Documentation Verification Report

PartialAdjoint

📁 Source: Mathlib/CategoryTheory/Adjunction/PartialAdjoint.lean

Statistics

MetricCount
DefinitionsPartialLeftAdjointSource, PartialRightAdjointSource, corepresentableByCompCoyonedaObjOfIsColimit, leftAdjointObjIsDefined, partialLeftAdjoint, partialLeftAdjointHomEquiv, partialLeftAdjointMap, partialLeftAdjointObj, partialRightAdjoint, partialRightAdjointHomEquiv, partialRightAdjointMap, partialRightAdjointObj, representableByCompYonedaObjOfIsLimit, rightAdjointObjIsDefined
14
TheoremsinstIsCorepresentableCompObjOppositeTypeCoyonedaOpObjLeftAdjointObjIsDefined, instIsRepresentableCompOppositeOpObjTypeYonedaObjRightAdjointObjIsDefined, isLeftAdjoint_iff_rightAdjointObjIsDefined_eq_top, isLeftAdjoint_of_rightAdjointObjIsDefined_eq_top, isRightAdjoint_iff_leftAdjointObjIsDefined_eq_top, isRightAdjoint_of_leftAdjointObjIsDefined_eq_top, leftAdjointObjIsDefined_colimit, leftAdjointObjIsDefined_iff, leftAdjointObjIsDefined_of_adjunction, leftAdjointObjIsDefined_of_isColimit, partialLeftAdjointHomEquiv_comp, partialLeftAdjointHomEquiv_comp_symm, partialLeftAdjointHomEquiv_comp_symm_assoc, partialLeftAdjointHomEquiv_map, partialLeftAdjointHomEquiv_map_comp, partialLeftAdjointHomEquiv_symm_comp, partialLeftAdjointHomEquiv_symm_comp_assoc, partialLeftAdjoint_map, partialLeftAdjoint_obj, partialRightAdjointHomEquiv_comp, partialRightAdjointHomEquiv_comp_symm, partialRightAdjointHomEquiv_comp_symm_assoc, partialRightAdjointHomEquiv_map, partialRightAdjointHomEquiv_map_comp, partialRightAdjointHomEquiv_symm_comp, partialRightAdjointHomEquiv_symm_comp_assoc, partialRightAdjoint_map, partialRightAdjoint_obj, rightAdjointObjIsDefined_iff, rightAdjointObjIsDefined_limit, rightAdjointObjIsDefined_of_adjunction, rightAdjointObjIsDefined_of_isLimit
32
Total46

