Documentation Verification Report

Basic

πŸ“ Source: Mathlib/CategoryTheory/Bicategory/Basic.lean

Statistics

MetricCount
DefinitionsBicategory, associator, associatorNatIsoLeft, associatorNatIsoMiddle, associatorNatIsoRight, homCategory, leftUnitor, leftUnitorNatIso, postcomp, postcomposing, precomp, precomposing, rightUnitor, rightUnitorNatIso, termΞ±_, termρ_, toCategoryStruct, whiskerLeft, whiskerLeftIso, whiskerRight, whiskerRightIso, Β«term_β–·_Β», Β«term_◁_Β», Β«termΞ»_Β»
24
TheoremsassociatorNatIsoLeft_hom_app, associatorNatIsoLeft_inv_app, associatorNatIsoMiddle_hom_app, associatorNatIsoMiddle_inv_app, associatorNatIsoRight_hom_app, associatorNatIsoRight_inv_app, associator_inv_naturality_left, associator_inv_naturality_left_assoc, associator_inv_naturality_middle, associator_inv_naturality_middle_assoc, associator_inv_naturality_right, associator_inv_naturality_right_assoc, associator_naturality_left, associator_naturality_left_assoc, associator_naturality_middle, associator_naturality_middle_assoc, associator_naturality_right, associator_naturality_right_assoc, comp_whiskerLeft, comp_whiskerLeft_assoc, comp_whiskerLeft_symm, comp_whiskerLeft_symm_assoc, comp_whiskerRight, comp_whiskerRight_assoc, hom_inv_whiskerRight, hom_inv_whiskerRight_assoc, hom_inv_whiskerRight_whiskerRight, hom_inv_whiskerRight_whiskerRight_assoc, id_whiskerLeft, id_whiskerLeft_assoc, id_whiskerLeft_symm, id_whiskerRight, inv_hom_whiskerRight, inv_hom_whiskerRight_assoc, inv_hom_whiskerRight_whiskerRight, inv_hom_whiskerRight_whiskerRight_assoc, inv_whiskerLeft, inv_whiskerRight, leftUnitorNatIso_hom_app, leftUnitorNatIso_inv_app, leftUnitor_comp, leftUnitor_comp_assoc, leftUnitor_comp_inv, leftUnitor_comp_inv_assoc, leftUnitor_inv_naturality, leftUnitor_inv_naturality_assoc, leftUnitor_inv_whiskerRight, leftUnitor_inv_whiskerRight_assoc, leftUnitor_naturality, leftUnitor_naturality_assoc, leftUnitor_whiskerRight, leftUnitor_whiskerRight_assoc, pentagon, pentagon_assoc, pentagon_hom_hom_inv_hom_hom, pentagon_hom_hom_inv_hom_hom_assoc, pentagon_hom_hom_inv_inv_hom, pentagon_hom_hom_inv_inv_hom_assoc, pentagon_hom_inv_inv_inv_hom, pentagon_hom_inv_inv_inv_hom_assoc, pentagon_hom_inv_inv_inv_inv, pentagon_hom_inv_inv_inv_inv_assoc, pentagon_inv, pentagon_inv_assoc, pentagon_inv_hom_hom_hom_hom, pentagon_inv_hom_hom_hom_hom_assoc, pentagon_inv_hom_hom_hom_inv, pentagon_inv_hom_hom_hom_inv_assoc, pentagon_inv_inv_hom_hom_inv, pentagon_inv_inv_hom_hom_inv_assoc, pentagon_inv_inv_hom_inv_inv, pentagon_inv_inv_hom_inv_inv_assoc, postcomp_map, postcomp_obj, postcomposing_map_app, postcomposing_obj, precomp_map, precomp_obj, precomposing_map_app, precomposing_obj, rightUnitorNatIso_hom_app, rightUnitorNatIso_inv_app, rightUnitor_comp, rightUnitor_comp_assoc, rightUnitor_comp_inv, rightUnitor_comp_inv_assoc, rightUnitor_inv_naturality, rightUnitor_inv_naturality_assoc, rightUnitor_naturality, rightUnitor_naturality_assoc, triangle, triangle_assoc, triangle_assoc_comp_left, triangle_assoc_comp_left_inv, triangle_assoc_comp_left_inv_assoc, triangle_assoc_comp_right, triangle_assoc_comp_right_assoc, triangle_assoc_comp_right_inv, triangle_assoc_comp_right_inv_assoc, unitors_equal, unitors_inv_equal, whiskerLeftIso_hom, whiskerLeftIso_inv, whiskerLeft_comp, whiskerLeft