Documentation Verification Report

Parametrized

πŸ“ Source: Mathlib/CategoryTheory/Adjunction/Parametrized.lean

Statistics

MetricCount
Definitionsadj, homEquiv, mk', Β«term_βŠ£β‚‚_Β»
4
TheoremshomEquiv_eq, homEquiv_naturality_one, homEquiv_naturality_one_assoc, homEquiv_naturality_three, homEquiv_naturality_three_assoc, homEquiv_naturality_two, homEquiv_naturality_two_assoc, homEquiv_symm_naturality_one, homEquiv_symm_naturality_one_assoc, homEquiv_symm_naturality_three, homEquiv_symm_naturality_three_assoc, homEquiv_symm_naturality_two, homEquiv_symm_naturality_two_assoc, mk'_adj, unit_whiskerRight_map, unit_whiskerRight_map_assoc, whiskerLeft_map_counit, whiskerLeft_map_counit_assoc
18
Total22

CategoryTheory

Definitions

NameCategoryTheorems
Β«term_βŠ£β‚‚_Β» πŸ“–CompOpβ€”

CategoryTheory.ParametrizedAdjunction

Definitions

NameCategoryTheorems
adj πŸ“–CompOp
8 mathmath: mk'_adj, CategoryTheory.MonoidalClosed.internalHomAdjunctionβ‚‚_adj, whiskerLeft_map_counit, CategoryTheory.Functor.leibnizAdjunction_adj, unit_whiskerRight_map_assoc, unit_whiskerRight_map, homEquiv_eq, whiskerLeft_map_counit_assoc
homEquiv πŸ“–CompOp
27 mathmath: homEquiv_symm_naturality_three_assoc, homEquiv_naturality_two, inr_arrowHomEquiv_symm_apply_left, inl_arrowHomEquiv_symm_apply_left, homEquiv_symm_naturality_one, CategoryTheory.Functor.LeibnizAdjunction.adj_unit_app_left, arrowHomEquiv_apply_left, CategoryTheory.Functor.LeibnizAdjunction.adj_counit_app_left, arrowHomEquiv_apply_right_snd, arrowHomEquiv_symm_apply_right, homEquiv_symm_naturality_one_assoc, homEquiv_symm_naturality_three, inr_arrowHomEquiv_symm_apply_left_assoc, CategoryTheory.Functor.LeibnizAdjunction.adj_counit_app_right, homEquiv_symm_naturality_two, arrowHomEquiv_apply_right_fst_assoc, homEquiv_naturality_three, homEquiv_symm_naturality_two_assoc, inl_arrowHomEquiv_symm_apply_left_assoc, arrowHomEquiv_apply_right_fst, CategoryTheory.Functor.LeibnizAdjunction.adj_unit_app_right, homEquiv_naturality_one, homEquiv_eq, homEquiv_naturality_one_assoc, homEquiv_naturality_two_assoc, homEquiv_naturality_three_assoc, arrowHomEquiv_apply_right_snd_assoc
mk' πŸ“–CompOp
1 mathmath: mk'_adj

Theorems

NameKindAssumesProvesValidatesDepends On
homEquiv_eq πŸ“–mathematicalβ€”homEquiv
CategoryTheory.Adjunction.homEquiv
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite
CategoryTheory.Category.opposite
Opposite.op
adj
β€”β€”
homEquiv_naturality_one πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite
CategoryTheory.Category.opposite
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
homEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
Quiver.Hom.op
β€”CategoryTheory.NatTrans.congr_app
unit_whiskerRight_map
CategoryTheory.Adjunction.homEquiv_unit
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.NatTrans.naturality
homEquiv_naturality_one_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
EquivLike.toFunLike
Equiv.instEquivLike
homEquiv
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
Quiver.Hom.op
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
homEquiv_naturality_one
homEquiv_naturality_three πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite
CategoryTheory.Category.opposite
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
homEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
β€”CategoryTheory.Adjunction.homEquiv_naturality_right
homEquiv_naturality_three_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
EquivLike.toFunLike
Equiv.instEquivLike
homEquiv
CategoryTheory.Functor.map
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
homEquiv_naturality_three
homEquiv_naturality_two πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite
CategoryTheory.Category.opposite
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
homEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
β€”CategoryTheory.Adjunction.homEquiv_naturality_left
homEquiv_naturality_two_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
EquivLike.toFunLike
Equiv.instEquivLike
homEquiv
CategoryTheory.Functor.map
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
homEquiv_naturality_two
homEquiv_symm_naturality_one πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
homEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
Quiver.Hom.op
β€”Equiv.injective
Equiv.apply_symm_apply
homEquiv_naturality_one
homEquiv_symm_naturality_one_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
Opposite
CategoryTheory.Category.opposite
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
homEquiv
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
Quiver.Hom.op
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
homEquiv_symm_naturality_one
homEquiv_symm_naturality_three πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
homEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
β€”Equiv.injective
Equiv.apply_symm_apply
homEquiv_naturality_three
homEquiv_symm_naturality_three_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
Opposite
CategoryTheory.Category.opposite
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
homEquiv
CategoryTheory.Functor.map
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
homEquiv_symm_naturality_three
homEquiv_symm_naturality_two πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
homEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
β€”Equiv.injective
Equiv.apply_symm_apply
homEquiv_naturality_two
homEquiv_symm_naturality_two_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
Opposite
CategoryTheory.Category.opposite
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
homEquiv
CategoryTheory.Functor.map
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
homEquiv_symm_naturality_two
mk'_adj πŸ“–mathematicalβ€”adj
mk'
β€”β€”
unit_whiskerRight_map πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Adjunction.unit
adj
CategoryTheory.Functor.whiskerRight
CategoryTheory.Functor.map
CategoryTheory.Functor.whiskerLeft
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
β€”β€”
unit_whiskerRight_map_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Adjunction.unit
adj
CategoryTheory.Functor.whiskerRight
CategoryTheory.Functor.map
CategoryTheory.Functor.whiskerLeft
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
unit_whiskerRight_map
whiskerLeft_map_counit πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Functor.id
CategoryTheory.Functor.whiskerLeft
CategoryTheory.Functor.map
CategoryTheory.Adjunction.counit
adj
CategoryTheory.Functor.whiskerRight
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
β€”CategoryTheory.NatTrans.ext'
Equiv.injective
homEquiv_naturality_one
homEquiv_naturality_two
CategoryTheory.Adjunction.homEquiv_unit
CategoryTheory.Adjunction.right_triangle_components
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
whiskerLeft_map_counit_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Functor.whiskerLeft
CategoryTheory.Functor.map
CategoryTheory.Functor.id
CategoryTheory.Adjunction.counit
adj
CategoryTheory.Functor.whiskerRight
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
whiskerLeft_map_counit

---

← Back to Index