Documentation Verification Report

Mates

πŸ“ Source: Mathlib/CategoryTheory/Adjunction/Mates.lean

Statistics

MetricCount
DefinitionsconjugateEquiv, conjugateIsoEquiv, mateEquiv
3
TheoremsconjugateEquiv_adjunction_id, conjugateEquiv_adjunction_id_symm, conjugateEquiv_apply_app, conjugateEquiv_associator_hom, conjugateEquiv_comm, conjugateEquiv_comp, conjugateEquiv_comp_assoc, conjugateEquiv_counit, conjugateEquiv_counit_symm, conjugateEquiv_id, conjugateEquiv_iso, conjugateEquiv_leftUnitor_hom, conjugateEquiv_mateEquiv_vcomp, conjugateEquiv_of_iso, conjugateEquiv_rightUnitor_hom, conjugateEquiv_symm_apply_app, conjugateEquiv_symm_comm, conjugateEquiv_symm_comp, conjugateEquiv_symm_comp_assoc, conjugateEquiv_symm_id, conjugateEquiv_symm_iso, conjugateEquiv_symm_of_iso, conjugateEquiv_whiskerLeft, conjugateEquiv_whiskerRight, conjugateIsoEquiv_apply_hom, conjugateIsoEquiv_apply_inv, conjugateIsoEquiv_symm_apply_hom, conjugateIsoEquiv_symm_apply_inv, iterated_mateEquiv_conjugateEquiv, iterated_mateEquiv_conjugateEquiv_symm, mateEquiv_apply, mateEquiv_conjugateEquiv_vcomp, mateEquiv_counit, mateEquiv_counit_symm, mateEquiv_hcomp, mateEquiv_square, mateEquiv_symm_apply, mateEquiv_vcomp, unit_conjugateEquiv, unit_conjugateEquiv_symm, unit_mateEquiv, unit_mateEquiv_symm
42
Total45

CategoryTheory

Definitions

NameCategoryTheorems
conjugateEquiv πŸ“–CompOp
45 mathmath: conjugateEquiv_iso, iterated_mateEquiv_conjugateEquiv, iterated_mateEquiv_conjugateEquiv_symm, conjugateEquiv_symm_id, conjugateEquiv_symm_comp_assoc, conjugateEquiv_symm_apply_app, conjugateEquiv_apply_app, frobeniusMorphism_mate, Adjunction.conjugateEquiv_leftAdjointCompIso_inv, Adjunction.leftAdjointCompNatTrans₀₁₃_eq_conjugateEquiv_symm, conjugateEquiv_leftUnitor_hom, Equivalence.inverseFunctor_map, conjugateEquiv_counit_symm, conjugateEquiv_symm_iso, Equivalence.symmEquivFunctor_map, Adjunction.conjugateEquiv_leftAdjointIdIso_hom, conjugateEquiv_whiskerRight, unit_conjugateEquiv_symm, unit_conjugateEquiv, conjugateEquiv_symm_comp, SheafOfModules.conjugateEquiv_pullbackComp_inv, conjugateEquiv_counit, conjugateEquiv_rightUnitor_hom, conjugateEquiv_mateEquiv_vcomp, mateEquiv_conjugateEquiv_vcomp, conjugateEquiv_comm, Equivalence.congrLeftFunctor_map, conjugateEquiv_comp_assoc, conjugateEquiv_associator_hom, conjugateEquiv_symm_comm, conjugateEquiv_id, AlgebraicGeometry.Scheme.Modules.conjugateEquiv_pullbackId_hom, AlgebraicGeometry.Scheme.Modules.conjugateEquiv_pullbackComp_inv, conjugateIsoEquiv_apply_hom, conjugateIsoEquiv_apply_inv, conjugateEquiv_whiskerLeft, conjugateIsoEquiv_symm_apply_inv, Adjunction.leftAdjointCompNatTrans₀₂₃_eq_conjugateEquiv_symm, conjugateEquiv_adjunction_id_symm, SheafOfModules.conjugateEquiv_pullbackId_hom, conjugateEquiv_adjunction_id, conjugateIsoEquiv_symm_apply_hom, Bicategory.toNatTrans_conjugateEquiv, conjugateEquiv_comp, Equivalence.symmEquivInverse_map_app
conjugateIsoEquiv πŸ“–CompOp
4 mathmath: conjugateIsoEquiv_apply_hom, conjugateIsoEquiv_apply_inv, conjugateIsoEquiv_symm_apply_inv, conjugateIsoEquiv_symm_apply_hom
mateEquiv πŸ“–CompOp
14 mathmath: mateEquiv_counit_symm, iterated_mateEquiv_conjugateEquiv, iterated_mateEquiv_conjugateEquiv_symm, mateEquiv_hcomp, mateEquiv_symm_apply, conjugateEquiv_mateEquiv_vcomp, mateEquiv_conjugateEquiv_vcomp, Bicategory.toNatTrans_mateEquiv, unit_mateEquiv_symm, unit_mateEquiv, mateEquiv_vcomp, mateEquiv_counit, mateEquiv_square, mateEquiv_apply

