functor.map_id
Adjunction.comp_counit_app
Functor.map_comp
Adjunction.unit_naturality_assoc
Adjunction.right_triangle_components
CategoryStruct.id
congr_app
TwoSquare.hComp_app
TwoSquare.vComp_app
Mathlib.Tactic.Reassoc.eq_whisker'
Adjunction.counit_naturality
Adjunction.counit_naturality_assoc
Adjunction.left_triangle_components_assoc
Equiv.right_inv
IsIso
IsIso.inv_hom_id
IsIso.hom_inv_id
Functor.leftUnitor
Iso.inv
Functor.rightUnitor
Iso.inv_ext'
TwoSquare
TwoSquare.whiskerLeft
TwoSquare.whiskerTop
TwoSquare.ext
Functor.whiskerRight_twice
Iso.inv_hom_id_assoc
Functor.whiskerLeft_twice
Equiv.symm_apply_apply
Equiv.eq_symm_apply
Equiv.apply_symm_apply
Equiv.symm_apply_eq
Functor.whiskerLeft
Functor.whiskerRight
Functor.congr_map
NatTrans.naturality
Adjunction.unit_naturality
Adjunction.right_triangle_components_assoc
Iso
TwoSquare.natTrans
Equiv.trans
TwoSquare.equivNatTrans
TwoSquare.whiskerRight
TwoSquare.whiskerBottom
Iso.hom_inv_id_assoc
TwoSquare.vComp
TwoSquare.hComp
Functor.comp_map
Adjunction.left_triangle_components
---
β Back to Index