CategoryTheory.Functor

Definitions

NameCategoryTheorems
PartialLeftAdjointSource 📖CompOp
2 mathmath: partialLeftAdjoint_obj, partialLeftAdjoint_map
PartialRightAdjointSource 📖CompOp
2 mathmath: partialRightAdjoint_obj, partialRightAdjoint_map
corepresentableByCompCoyonedaObjOfIsColimit 📖CompOp
leftAdjointObjIsDefined 📖CompOp
13 mathmath: partialLeftAdjointHomEquiv_comp_symm_assoc, partialLeftAdjointHomEquiv_symm_comp, leftAdjointObjIsDefined_of_adjunction, partialLeftAdjointHomEquiv_map, partialLeftAdjointHomEquiv_map_comp, instIsCorepresentableCompObjOppositeTypeCoyonedaOpObjLeftAdjointObjIsDefined, partialLeftAdjoint_obj, partialLeftAdjointHomEquiv_symm_comp_assoc, isRightAdjoint_iff_leftAdjointObjIsDefined_eq_top, partialLeftAdjointHomEquiv_comp, partialLeftAdjointHomEquiv_comp_symm, leftAdjointObjIsDefined_iff, partialLeftAdjoint_map
partialLeftAdjoint 📖CompOp
2 mathmath: partialLeftAdjoint_obj, partialLeftAdjoint_map
partialLeftAdjointHomEquiv 📖CompOp
7 mathmath: partialLeftAdjointHomEquiv_comp_symm_assoc, partialLeftAdjointHomEquiv_symm_comp, partialLeftAdjointHomEquiv_map, partialLeftAdjointHomEquiv_map_comp, partialLeftAdjointHomEquiv_symm_comp_assoc, partialLeftAdjointHomEquiv_comp, partialLeftAdjointHomEquiv_comp_symm
partialLeftAdjointMap 📖CompOp
5 mathmath: partialLeftAdjointHomEquiv_comp_symm_assoc, partialLeftAdjointHomEquiv_map, partialLeftAdjointHomEquiv_map_comp, partialLeftAdjointHomEquiv_comp_symm, partialLeftAdjoint_map
partialLeftAdjointObj 📖CompOp
8 mathmath: partialLeftAdjointHomEquiv_comp_symm_assoc, partialLeftAdjointHomEquiv_symm_comp, partialLeftAdjointHomEquiv_map, partialLeftAdjointHomEquiv_map_comp, partialLeftAdjoint_obj, partialLeftAdjointHomEquiv_symm_comp_assoc, partialLeftAdjointHomEquiv_comp, partialLeftAdjointHomEquiv_comp_symm
partialRightAdjoint 📖CompOp
2 mathmath: partialRightAdjoint_obj, partialRightAdjoint_map
partialRightAdjointHomEquiv 📖CompOp
7 mathmath: partialRightAdjointHomEquiv_comp_symm, partialRightAdjointHomEquiv_symm_comp, partialRightAdjointHomEquiv_comp_symm_assoc, partialRightAdjointHomEquiv_comp, partialRightAdjointHomEquiv_map, partialRightAdjointHomEquiv_symm_comp_assoc, partialRightAdjointHomEquiv_map_comp
partialRightAdjointMap 📖CompOp
5 mathmath: partialRightAdjointHomEquiv_symm_comp, partialRightAdjointHomEquiv_map, partialRightAdjoint_map, partialRightAdjointHomEquiv_symm_comp_assoc, partialRightAdjointHomEquiv_map_comp
partialRightAdjointObj 📖CompOp
8 mathmath: partialRightAdjointHomEquiv_comp_symm, partialRightAdjointHomEquiv_symm_comp, partialRightAdjointHomEquiv_comp_symm_assoc, partialRightAdjointHomEquiv_comp, partialRightAdjointHomEquiv_map, partialRightAdjoint_obj, partialRightAdjointHomEquiv_symm_comp_assoc, partialRightAdjointHomEquiv_map_comp
representableByCompYonedaObjOfIsLimit 📖CompOp
rightAdjointObjIsDefined 📖CompOp
13 mathmath: partialRightAdjointHomEquiv_comp_symm, partialRightAdjointHomEquiv_symm_comp, rightAdjointObjIsDefined_iff, partialRightAdjointHomEquiv_comp_symm_assoc, isLeftAdjoint_iff_rightAdjointObjIsDefined_eq_top, partialRightAdjointHomEquiv_comp, partialRightAdjointHomEquiv_map, partialRightAdjoint_obj, instIsRepresentableCompOppositeOpObjTypeYonedaObjRightAdjointObjIsDefined, partialRightAdjoint_map, rightAdjointObjIsDefined_of_adjunction, partialRightAdjointHomEquiv_symm_comp_assoc, partialRightAdjointHomEquiv_map_comp