Theorems

NameKindAssumesProvesValidatesDepends On
conjugateEquiv_adjunction_id πŸ“–mathematicalβ€”NatTrans.app
Functor.id
DFunLike.coe
Equiv
Quiver.Hom
Functor
CategoryStruct.toQuiver
Category.toCategoryStruct
Functor.category
EquivLike.toFunLike
Equiv.instEquivLike
conjugateEquiv
Adjunction.id
CategoryStruct.comp
Functor.obj
Functor.comp
Adjunction.counit
β€”Category.id_comp
Functor.whiskerRight_comp
Category.assoc
Category.comp_id
conjugateEquiv_adjunction_id_symm πŸ“–mathematicalβ€”NatTrans.app
Functor.id
DFunLike.coe
Equiv
Quiver.Hom
Functor
CategoryStruct.toQuiver
Category.toCategoryStruct
Functor.category
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
conjugateEquiv
Adjunction.id
CategoryStruct.comp
Functor.obj
Functor.comp
Adjunction.unit
β€”Category.id_comp
Functor.whiskerRight_comp
Category.assoc
Category.comp_id
conjugateEquiv_apply_app πŸ“–mathematicalβ€”NatTrans.app
DFunLike.coe
Equiv
Quiver.Hom
Functor
CategoryStruct.toQuiver
Category.toCategoryStruct
Functor.category
EquivLike.toFunLike
Equiv.instEquivLike
conjugateEquiv
CategoryStruct.comp
Functor.obj
Functor.id
Functor.comp
Adjunction.unit
Functor.map
Adjunction.counit
β€”Category.comp_id
Category.id_comp
conjugateEquiv_associator_hom πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
Functor
CategoryStruct.toQuiver
Category.toCategoryStruct
Functor.category
Functor.comp
EquivLike.toFunLike
Equiv.instEquivLike
conjugateEquiv
Adjunction.comp
Iso.hom
Functor.associator
β€”NatTrans.ext'
conjugateEquiv_apply_app
Adjunction.comp_unit_app
Category.assoc
Functor.map_id
Adjunction.comp_counit_app
Category.id_comp
Functor.map_comp
Adjunction.unit_naturality_assoc
Adjunction.right_triangle_components
Category.comp_id
conjugateEquiv_comm πŸ“–mathematicalCategoryStruct.comp
Functor
Category.toCategoryStruct
Functor.category
CategoryStruct.id
DFunLike.coe
Equiv
Quiver.Hom
CategoryStruct.toQuiver
EquivLike.toFunLike
Equiv.instEquivLike
conjugateEquiv
β€”conjugateEquiv_comp
conjugateEquiv_id
conjugateEquiv_comp πŸ“–mathematicalβ€”CategoryStruct.comp
Functor
Category.toCategoryStruct
Functor.category
DFunLike.coe
Equiv
Quiver.Hom
CategoryStruct.toQuiver
EquivLike.toFunLike
Equiv.instEquivLike
conjugateEquiv
β€”NatTrans.ext'
mateEquiv_vcomp
congr_app
Category.comp_id
Category.id_comp
Category.assoc
Functor.map_comp
TwoSquare.hComp_app
Functor.whiskerRight_comp
TwoSquare.vComp_app
Functor.map_id
conjugateEquiv_comp_assoc πŸ“–mathematicalβ€”CategoryStruct.comp
Functor
Category.toCategoryStruct
Functor.category
DFunLike.coe
Equiv
Quiver.Hom
CategoryStruct.toQuiver
EquivLike.toFunLike
Equiv.instEquivLike
conjugateEquiv
β€”Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
conjugateEquiv_comp
conjugateEquiv_counit πŸ“–mathematicalβ€”CategoryStruct.comp
Category.toCategoryStruct
Functor.obj
Functor.id
Functor.map
NatTrans.app
DFunLike.coe
Equiv
Quiver.Hom
Functor
CategoryStruct.toQuiver
Functor.category
EquivLike.toFunLike
Equiv.instEquivLike
conjugateEquiv
Functor.comp
Adjunction.counit
β€”conjugateEquiv_apply_app
Functor.map_comp
Category.assoc
