Documentation Verification Report

Unique

📁 Source: Mathlib/CategoryTheory/Adjunction/Unique.lean

Statistics

MetricCount
DefinitionsleftAdjointUniq, rightAdjointUniq
2
TheoremshomEquiv_leftAdjointUniq_hom_app, homEquiv_symm_rightAdjointUniq_hom_app, leftAdjointUniq_hom_app_counit, leftAdjointUniq_hom_app_counit_assoc, leftAdjointUniq_hom_counit, leftAdjointUniq_hom_counit_assoc, leftAdjointUniq_inv_app, leftAdjointUniq_refl, leftAdjointUniq_trans, leftAdjointUniq_trans_app, leftAdjointUniq_trans_app_assoc, leftAdjointUniq_trans_assoc, rightAdjointUniq_hom_app_counit, rightAdjointUniq_hom_app_counit_assoc, rightAdjointUniq_hom_counit, rightAdjointUniq_hom_counit_assoc, rightAdjointUniq_inv_app, rightAdjointUniq_refl, rightAdjointUniq_trans, rightAdjointUniq_trans_app, rightAdjointUniq_trans_app_assoc, rightAdjointUniq_trans_assoc, unit_leftAdjointUniq_hom, unit_leftAdjointUniq_hom_app, unit_leftAdjointUniq_hom_app_assoc, unit_leftAdjointUniq_hom_assoc, unit_rightAdjointUniq_hom, unit_rightAdjointUniq_hom_app, unit_rightAdjointUniq_hom_app_assoc, unit_rightAdjointUniq_hom_assoc
30
Total32

CategoryTheory.Adjunction

Definitions

NameCategoryTheorems
leftAdjointUniq 📖CompOp
15 mathmath: leftAdjointUniq_refl, leftAdjointUniq_hom_app_counit_assoc, leftAdjointUniq_trans_app_assoc, leftAdjointUniq_hom_counit, leftAdjointUniq_hom_app_counit, leftAdjointUniq_trans_assoc, leftAdjointUniq_trans_app, unit_leftAdjointUniq_hom_assoc, leftAdjointUniq_hom_counit_assoc, unit_leftAdjointUniq_hom_app_assoc, leftAdjointUniq_inv_app, unit_leftAdjointUniq_hom, leftAdjointUniq_trans, homEquiv_leftAdjointUniq_hom_app, unit_leftAdjointUniq_hom_app
rightAdjointUniq 📖CompOp
15 mathmath: rightAdjointUniq_trans, unit_rightAdjointUniq_hom, unit_rightAdjointUniq_hom_app, rightAdjointUniq_trans_app_assoc, rightAdjointUniq_hom_counit_assoc, rightAdjointUniq_hom_counit, rightAdjointUniq_trans_app, rightAdjointUniq_hom_app_counit, rightAdjointUniq_trans_assoc, rightAdjointUniq_hom_app_counit_assoc, unit_rightAdjointUniq_hom_assoc, rightAdjointUniq_refl, homEquiv_symm_rightAdjointUniq_hom_app, unit_rightAdjointUniq_hom_app_assoc, rightAdjointUniq_inv_app