Theorems

NameKindAssumesProvesValidatesDepends On
instIsCorepresentableCompObjOppositeTypeCoyonedaOpObjLeftAdjointObjIsDefined 📖mathematicalIsCorepresentable
comp
CategoryTheory.types
obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
category
CategoryTheory.coyoneda
Opposite.op
CategoryTheory.ObjectProperty.FullSubcategory.obj
leftAdjointObjIsDefined
CategoryTheory.ObjectProperty.FullSubcategory.property
instIsRepresentableCompOppositeOpObjTypeYonedaObjRightAdjointObjIsDefined 📖mathematicalIsRepresentable
comp
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
op
obj
CategoryTheory.Functor
category
CategoryTheory.yoneda
CategoryTheory.ObjectProperty.FullSubcategory.obj
rightAdjointObjIsDefined
CategoryTheory.ObjectProperty.FullSubcategory.property
isLeftAdjoint_iff_rightAdjointObjIsDefined_eq_top 📖mathematicalIsLeftAdjoint
rightAdjointObjIsDefined
Top.top
CategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.instTopForall
BooleanAlgebra.toTop
Prop.instBooleanAlgebra
rightAdjointObjIsDefined_of_adjunction
isLeftAdjoint_of_rightAdjointObjIsDefined_eq_top
isLeftAdjoint_of_rightAdjointObjIsDefined_eq_top 📖mathematicalrightAdjointObjIsDefined
Top.top
CategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.instTopForall
BooleanAlgebra.toTop
Prop.instBooleanAlgebra
IsLeftAdjointCategoryTheory.Adjunction.isLeftAdjoint
RepresentableBy.comp_homEquiv_symm
isRightAdjoint_iff_leftAdjointObjIsDefined_eq_top 📖mathematicalIsRightAdjoint
leftAdjointObjIsDefined
Top.top
CategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.instTopForall
BooleanAlgebra.toTop
Prop.instBooleanAlgebra
leftAdjointObjIsDefined_of_adjunction
isRightAdjoint_of_leftAdjointObjIsDefined_eq_top
isRightAdjoint_of_leftAdjointObjIsDefined_eq_top 📖mathematicalleftAdjointObjIsDefined
Top.top
CategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.instTopForall
BooleanAlgebra.toTop
Prop.instBooleanAlgebra
IsRightAdjointCategoryTheory.Adjunction.isRightAdjoint
CorepresentableBy.homEquiv_comp
leftAdjointObjIsDefined_colimit 📖mathematicalleftAdjointObjIsDefined
obj
CategoryTheory.Limits.colimitleftAdjointObjIsDefined_of_isColimit
leftAdjointObjIsDefined_iff 📖mathematicalleftAdjointObjIsDefined
IsCorepresentable
comp
CategoryTheory.types
obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
category
CategoryTheory.coyoneda
Opposite.op
leftAdjointObjIsDefined_of_adjunction 📖mathematicalleftAdjointObjIsDefinedCorepresentableBy.isCorepresentable
leftAdjointObjIsDefined_of_isColimit 📖mathematicalleftAdjointObjIsDefined
obj
CategoryTheory.Limits.Cocone.ptCorepresentableBy.isCorepresentable
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
partialLeftAdjointHomEquiv_comp 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
partialLeftAdjointObj
CategoryTheory.ObjectProperty.FullSubcategory.obj
leftAdjointObjIsDefined
obj
EquivLike.toFunLike
Equiv.instEquivLike
partialLeftAdjointHomEquiv
CategoryTheory.CategoryStruct.comp
map
CorepresentableBy.homEquiv_comp
instIsCorepresentableCompObjOppositeTypeCoyonedaOpObjLeftAdjointObjIsDefined
partialLeftAdjointHomEquiv_comp_symm 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
partialLeftAdjointObj
partialLeftAdjointMap
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.ObjectProperty.FullSubcategory.obj
leftAdjointObjIsDefined
obj
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
partialLeftAdjointHomEquiv
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
Equiv.eq_symm_apply
partialLeftAdjointHomEquiv_comp
partialLeftAdjointHomEquiv_map
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Equiv.apply_symm_apply
partialLeftAdjointHomEquiv_comp_symm_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
partialLeftAdjointObj
partialLeftAdjointMap
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.ObjectProperty.FullSubcategory.obj
leftAdjointObjIsDefined
obj
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
partialLeftAdjointHomEquiv
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
partialLeftAdjointHomEquiv_comp_symm
partialLeftAdjointHomEquiv_map 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
partialLeftAdjointObj
CategoryTheory.ObjectProperty.FullSubcategory.obj
leftAdjointObjIsDefined
obj
EquivLike.toFunLike
Equiv.instEquivLike
partialLeftAdjointHomEquiv
partialLeftAdjointMap
CategoryTheory.CategoryStruct.comp
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.CategoryStruct.id
Equiv.apply_symm_apply
partialLeftAdjointHomEquiv_map_comp 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
partialLeftAdjointObj
CategoryTheory.ObjectProperty.FullSubcategory.obj
leftAdjointObjIsDefined
obj
EquivLike.toFunLike
Equiv.instEquivLike
partialLeftAdjointHomEquiv
CategoryTheory.CategoryStruct.comp
partialLeftAdjointMap
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
partialLeftAdjointHomEquiv_comp
partialLeftAdjointHomEquiv_map
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
partialLeftAdjointHomEquiv_symm_comp 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
partialLeftAdjointObj
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.ObjectProperty.FullSubcategory.obj
leftAdjointObjIsDefined