Adjunction.counit_naturality
Adjunction.counit_naturality_assoc
Adjunction.left_triangle_components_assoc
conjugateEquiv_counit_symm πŸ“–mathematicalβ€”CategoryStruct.comp
Category.toCategoryStruct
Functor.obj
Functor.id
Functor.map
NatTrans.app
Functor.comp
Adjunction.counit
DFunLike.coe
Equiv
Quiver.Hom
Functor
CategoryStruct.toQuiver
Functor.category
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
conjugateEquiv
β€”Equiv.right_inv
conjugateEquiv_counit
conjugateEquiv_id πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
Functor
CategoryStruct.toQuiver
Category.toCategoryStruct
Functor.category
EquivLike.toFunLike
Equiv.instEquivLike
conjugateEquiv
CategoryStruct.id
β€”NatTrans.ext'
conjugateEquiv_apply_app
Functor.map_id
Category.id_comp
Adjunction.right_triangle_components
conjugateEquiv_iso πŸ“–mathematicalβ€”IsIso
Functor
Functor.category
DFunLike.coe
Equiv
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
conjugateEquiv
β€”conjugateEquiv_comm
IsIso.inv_hom_id
IsIso.hom_inv_id
conjugateEquiv_leftUnitor_hom πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
Functor
CategoryStruct.toQuiver
Category.toCategoryStruct
Functor.category
Functor.comp
Functor.id
EquivLike.toFunLike
Equiv.instEquivLike
conjugateEquiv
Adjunction.comp
Adjunction.id
Iso.hom
Functor.leftUnitor
Iso.inv
Functor.rightUnitor
β€”Iso.inv_ext'
NatTrans.ext'
conjugateEquiv_apply_app
Adjunction.comp_unit_app
Category.id_comp
Functor.map_id
Adjunction.right_triangle_components
Category.comp_id
conjugateEquiv_mateEquiv_vcomp πŸ“–mathematicalβ€”DFunLike.coe
Equiv
TwoSquare
EquivLike.toFunLike
Equiv.instEquivLike
mateEquiv
TwoSquare.whiskerLeft
TwoSquare.whiskerTop
Quiver.Hom
Functor
CategoryStruct.toQuiver
Category.toCategoryStruct
Functor.category
conjugateEquiv
β€”TwoSquare.ext
mateEquiv_vcomp
congr_app
Functor.map_comp
Category.comp_id
Category.id_comp
Category.assoc
conjugateEquiv_apply_app
Functor.whiskerRight_comp
Functor.whiskerRight_twice
Iso.inv_hom_id_assoc
Functor.map_id
Functor.whiskerLeft_twice
conjugateEquiv_of_iso πŸ“–mathematicalβ€”IsIso
Functor
Functor.category
β€”conjugateEquiv_symm_iso
Equiv.symm_apply_apply
conjugateEquiv_rightUnitor_hom πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
Functor
CategoryStruct.toQuiver
Category.toCategoryStruct
Functor.category
Functor.comp
Functor.id
EquivLike.toFunLike
Equiv.instEquivLike
conjugateEquiv
Adjunction.comp
Adjunction.id
Iso.hom
Functor.rightUnitor
Iso.inv
Functor.leftUnitor
β€”Iso.inv_ext'
NatTrans.ext'
conjugateEquiv_apply_app
Adjunction.comp_unit_app
Functor.map_id
Category.comp_id
Category.id_comp
Adjunction.right_triangle_components
conjugateEquiv_symm_apply_app πŸ“–mathematicalβ€”NatTrans.app
DFunLike.coe
Equiv
Quiver.Hom
Functor
CategoryStruct.toQuiver
Category.toCategoryStruct
Functor.category
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
conjugateEquiv
CategoryStruct.comp
Functor.obj
Functor.map
Functor.id
Functor.comp
Adjunction.unit
Adjunction.counit
β€”Functor.map_id
Category.comp_id
Category.id_comp
conjugateEquiv_symm_comm πŸ“–mathematicalCategoryStruct.comp