_comp_assoc, whiskerLeft_hom_inv, whiskerLeft_hom_inv_assoc, whiskerLeft_hom_inv_whiskerRight, whiskerLeft_hom_inv_whiskerRight_assoc, whiskerLeft_id, whiskerLeft_iff, whiskerLeft_inv_hom, whiskerLeft_inv_hom_assoc, whiskerLeft_inv_hom_whiskerRight, whiskerLeft_inv_hom_whiskerRight_assoc, whiskerLeft_isIso, whiskerLeft_rightUnitor, whiskerLeft_rightUnitor_assoc, whiskerLeft_rightUnitor_inv, whiskerLeft_rightUnitor_inv_assoc, whiskerLeft_whiskerLeft_hom_inv, whiskerLeft_whiskerLeft_hom_inv_assoc, whiskerLeft_whiskerLeft_inv_hom, whiskerLeft_whiskerLeft_inv_hom_assoc, whiskerRightIso_hom, whiskerRightIso_inv, whiskerRight_comp, whiskerRight_comp_assoc, whiskerRight_comp_symm, whiskerRight_comp_symm_assoc, whiskerRight_id, whiskerRight_id_assoc, whiskerRight_id_symm, whiskerRight_iff, whiskerRight_isIso, whisker_assoc, whisker_assoc_assoc, whisker_assoc_symm, whisker_assoc_symm_assoc, whisker_exchange, whisker_exchange_assoc
141
Total165

CategoryTheory

Definitions

NameCategoryTheorems
Bicategory πŸ“–CompDataβ€”

CategoryTheory.Bicategory

Definitions

NameCategoryTheorems
associator πŸ“–CompOp
280 mathmath: Bicategory.Opposite.op2_associator, CategoryTheory.Pseudofunctor.mapComp_assoc_right_hom, CategoryTheory.LaxFunctor.mapComp'_whiskerRight_comp_mapComp', CategoryTheory.Pseudofunctor.mapβ‚‚_associator_assoc, CategoryTheory.LaxFunctor.mapβ‚‚_associator_assoc, CategoryTheory.LaxFunctor.whiskerLeft_mapComp'_comp_mapComp'_assoc, Comonad.comul_assoc_flip, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_inv_comp_mapComp'₀₂₃_hom_assoc, CategoryTheory.Pseudofunctor.mapComp_assoc_right_hom_app_assoc, Bicategory.Opposite.op2_associator_inv, CategoryTheory.Pseudofunctor.mapβ‚‚_associator_app_assoc, CategoryTheory.Oplax.OplaxTrans.Modification.whiskerRight_naturality, CategoryTheory.Lax.StrongTrans.vComp_naturality_hom, Adj.associator_inv_Ο„r, whiskerRight_comp_assoc, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_hom_comp_mapComp'_hom_whiskerRight_assoc, CategoryTheory.Cat.Hom.toNatIso_associator, InducedBicategory.bicategory_associator_inv_hom, CategoryTheory.OplaxFunctor.mapβ‚‚_associator, mateEquiv_comp_id_right, CategoryTheory.Cat.associator_hom_app, pentagon_inv, Adjunction.homEquivβ‚‚_symm_apply, CategoryTheory.OplaxFunctor.mapβ‚‚_associator_app, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_naturality_assoc, CategoryTheory.Pseudofunctor.mapComp'_hom_comp_whiskerLeft_mapComp'_hom, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_id, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_comp_assoc, CategoryTheory.StrictlyUnitaryLaxFunctorCore.mapβ‚‚_associator, CategoryTheory.Pseudofunctor.StrongTrans.categoryStruct_comp_naturality_hom, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_hom_comp_whiskerLeft_mapComp'_hom, CategoryTheory.Pseudofunctor.mapComp_assoc_left_inv_app_assoc, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_id_assoc, pentagon_hom_hom_inv_hom_hom_assoc, associatorNatIsoLeft_inv_app, pentagon_inv_hom_hom_hom_hom, CategoryTheory.OplaxFunctor.mapComp_assoc_left_app_assoc, Adjunction.homEquiv₁_apply, CategoryTheory.StrictPseudofunctorCore.mapβ‚‚_associator, associator_inv_naturality_middle, associator_naturality_right_assoc, triangle_assoc_comp_left, associator_inv_naturality_right, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_inv, whiskerRight_comp_symm, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_inv, associator_eqToHom_hom_assoc, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_naturality, CategoryTheory.Oplax.LaxTrans.naturality_comp_assoc, mateEquiv_id_comp_right, leftUnitor_comp_inv, Bicategory.Opposite.bicategory_associator_hom_unop2, CategoryTheory.LaxFunctor.mapComp_assoc_right_app, CategoryTheory.Oplax.OplaxTrans.associator_hom_as_app, pentagon_inv_hom_hom_hom_inv, CategoryTheory.Pseudofunctor.mapβ‚‚_associator_app, CategoryTheory.Lax.OplaxTrans.naturality_comp, leftUnitor_inv_whiskerRight_assoc, whiskerRight_comp_symm_assoc, CategoryTheory.Oplax.StrongTrans.Modification.whiskerRight_naturality, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_hom, CategoryTheory.Oplax.OplaxTrans.whiskerRight_naturality_naturality, comp_whiskerLeft_symm, CategoryTheory.Oplax.StrongTrans.naturality_comp, CategoryTheory.Oplax.OplaxTrans.associator_inv_as_app, Adjunction.homEquivβ‚‚_apply, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_hom_assoc, CategoryTheory.Pseudofunctor.mapComp_assoc_right_inv_app, CategoryTheory.Oplax.OplaxTrans.naturality_comp, CategoryTheory.Lax.LaxTrans.naturality_comp, CategoryTheory.Oplax.OplaxTrans.whiskerRight_naturality_naturality_assoc, CategoryTheory.OplaxFunctor.mapComp_assoc_left_app, CategoryTheory.Lax.OplaxTrans.vComp_naturality_comp, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_hom_comp_whiskerLeft_mapComp'_hom_assoc, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_inv_assoc, associator_inv_naturality_left, CategoryTheory.Pseudofunctor.mapComp'_inv_whiskerRight_comp_mapComp'_inv, CategoryTheory.Cat.associator_inv_app, associator_naturality_right, CategoryTheory.Oplax.OplaxTrans.whiskerRight_naturality_id, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_comp, CategoryTheory.Oplax.OplaxTrans.OplaxFunctor.bicategory_associator_hom_as_app, Comonad.comul_assoc_flip_assoc, CategoryTheory.OplaxFunctor.mapβ‚‚_associator_app_assoc, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp, CategoryTheory.LaxFunctor.mapβ‚‚_associator_app_assoc, CategoryTheory.Oplax.OplaxTrans.whiskerLeft_naturality_comp_assoc, whiskerLeft_rightUnitor_assoc, leftUnitor_inv_whiskerRight, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_naturality_assoc, CategoryTheory.StrictlyUnitaryPseudofunctorCore.mapβ‚‚_associator, associator_eqToHom_inv, Mathlib.Tactic.Bicategory.naturality_associator, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_hom, CategoryTheory.Oplax.OplaxTrans.categoryStruct_comp_naturality, CategoryTheory.OplaxFunctor.mapComp_assoc_right_app, pentagon_inv_inv_hom_hom_inv, CategoryTheory.Pseudofunctor.mapComp_assoc_right_hom_assoc, CategoryTheory.OplaxFunctor.mapComp_assoc_left, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_comp_assoc, CategoryTheory.Lax.LaxTrans.naturality_comp_assoc, pentagon_assoc, CategoryTheory.Oplax.LaxTrans.naturality_comp, pentagon_inv_inv_hom_inv_inv, CategoryTheory.OplaxFunctor.mapComp'_comp_mapComp'_whiskerRight, CategoryTheory.OplaxFunctor.mapβ‚‚_associator_assoc, CategoryTheory.LaxFunctor.mapComp'_whiskerRight_comp_mapComp'_assoc, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_inv_assoc, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