Theorems

NameKindAssumesProvesValidatesDepends On
homEquiv_leftAdjointUniq_hom_app 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
homEquiv
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
leftAdjointUniq
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
unit
CategoryTheory.conjugateEquiv_symm_apply_app
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
homEquiv_unit
CategoryTheory.Functor.map_comp
unit_naturality_assoc
right_triangle_components
CategoryTheory.Category.comp_id
homEquiv_symm_rightAdjointUniq_hom_app 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
homEquiv
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
rightAdjointUniq
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
counit
CategoryTheory.conjugateEquiv_apply_app
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
homEquiv_counit
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
counit_naturality
left_triangle_components_assoc
leftAdjointUniq_hom_app_counit 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
leftAdjointUniq
CategoryTheory.Functor.comp
counit
leftAdjointUniq_hom_counit
leftAdjointUniq_hom_app_counit_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
leftAdjointUniq
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
counit
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
leftAdjointUniq_hom_app_counit
leftAdjointUniq_hom_counit 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.Functor.whiskerLeft
CategoryTheory.Iso.hom
leftAdjointUniq
counit
CategoryTheory.NatTrans.ext'
CategoryTheory.conjugateEquiv_symm_apply_app
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
CategoryTheory.Category.assoc
counit_naturality
CategoryTheory.Functor.map_comp
right_triangle_components
leftAdjointUniq_hom_counit_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.whiskerLeft
CategoryTheory.Iso.hom
leftAdjointUniq
CategoryTheory.Functor.id
counit
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
leftAdjointUniq_hom_counit
leftAdjointUniq_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
leftAdjointUniq
CategoryTheory.Iso.hom
leftAdjointUniq_refl 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
leftAdjointUniq
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.conjugateEquiv_symm_id
leftAdjointUniq_trans 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Iso.hom
leftAdjointUniq
CategoryTheory.conjugateEquiv_symm_comp
CategoryTheory.Category.comp_id
leftAdjointUniq_trans_app 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
leftAdjointUniq
leftAdjointUniq_trans
leftAdjointUniq_trans_app_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
leftAdjointUniq
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
leftAdjointUniq_trans_app
leftAdjointUniq_trans_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Iso.hom
leftAdjointUniq
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
leftAdjointUniq_trans
rightAdjointUniq_hom_app_counit 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
rightAdjointUniq
CategoryTheory.Functor.comp
counit
CategoryTheory.conjugateEquiv_apply_app
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
counit_naturality
left_triangle_components_assoc
rightAdjointUniq_hom_app_counit_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
rightAdjointUniq
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
counit
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
rightAdjointUniq_hom_app_counit
rightAdjointUniq_hom_counit 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.Functor.whiskerRight
CategoryTheory.Iso.hom
rightAdjointUniq
counit
CategoryTheory.NatTrans.ext'
rightAdjointUniq_hom_app_counit
rightAdjointUniq_hom_counit_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.whiskerRight
CategoryTheory.Iso.hom
rightAdjointUniq
CategoryTheory.Functor.id
counit
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
rightAdjointUniq_hom_counit
rightAdjointUniq_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
rightAdjointUniq
CategoryTheory.Iso.hom
rightAdjointUniq_refl 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
rightAdjointUniq
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.conjugateEquiv_id
rightAdjointUniq_trans 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Iso.hom
rightAdjointUniq
CategoryTheory.conjugateEquiv_comp
CategoryTheory.Category.comp_id
rightAdjointUniq_trans_app 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
rightAdjointUniq
rightAdjointUniq_trans
rightAdjointUniq_trans_app_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
rightAdjointUniq
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
rightAdjointUniq_trans_app
rightAdjointUniq_trans_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Iso.hom
rightAdjointUniq
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
rightAdjointUniq_trans
unit_leftAdjointUniq_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
unit
CategoryTheory.Functor.whiskerRight
CategoryTheory.Iso.hom
leftAdjointUniq
CategoryTheory.NatTrans.ext'
CategoryTheory.NatTrans.comp_app
homEquiv_leftAdjointUniq_hom_app
homEquiv_unit
unit_leftAdjointUniq_hom_app 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
unit
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
leftAdjointUniq
unit_leftAdjointUniq_hom
unit_leftAdjointUniq_hom_app_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
unit
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
leftAdjointUniq
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
unit_leftAdjointUniq_hom_app
unit_leftAdjointUniq_hom_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
unit
CategoryTheory.Functor.whiskerRight
CategoryTheory.Iso.hom
leftAdjointUniq
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
unit_leftAdjointUniq_hom
unit_rightAdjointUniq_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
unit
CategoryTheory.Functor.whiskerLeft
CategoryTheory.Iso.hom
rightAdjointUniq
CategoryTheory.NatTrans.ext'
unit_rightAdjointUniq_hom_app
unit_rightAdjointUniq_hom_app 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
unit
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
rightAdjointUniq
CategoryTheory.conjugateEquiv_apply_app
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
unit_naturality_assoc
CategoryTheory.Functor.map_comp
left_triangle_components
CategoryTheory.Category.comp_id
unit_rightAdjointUniq_hom_app_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
unit
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
rightAdjointUniq
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
unit_rightAdjointUniq_hom_app
unit_rightAdjointUniq_hom_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
unit
CategoryTheory.Functor.whiskerLeft
CategoryTheory.Iso.hom
rightAdjointUniq
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
unit_rightAdjointUniq_hom

---

← Back to Index