Functor
Category.toCategoryStruct
Functor.category
CategoryStruct.id
DFunLike.coe
Equiv
Quiver.Hom
CategoryStruct.toQuiver
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
conjugateEquiv
β€”conjugateEquiv_symm_comp
conjugateEquiv_symm_id
conjugateEquiv_symm_comp πŸ“–mathematicalβ€”CategoryStruct.comp
Functor
Category.toCategoryStruct
Functor.category
DFunLike.coe
Equiv
Quiver.Hom
CategoryStruct.toQuiver
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
conjugateEquiv
β€”Equiv.eq_symm_apply
conjugateEquiv_comp
Equiv.apply_symm_apply
conjugateEquiv_symm_comp_assoc πŸ“–mathematicalβ€”CategoryStruct.comp
Functor
Category.toCategoryStruct
Functor.category
DFunLike.coe
Equiv
Quiver.Hom
CategoryStruct.toQuiver
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
conjugateEquiv
β€”Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
conjugateEquiv_symm_comp
conjugateEquiv_symm_id πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
Functor
CategoryStruct.toQuiver
Category.toCategoryStruct
Functor.category
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
conjugateEquiv
CategoryStruct.id
β€”Equiv.symm_apply_eq
conjugateEquiv_id
conjugateEquiv_symm_iso πŸ“–mathematicalβ€”IsIso
Functor
Functor.category
DFunLike.coe
Equiv
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
conjugateEquiv
β€”conjugateEquiv_symm_comm
IsIso.inv_hom_id
IsIso.hom_inv_id
conjugateEquiv_symm_of_iso πŸ“–mathematicalβ€”IsIso
Functor
Functor.category
β€”conjugateEquiv_iso
Equiv.apply_symm_apply
conjugateEquiv_whiskerLeft πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
Functor
CategoryStruct.toQuiver
Category.toCategoryStruct
Functor.category
Functor.comp
EquivLike.toFunLike
Equiv.instEquivLike
conjugateEquiv
Adjunction.comp
Functor.whiskerLeft
Functor.whiskerRight
β€”NatTrans.ext'
Functor.congr_map
NatTrans.naturality
Adjunction.unit_naturality
conjugateEquiv_apply_app
Adjunction.comp_unit_app
Adjunction.comp_counit_app
Functor.map_comp
Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
Adjunction.right_triangle_components_assoc
conjugateEquiv_whiskerRight πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
Functor
CategoryStruct.toQuiver
Category.toCategoryStruct
Functor.category
Functor.comp
EquivLike.toFunLike
Equiv.instEquivLike
conjugateEquiv
Adjunction.comp
Functor.whiskerRight
Functor.whiskerLeft
β€”NatTrans.ext'
conjugateEquiv_apply_app
Adjunction.comp_unit_app
Adjunction.comp_counit_app
Category.assoc
Functor.map_comp
Adjunction.unit_naturality_assoc
Adjunction.right_triangle_components
Category.comp_id
conjugateIsoEquiv_apply_hom πŸ“–mathematicalβ€”Iso.hom
Functor
Functor.category
DFunLike.coe
Equiv
Iso
EquivLike.toFunLike
Equiv.instEquivLike
conjugateIsoEquiv
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
conjugateEquiv
β€”β€”
conjugateIsoEquiv_apply_inv πŸ“–mathematicalβ€”Iso.inv
Functor
Functor.category
DFunLike.coe
Equiv
Iso
EquivLike.toFunLike
Equiv.instEquivLike
conjugateIsoEquiv
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
conjugateEquiv
β€”β€”
conjugateIsoEquiv_symm_apply_hom πŸ“–mathematicalβ€”Iso.hom