_id, prod_associator_inv_fst, whiskerLeft_rightUnitor_inv, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_inv, Pith.associator_hom_iso, CategoryTheory.Lax.StrongTrans.naturality_comp_assoc, associator_naturality_left_assoc, triangle_assoc_comp_right_inv_assoc, CategoryTheory.LaxFunctor.whiskerLeft_mapComp'_comp_mapComp', triangle_assoc_comp_right_inv, associator_naturality_middle, CategoryTheory.Oplax.LaxTrans.vComp_naturality_comp, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_comp_assoc, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_comp, CategoryTheory.Pseudofunctor.mapComp_assoc_left_hom_app_assoc, mateEquiv_symm_apply, leftUnitor_whiskerRight, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_comp_assoc, associator_eqToHom_inv_assoc, CategoryTheory.associator_def, CategoryTheory.OplaxFunctor.mapComp_assoc_right_app_assoc, CategoryTheory.Pseudofunctor.mapComp_assoc_right_inv_assoc, pentagon, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_inv_assoc, CategoryTheory.Oplax.StrongTrans.categoryStruct_comp_naturality, CategoryTheory.Pseudofunctor.mapComp_assoc_left_inv_assoc, LeftLift.whisker_unit, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_id_assoc, pentagon_hom_hom_inv_inv_hom_assoc, CategoryTheory.Oplax.OplaxTrans.whiskerLeft_naturality_comp, associator_hom_congr, pentagon_inv_inv_hom_inv_inv_assoc, Comonad.comul_assoc, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_hom, comp_whiskerLeft, prod_associator_hom_fst, CategoryTheory.Pseudofunctor.mapComp_assoc_left_inv, CategoryTheory.Pseudofunctor.whiskerLeft_mapComp'_inv_comp_mapComp'₀₁₃_inv, CategoryTheory.LaxFunctor.mapβ‚‚_associator, associator_inv_naturality_left_assoc, CategoryTheory.Oplax.StrongTrans.naturality_comp_assoc, CategoryTheory.OplaxFunctor.mapComp_assoc_right, mateEquiv_eq_iff, CategoryTheory.OplaxFunctor.mapComp_assoc_left_assoc, pentagon_inv_assoc, CategoryTheory.Oplax.OplaxTrans.whiskerRight_naturality_id_assoc, whiskerRight_comp, CategoryTheory.Pseudofunctor.StrongTrans.associator_inv_as_app, pentagon_inv_hom_hom_hom_hom_assoc, whisker_assoc_assoc, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_inv_comp_mapComp'₀₁₃_hom, associator_eqToHom_hom, whisker_assoc_symm, CategoryTheory.Oplax.OplaxTrans.whiskerRight_naturality_comp, CategoryTheory.Pseudofunctor.mapComp_assoc_right_hom_app, CategoryTheory.Cat.associator_inv_toNatTrans, associator_inv_naturality_right_assoc, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_comp, triangle, CategoryTheory.Pseudofunctor.mapComp'_inv_comp_mapComp'_hom, rightUnitor_comp, triangle_assoc_comp_right, comp_whiskerLeft_assoc, associatorNatIsoMiddle_hom_app, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_inv_comp_mapComp'₀₁₃_hom_assoc, CategoryTheory.Pseudofunctor.whiskerLeft_mapComp'_inv_comp_mapComp'₀₁₃_inv_assoc, CategoryTheory.Lax.StrongTrans.naturality_comp, whisker_assoc_symm_assoc, conjugateEquiv_apply', CategoryTheory.OplaxFunctor.mapComp_assoc_right_assoc, CategoryTheory.Pseudofunctor.mapComp_assoc_right_inv_app_assoc, CategoryTheory.FreeBicategory.mk_associator_hom, CategoryTheory.LaxFunctor.mapComp_assoc_left_app, pentagon_hom_inv_inv_inv_hom_assoc, CategoryTheory.Pseudofunctor.whiskerLeft_mapComp'_inv_comp_mapComp'_inv, CategoryTheory.Pseudofunctor.StrongTrans.associator_hom_as_app, Pith.associator_inv_iso_inv, rightUnitor_comp_inv, CategoryTheory.Pseudofunctor.StrongTrans.categoryStruct_comp_naturality_inv, CategoryTheory.Pseudofunctor.mapComp'_inv_whiskerRight_mapComp'₀₂₃_inv_assoc, pentagon_hom_inv_inv_inv_inv_assoc, CategoryTheory.Lax.StrongTrans.vComp_naturality_inv, CategoryTheory.LaxFunctor.mapComp_assoc_right_assoc, CategoryTheory.Oplax.StrongTrans.vcomp_naturality_hom, Adj.Bicategory.associator_inv_Ο„l, CategoryTheory.Pseudofunctor.mapβ‚‚_associator, conjugateEquiv_associator_hom, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_hom_assoc, CategoryTheory.Oplax.OplaxTrans.Modification.whiskerRight_naturality_assoc, Adj.associator_inv_Ο„l, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_hom_assoc, CategoryTheory.OplaxFunctor.mapComp'_comp_whiskerLeft_mapComp', whisker_assoc, associatorNatIsoRight_hom_app, associator_inv_congr, LeftExtension.whisker_unit, Adj.Bicategory.associator_hom_Ο„r, associatorNatIsoLeft_hom_app, CategoryTheory.Pseudofunctor.mapComp_assoc_left_hom, Adj.associator_hom_Ο„r, whiskerLeft_rightUnitor_inv_assoc, CategoryTheory.Oplax.OplaxTrans.naturality_comp_assoc, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_inv_comp_mapComp'₀₂₃_hom, CategoryTheory.Lax.LaxTrans.vComp_naturality_comp, Pith.associator_inv_iso_hom, prod_associator_inv_snd, CategoryTheory.BicategoricalCoherence.assoc_iso, Comonad.comul_assoc_assoc, associator_naturality_left, Adj.Bicategory.associator_inv_Ο„r, CategoryTheory.LaxFunctor.mapComp_assoc_left, CategoryTheory.Pseudofunctor.mapComp_assoc_left_hom_app, CategoryTheory.LaxFunctor.mapComp_assoc_right, mateEquiv_apply, Adj.associator_hom_Ο„l, InducedBicategory.bicategory_associator_hom_hom, pentagon_hom_hom_inv_inv_hom, Bicategory.Opposite.bicategory_associator_inv_unop2, CategoryTheory.Lax.OplaxTrans.naturality_comp_assoc, pentagon_inv_inv_hom_hom_inv_assoc, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_comp, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_naturality, CategoryTheory.FreeBicategory.mk_associator_inv, CategoryTheory.Oplax.OplaxTrans.whiskerRight_naturality_comp_assoc, rightUnitor_comp_assoc, Adjunction.homEquiv₁_symm_apply, CategoryTheory.Oplax.StrongTrans.Modification.whiskerRight_naturality_assoc, CategoryTheory.Lax.StrongTrans.categoryStruct_comp_naturality, Adj.Bicategory.associator_hom_Ο„l, conjugateEquiv_symm_apply', CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_iso, whiskerLeft_rightUnitor, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_assoc, pentagon_hom_inv_inv_inv_inv, CategoryTheory.LaxFunctor.mapβ‚‚_associator_app, CategoryTheory.OplaxFunctor.mapComp'_comp_mapComp'_whiskerRight_assoc, comp_whiskerLeft_symm_assoc, leftUnitor_comp, CategoryTheory.BicategoricalCoherence.assoc'_iso, CategoryTheory.Cat.associator_hom_toNatTrans, CategoryTheory.LaxFunctor.mapComp_assoc_left_assoc, associatorNatIsoMiddle_inv_app, CategoryTheory.Pseudofunctor.mapComp_assoc_left_hom_assoc, pentagon_hom_hom_inv_hom_hom, prod_associator_hom_snd, triangle_assoc_comp_left_inv, CategoryTheory.Pseudofunctor.StrongTrans.Modification.whiskerRight_naturality, CategoryTheory.Pseudofunctor.mapComp_assoc_right_inv, CategoryTheory.LaxFunctor.mapComp_assoc_right_app_assoc, associatorNatIsoRight_inv_app, leftUnitor_comp_inv_assoc, leftUnitor_whiskerRight_assoc, CategoryTheory.OplaxFunctor.mapComp'_comp_whiskerLeft_mapComp'_assoc, Bicategory.Opposite.op2_associator_hom, pentagon_hom_inv_inv_inv_hom, CategoryTheory.LaxFunctor.mapComp_assoc_left_app_assoc, associator_inv_naturality_middle_assoc, rightUnitor_comp_inv_assoc, CategoryTheory.Pseudofunctor.mapComp'_inv_whiskerRight_mapComp'₀₂₃_inv, Strict.associator_eqToIso, CategoryTheory.Pseudofunctor.mapComp'_hom_comp_mapComp'_hom_whiskerRight, triangle_assoc, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_hom_comp_mapComp'_hom_whiskerRight, CategoryTheory.Oplax.StrongTrans.vcomp_naturality_inv, associator_naturality_middle_assoc, CategoryTheory.Oplax.OplaxTrans.OplaxFunctor.bicategory_associator_inv_as_app, triangle_assoc_comp_right_assoc, pentagon_inv_hom_hom_hom_inv_assoc, leftUnitor_comp_assoc, CategoryTheory.Pseudofunctor.mapComp_assoc_left_inv_app, triangle_assoc_comp_left_inv_assoc, CategoryTheory.Pseudofunctor.StrongTrans.Modification.whiskerRight_naturality_assoc
associatorNatIsoLeft πŸ“–CompOp
2 mathmath: associatorNatIsoLeft_inv_app, associatorNatIsoLeft_hom_app
associatorNatIsoMiddle πŸ“–CompOp
2 mathmath: associatorNatIsoMiddle_hom_app, associatorNatIsoMiddle_inv_app
associatorNatIsoRight πŸ“–CompOp
2 mathmath: associatorNatIsoRight_hom_app, associatorNatIsoRight_inv_app
homCategory πŸ“–CompOp
1253 mathmath: iterated_mateEquiv_conjugateEquiv, CategoryTheory.Join.pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_id, CategoryTheory.Pseudofunctor.mapComp'_naturality_1_assoc, CategoryTheory.Pseudofunctor.mapComp'_comp_id_hom_assoc, CategoryTheory.Pseudofunctor.DescentData.isEquivalence_toDescentData_of_sieve_le, prod_whiskerLeft_snd, Bicategory.Opposite.op2_associator, CategoryTheory.StrictPseudofunctorPreCore.map_id, CategoryTheory.Join.pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_mapβ‚‚_toNatTrans_app, CategoryTheory.Pseudofunctor.DescentData.ofObj_hom, CategoryTheory.Pseudofunctor.mapComp_assoc_right_hom, RightExtension.w_assoc, CategoryTheory.Pseudofunctor.DescentData.subtypeCompatibleHomEquiv_toCompatible_presheafHomObjHomEquiv, CategoryTheory.LaxFunctor.mapComp'_whiskerRight_comp_mapComp', CategoryTheory.Oplax.StrongTrans.Modification.vcomp_app, AlgebraicGeometry.Scheme.Modules.pseudofunctor_map_adj, CategoryTheory.Pseudofunctor.mapβ‚‚_associator_assoc, CategoryTheory.LaxFunctor.mapβ‚‚_associator_assoc, CategoryTheory.Join.pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_map, CategoryTheory.LaxFunctor.whiskerLeft_mapComp'_comp_mapComp'_assoc, Adj.rightUnitor_hom_Ο„l, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_naturality_assoc, Comonad.comul_assoc_flip, Mathlib.Tactic.Bicategory.evalWhiskerLeft_nil, CategoryTheory.OplaxFunctor.id_mapComp, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_inv_comp_mapComp'₀₂₃_hom_assoc, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_mapβ‚‚, eqToHomTransIso_refl_left, CategoryTheory.StrictlyUnitaryLaxFunctor.id_mapβ‚‚, CategoryTheory.Pseudofunctor.mapComp_assoc_right_hom_app_assoc, Bicategory.Opposite.op2_associator_inv, CategoryTheory.Pseudofunctor.mapβ‚‚_associator_app_assoc, Pith.inclusion_mapComp, Pith.pseudofunctorToPith_mapId_hom_iso, CategoryTheory.Pseudofunctor.DescentData.pullFunctorCompIso_inv_app_