obj
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
partialLeftAdjointHomEquiv
map
CorepresentableBy.homEquiv_symm_comp
instIsCorepresentableCompObjOppositeTypeCoyonedaOpObjLeftAdjointObjIsDefined
partialLeftAdjointHomEquiv_symm_comp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
partialLeftAdjointObj
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.ObjectProperty.FullSubcategory.obj
leftAdjointObjIsDefined
obj
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
partialLeftAdjointHomEquiv
map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
partialLeftAdjointHomEquiv_symm_comp
partialLeftAdjoint_map 📖mathematicalmap
PartialLeftAdjointSource
CategoryTheory.ObjectProperty.FullSubcategory.category
leftAdjointObjIsDefined
partialLeftAdjoint
partialLeftAdjointMap
partialLeftAdjoint_obj 📖mathematicalobj
PartialLeftAdjointSource
CategoryTheory.ObjectProperty.FullSubcategory.category
leftAdjointObjIsDefined
partialLeftAdjoint
partialLeftAdjointObj
partialRightAdjointHomEquiv_comp 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
partialRightAdjointObj
obj
CategoryTheory.ObjectProperty.FullSubcategory.obj
rightAdjointObjIsDefined
EquivLike.toFunLike
Equiv.instEquivLike
partialRightAdjointHomEquiv
CategoryTheory.CategoryStruct.comp
map
RepresentableBy.homEquiv_comp
instIsRepresentableCompOppositeOpObjTypeYonedaObjRightAdjointObjIsDefined
partialRightAdjointHomEquiv_comp_symm 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
partialRightAdjointObj
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
obj
CategoryTheory.ObjectProperty.FullSubcategory.obj
rightAdjointObjIsDefined
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
partialRightAdjointHomEquiv
map
RepresentableBy.comp_homEquiv_symm
instIsRepresentableCompOppositeOpObjTypeYonedaObjRightAdjointObjIsDefined
partialRightAdjointHomEquiv_comp_symm_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
partialRightAdjointObj
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
obj
CategoryTheory.ObjectProperty.FullSubcategory.obj
rightAdjointObjIsDefined
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
partialRightAdjointHomEquiv
map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
partialRightAdjointHomEquiv_comp_symm
partialRightAdjointHomEquiv_map 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
partialRightAdjointObj
obj
CategoryTheory.ObjectProperty.FullSubcategory.obj
rightAdjointObjIsDefined
EquivLike.toFunLike
Equiv.instEquivLike
partialRightAdjointHomEquiv
partialRightAdjointMap
CategoryTheory.CategoryStruct.comp
CategoryTheory.CategoryStruct.id
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
Equiv.apply_symm_apply
partialRightAdjointHomEquiv_map_comp 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
partialRightAdjointObj
obj
CategoryTheory.ObjectProperty.FullSubcategory.obj
rightAdjointObjIsDefined
EquivLike.toFunLike
Equiv.instEquivLike
partialRightAdjointHomEquiv
CategoryTheory.CategoryStruct.comp
partialRightAdjointMap
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
partialRightAdjointHomEquiv_comp
partialRightAdjointHomEquiv_map
CategoryTheory.Category.assoc
CategoryTheory.Category.comp_id
partialRightAdjointHomEquiv_symm_comp 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
partialRightAdjointObj
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
obj
CategoryTheory.ObjectProperty.FullSubcategory.obj
rightAdjointObjIsDefined
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
partialRightAdjointHomEquiv
partialRightAdjointMap
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
partialRightAdjointHomEquiv_map_comp
Equiv.apply_symm_apply
partialRightAdjointHomEquiv_symm_comp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
partialRightAdjointObj
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
obj
CategoryTheory.ObjectProperty.FullSubcategory.obj
rightAdjointObjIsDefined
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
partialRightAdjointHomEquiv
partialRightAdjointMap
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
partialRightAdjointHomEquiv_symm_comp
partialRightAdjoint_map 📖mathematicalmap
PartialRightAdjointSource
CategoryTheory.ObjectProperty.FullSubcategory.category
rightAdjointObjIsDefined
partialRightAdjoint
partialRightAdjointMap
partialRightAdjoint_obj 📖mathematicalobj
PartialRightAdjointSource
CategoryTheory.ObjectProperty.FullSubcategory.category
rightAdjointObjIsDefined
partialRightAdjoint
partialRightAdjointObj
rightAdjointObjIsDefined_iff 📖mathematicalrightAdjointObjIsDefined
IsRepresentable
comp
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
op
obj
CategoryTheory.Functor
category
CategoryTheory.yoneda
rightAdjointObjIsDefined_limit 📖mathematicalrightAdjointObjIsDefined
obj
CategoryTheory.Limits.limitrightAdjointObjIsDefined_of_isLimit
rightAdjointObjIsDefined_of_adjunction 📖mathematicalrightAdjointObjIsDefinedRepresentableBy.isRepresentable
rightAdjointObjIsDefined_of_isLimit 📖mathematicalrightAdjointObjIsDefined
obj
CategoryTheory.Limits.Cone.ptRepresentableBy.isRepresentable
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape

---

← Back to Index