Functor
Functor.category
DFunLike.coe
Equiv
Iso
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
conjugateIsoEquiv
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
conjugateEquiv
β€”β€”
conjugateIsoEquiv_symm_apply_inv πŸ“–mathematicalβ€”Iso.inv
Functor
Functor.category
DFunLike.coe
Equiv
Iso
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
conjugateIsoEquiv
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
conjugateEquiv
β€”β€”
iterated_mateEquiv_conjugateEquiv πŸ“–mathematicalβ€”TwoSquare.natTrans
DFunLike.coe
Equiv
TwoSquare
EquivLike.toFunLike
Equiv.instEquivLike
mateEquiv
Quiver.Hom
Functor
CategoryStruct.toQuiver
Category.toCategoryStruct
Functor.category
Functor.comp
conjugateEquiv
Adjunction.comp
β€”NatTrans.ext'
Functor.whiskerRight_comp
Functor.whiskerRight_twice
Category.assoc
Functor.map_id
Category.comp_id
Category.id_comp
conjugateEquiv_apply_app
Adjunction.comp_unit_app
Adjunction.comp_counit_app
Functor.map_comp
iterated_mateEquiv_conjugateEquiv_symm πŸ“–mathematicalβ€”DFunLike.coe
Equiv
TwoSquare
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
mateEquiv
Quiver.Hom
Functor
CategoryStruct.toQuiver
Category.toCategoryStruct
Functor.category
Functor.comp
Equiv.trans
conjugateEquiv
Adjunction.comp
TwoSquare.equivNatTrans
β€”TwoSquare.ext
Functor.whiskerLeft_twice
Category.assoc
Functor.whiskerRight_comp
Functor.map_id
Category.comp_id
Category.id_comp
conjugateEquiv_symm_apply_app
Adjunction.comp_unit_app
Functor.map_comp
Adjunction.comp_counit_app
mateEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
TwoSquare
EquivLike.toFunLike
Equiv.instEquivLike
mateEquiv
CategoryStruct.comp
Functor
Category.toCategoryStruct
Functor.category
Functor.comp
Functor.id
Iso.inv
Functor.rightUnitor
Functor.whiskerLeft
Adjunction.unit
Iso.hom
Functor.associator
Functor.whiskerRight
TwoSquare.natTrans
Adjunction.counit
Functor.leftUnitor
β€”β€”
mateEquiv_conjugateEquiv_vcomp πŸ“–mathematicalβ€”DFunLike.coe
Equiv
TwoSquare
EquivLike.toFunLike
Equiv.instEquivLike
mateEquiv
TwoSquare.whiskerRight
TwoSquare.whiskerBottom
Quiver.Hom
Functor
CategoryStruct.toQuiver
Category.toCategoryStruct
Functor.category
conjugateEquiv
β€”TwoSquare.ext
mateEquiv_vcomp
congr_app
Functor.map_comp
Category.comp_id
Category.id_comp
Category.assoc
conjugateEquiv_apply_app
Functor.whiskerRight_comp
Functor.whiskerRight_twice
Functor.map_id
Functor.whiskerLeft_twice
Iso.hom_inv_id_assoc
mateEquiv_counit πŸ“–mathematicalβ€”CategoryStruct.comp
Category.toCategoryStruct
Functor.obj
Functor.comp
Functor.id
Functor.map
NatTrans.app
DFunLike.coe
Equiv
TwoSquare
EquivLike.toFunLike
Equiv.instEquivLike
mateEquiv
Adjunction.counit
β€”Category.comp_id
Category.id_comp
Functor.map_comp
Category.assoc
Adjunction.counit_naturality
Adjunction.counit_naturality_assoc
Adjunction.left_triangle_components_assoc
mateEquiv_counit_symm πŸ“–mathematicalβ€”CategoryStruct.comp
Category.toCategoryStruct
Functor.obj
Functor.comp
Functor.id
Functor.map
NatTrans.app
Adjunction.counit
DFunLike.coe
Equiv
TwoSquare