hom, CategoryTheory.Pseudofunctor.isEquivalence_toDescentData, conjugateEquiv_whiskerRight, CategoryTheory.Oplax.OplaxTrans.Modification.whiskerRight_naturality, LeftLift.whiskering_map, leftUnitor_inv_naturality_assoc, CategoryTheory.Lax.StrongTrans.vComp_naturality_hom, whiskerLeft_inv_hom, CategoryTheory.StrictlyUnitaryLaxFunctor.mapIdIso_hom, CategoryTheory.FreeBicategory.lift_mapId, CategoryTheory.StrictlyUnitaryLaxFunctorCore.mapβ‚‚_leftUnitor, Adj.associator_inv_Ο„r, Prod.sectL_mapId_inv, CategoryTheory.Pseudofunctor.mapComp'_inv_whiskerRight_mapComp'₀₂₃_inv_app, whiskerRight_comp_assoc, Prod.snd_map, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_hom_comp_mapComp'_hom_whiskerRight_assoc, CategoryTheory.Pseudofunctor.mapComp'_id_comp_hom, InducedBicategory.bicategory_associator_inv_hom, LeftExtension.w_assoc, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_naturality, CategoryTheory.OplaxFunctor.mapβ‚‚_associator, inv_hom_whiskerRight_whiskerRight_assoc, Adj.rIso_inv, mateEquiv_comp_id_right, CategoryTheory.Pseudofunctor.StrongTrans.homCategory_comp_as_app, inv_hom_whiskerRight_assoc, whisker_exchange, inv_hom_whiskerRight, CategoryTheory.LaxFunctor.mapβ‚‚_leftUnitor_assoc, CategoryTheory.Cat.associator_hom_app, CategoryTheory.StrictlyUnitaryPseudofunctor.toStrictlyUnitaryLaxFunctor_obj, pentagon_inv, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_hom_comp_whiskerLeft_mapComp'_hom_app_assoc, Adjunction.homEquivβ‚‚_symm_apply, InducedBicategory.Hom.category_id_hom, CategoryTheory.LaxFunctor.comp_mapId, CategoryTheory.Pseudofunctor.mapβ‚‚_left_unitor_assoc, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_id_app, CategoryTheory.OplaxFunctor.mapβ‚‚_associator_app, CategoryTheory.Oplax.LaxTrans.vComp_naturality_id, CategoryTheory.StrictPseudofunctorCore.mapβ‚‚_left_unitor, Lan.existsUnique, CategoryTheory.Pseudofunctor.CoGrothendieck.categoryStruct_id_fiber, CategoryTheory.Oplax.OplaxTrans.OplaxFunctor.bicategory_whiskerRight_as_app, CategoryTheory.Oplax.OplaxTrans.Modification.vcomp_app, eqToHomTransIso_refl_refl, CategoryTheory.FreeBicategory.mk_left_unitor_inv, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_naturality_assoc, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_naturality_assoc, RightLift.w_assoc, mateEquiv_vcomp, CategoryTheory.Pseudofunctor.StrongTrans.comp_app, CategoryTheory.Pseudofunctor.ObjectProperty.fullsubcategory_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj, CategoryTheory.Pseudofunctor.mapComp'_hom_comp_whiskerLeft_mapComp'_hom, conjugateEquiv_adjunction_id_symm, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_hom_assoc, Adj.comp_Ο„l_assoc, CategoryTheory.StrictPseudofunctor.mk'_obj, CategoryTheory.Oplax.OplaxTrans.StrongCore.naturality_hom, Adj.forget₁_mapId, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_id, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_comp_assoc, CategoryTheory.Oplax.OplaxTrans.homCategory_id_as_app, CategoryTheory.Pseudofunctor.mapComp'_comp_id_hom_app, CategoryTheory.BicategoricalCoherence.left'_iso, CategoryTheory.Pseudofunctor.mapComp'_comp_id_inv_app, CategoryTheory.StrictlyUnitaryLaxFunctorCore.mapβ‚‚_associator, Pseudofunctor.ofLaxFunctorToLocallyGroupoid_mapCompIso_inv, LeftExtension.ofCompId_right, CategoryTheory.StrictlyUnitaryLaxFunctorCore.mapβ‚‚_id, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_comp_app, CategoryTheory.Pseudofunctor.StrongTrans.categoryStruct_comp_naturality_hom, CategoryTheory.OplaxFunctor.mapComp_naturality_right_assoc, CategoryTheory.Oplax.LaxTrans.naturality_naturality_assoc, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_hom_comp_whiskerLeft_mapComp'_hom, CategoryTheory.StrictPseudofunctor.id_mapComp_hom, InducedBicategory.bicategory_leftUnitor_inv_hom, CategoryTheory.Pseudofunctor.mapComp_assoc_left_inv_app_assoc, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_id_assoc, CategoryTheory.Pseudofunctor.DescentData.pullFunctor_map_hom, CategoryTheory.Pseudofunctor.StrongTrans.leftUnitor_inv_as_app, CategoryTheory.Oplax.OplaxTrans.OplaxFunctor.bicategory_whiskerLeft_as_app, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_id_assoc, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_inv, pentagon_hom_hom_inv_hom_hom_assoc, CategoryTheory.Functor.toPseudoFunctor'_obj, CategoryTheory.Oplax.OplaxTrans.categoryStruct_id_naturality, CategoryTheory.Pseudofunctor.mapId'_inv_naturality_assoc, Adj.Bicategory.rightUnitor_inv_Ο„r, LeftLift.w_assoc, whiskerRightIso_hom, associatorNatIsoLeft_inv_app, CategoryTheory.StrictlyUnitaryPseudofunctor.mk'_map, CategoryTheory.Pseudofunctor.mapComp_id_left_inv_app, pentagon_inv_hom_hom_hom_hom, CategoryTheory.Pseudofunctor.whiskerLeft_mapId_inv_app_assoc, rightUnitor_inv_naturality, CategoryTheory.OplaxFunctor.mapComp_assoc_left_app_assoc, CategoryTheory.Pseudofunctor.CoGrothendieck.instIsEquivalenceΞ±CategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, Adjunction.homEquiv₁_apply, CategoryTheory.StrictPseudofunctorCore.mapβ‚‚_associator, Prod.swap_mapβ‚‚, CategoryTheory.Pseudofunctor.DescentData.isoMk_inv_hom, Mathlib.Tactic.Bicategory.naturality_rightUnitor, Pith.whiskerRight_iso_inv, rightUnitor_inv_congr, CategoryTheory.Pseudofunctor.mapβ‚‚_left_unitor, CategoryTheory.Pseudofunctor.CoGrothendieck.map_map_base, unitors_inv_equal, Adj.forget₁_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map, Pith.leftUnitor_inv_iso_hom, leftZigzagIso_symm, CategoryTheory.StrictPseudofunctor.mk''_mapId, associator_inv_naturality_middle, associator_naturality_right_assoc, CategoryTheory.Pseudofunctor.CoGrothendieck.map_map_fiber, CategoryTheory.Pseudofunctor.StrongTrans.Modification.whiskerLeft_naturality_assoc, hom_inv_whiskerRight_whiskerRight_assoc, CategoryTheory.StrictlyUnitaryLaxFunctor.mapId_isIso, triangle_assoc_comp_left, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_hom, associator_inv_naturality_right, LanLift.CommuteWith.lanLiftCompIso_hom, Pseudofunctor.ofOplaxFunctorToLocallyGroupoid_mapCompIso_hom, CategoryTheory.StrictlyUnitaryPseudofunctor.id_mapComp_hom, CategoryTheory.FreeBicategory.mk_right_unitor_inv, AlgebraicGeometry.Scheme.Modules.pseudofunctor_map_l, whiskerLeft_comp, CategoryTheory.Pseudofunctor.ObjectProperty.ΞΉ_app_toFunctor, conjugateEquiv_symm_id, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_inv, CategoryTheory.Oplax.StrongTrans.Modification.whiskerLeft_naturality, CategoryTheory.LaxFunctor.mapComp_naturality_left_app_assoc, conjugateEquiv_apply, prod_whiskerRight_fst, CategoryTheory.Pseudofunctor.DescentData.comp_hom, whiskerRight_comp_symm, