Documentation Verification Report

Restrict

📁 Source: Mathlib/CategoryTheory/Adjunction/Restrict.lean

Statistics

MetricCount
DefinitionsrestrictFullyFaithful
1
Theoremsmap_restrictFullyFaithful_counit_app, map_restrictFullyFaithful_counit_app_assoc, map_restrictFullyFaithful_unit_app, map_restrictFullyFaithful_unit_app_assoc, restrictFullyFaithful_homEquiv_apply
5
Total6

CategoryTheory.Adjunction

Definitions

NameCategoryTheorems
restrictFullyFaithful 📖CompOp
5 mathmath: map_restrictFullyFaithful_unit_app_assoc, map_restrictFullyFaithful_counit_app, map_restrictFullyFaithful_counit_app_assoc, restrictFullyFaithful_homEquiv_apply, map_restrictFullyFaithful_unit_app

Theorems

NameKindAssumesProvesValidatesDepends On
map_restrictFullyFaithful_counit_app 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
counit
restrictFullyFaithful
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
homEquiv_counit
CategoryTheory.Category.comp_id
CategoryTheory.Functor.FullyFaithful.map_preimage
map_restrictFullyFaithful_counit_app_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
counit
restrictFullyFaithful
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_restrictFullyFaithful_counit_app
map_restrictFullyFaithful_unit_app 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
unit
restrictFullyFaithful
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
homEquiv_unit
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
CategoryTheory.Functor.FullyFaithful.map_preimage
map_restrictFullyFaithful_unit_app_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
unit
restrictFullyFaithful
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_restrictFullyFaithful_unit_app
restrictFullyFaithful_homEquiv_apply 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
homEquiv
restrictFullyFaithful
CategoryTheory.Functor.FullyFaithful.preimage
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
unit
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.FullyFaithful.map_injective
CategoryTheory.Functor.map_comp
map_restrictFullyFaithful_unit_app
CategoryTheory.Category.assoc
CategoryTheory.Functor.FullyFaithful.map_preimage
CategoryTheory.NatTrans.naturality

---

← Back to Index