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
mateEquiv
β€”Equiv.right_inv
mateEquiv_counit
mateEquiv_hcomp πŸ“–mathematicalβ€”DFunLike.coe
Equiv
TwoSquare
Functor.comp
EquivLike.toFunLike
Equiv.instEquivLike
mateEquiv
Adjunction.comp
TwoSquare.vComp
TwoSquare.hComp
β€”TwoSquare.ext
Functor.whiskerRight_comp
Category.assoc
Functor.whiskerRight_twice
Iso.inv_hom_id_assoc
Functor.map_id
Category.comp_id
Category.id_comp
Functor.whiskerLeft_twice
Iso.hom_inv_id_assoc
Functor.map_comp
Adjunction.unit_naturality
Functor.comp_map
NatTrans.naturality
mateEquiv_square πŸ“–mathematicalβ€”DFunLike.coe
Equiv
TwoSquare
Functor.comp
EquivLike.toFunLike
Equiv.instEquivLike
mateEquiv
Adjunction.comp
TwoSquare.hComp
TwoSquare.vComp
β€”mateEquiv_vcomp
mateEquiv_hcomp
mateEquiv_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
TwoSquare
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
mateEquiv
CategoryStruct.comp
Functor
Category.toCategoryStruct
Functor.category
Functor.comp
Functor.id
Iso.inv
Functor.leftUnitor
Functor.whiskerRight
Adjunction.unit
Functor.associator
Iso.hom
Functor.whiskerLeft
TwoSquare.natTrans
Adjunction.counit
Functor.rightUnitor
β€”β€”
mateEquiv_vcomp πŸ“–mathematicalβ€”DFunLike.coe
Equiv
TwoSquare
Functor.comp
EquivLike.toFunLike
Equiv.instEquivLike
mateEquiv
TwoSquare.hComp
TwoSquare.vComp
β€”TwoSquare.ext
Functor.whiskerRight_comp
Functor.whiskerRight_twice
Category.assoc
Functor.map_id
Category.comp_id
Category.id_comp
Functor.whiskerLeft_twice
Iso.hom_inv_id_assoc
Adjunction.unit_naturality
Functor.map_comp
Functor.comp_map
NatTrans.naturality
Adjunction.left_triangle_components
unit_conjugateEquiv πŸ“–mathematicalβ€”CategoryStruct.comp
Category.toCategoryStruct
Functor.obj
Functor.id
Functor.comp
NatTrans.app
Adjunction.unit
DFunLike.coe
Equiv
Quiver.Hom
Functor
CategoryStruct.toQuiver
Functor.category
EquivLike.toFunLike
Equiv.instEquivLike
conjugateEquiv
Functor.map
β€”Category.id_comp
Category.comp_id
unit_mateEquiv
unit_conjugateEquiv_symm πŸ“–mathematicalβ€”CategoryStruct.comp
Category.toCategoryStruct
Functor.obj
Functor.id
Functor.comp
NatTrans.app
Adjunction.unit
Functor.map
DFunLike.coe
Equiv
Quiver.Hom
Functor
CategoryStruct.toQuiver
Functor.category
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
conjugateEquiv
β€”Equiv.right_inv
unit_conjugateEquiv
unit_mateEquiv πŸ“–mathematicalβ€”CategoryStruct.comp
Category.toCategoryStruct
Functor.obj
Functor.id
Functor.comp
Functor.map
NatTrans.app
Adjunction.unit
DFunLike.coe
Equiv
TwoSquare
EquivLike.toFunLike
Equiv.instEquivLike
mateEquiv
β€”Category.comp_id
Category.id_comp
Adjunction.unit_naturality_assoc
Category.assoc
Functor.map_comp
Functor.comp_map
NatTrans.naturality
Adjunction.left_triangle_components
Functor.map_id
unit_mateEquiv_symm πŸ“–mathematicalβ€”CategoryStruct.comp
Category.toCategoryStruct
Functor.obj
Functor.id
Functor.comp
Functor.map
NatTrans.app
Adjunction.unit
DFunLike.coe
Equiv
TwoSquare
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
mateEquiv
β€”Equiv.right_inv
unit_mateEquiv

---

← Back to Index