📁 Source: Mathlib/CategoryTheory/Adjunction/Unique.lean
leftAdjointUniq
rightAdjointUniq
homEquiv_leftAdjointUniq_hom_app
homEquiv_symm_rightAdjointUniq_hom_app
leftAdjointUniq_hom_app_counit
leftAdjointUniq_hom_app_counit_assoc
leftAdjointUniq_hom_counit
leftAdjointUniq_hom_counit_assoc
leftAdjointUniq_inv_app
leftAdjointUniq_refl
leftAdjointUniq_trans
leftAdjointUniq_trans_app
leftAdjointUniq_trans_app_assoc
leftAdjointUniq_trans_assoc
rightAdjointUniq_hom_app_counit
rightAdjointUniq_hom_app_counit_assoc
rightAdjointUniq_hom_counit
rightAdjointUniq_hom_counit_assoc
rightAdjointUniq_inv_app
rightAdjointUniq_refl
rightAdjointUniq_trans
rightAdjointUniq_trans_app
rightAdjointUniq_trans_app_assoc
rightAdjointUniq_trans_assoc
unit_leftAdjointUniq_hom
unit_leftAdjointUniq_hom_app
unit_leftAdjointUniq_hom_app_assoc
unit_leftAdjointUniq_hom_assoc
unit_rightAdjointUniq_hom
unit_rightAdjointUniq_hom_app
unit_rightAdjointUniq_hom_app_assoc
unit_rightAdjointUniq_hom_assoc
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
homEquiv
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
unit
CategoryTheory.conjugateEquiv_symm_apply_app
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
homEquiv_unit
CategoryTheory.Functor.map_comp
unit_naturality_assoc
right_triangle_components
CategoryTheory.Category.comp_id
Equiv.symm
counit
CategoryTheory.conjugateEquiv_apply_app
homEquiv_counit
CategoryTheory.Category.assoc
counit_naturality
left_triangle_components_assoc
CategoryTheory.CategoryStruct.comp
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.Functor.whiskerLeft
CategoryTheory.NatTrans.ext'
CategoryTheory.Iso.inv
CategoryTheory.CategoryStruct.id
CategoryTheory.conjugateEquiv_symm_id
CategoryTheory.conjugateEquiv_symm_comp
CategoryTheory.Functor.map
CategoryTheory.Functor.whiskerRight
CategoryTheory.conjugateEquiv_id
CategoryTheory.conjugateEquiv_comp
CategoryTheory.NatTrans.comp_app
left_triangle_components
---
← Back to Index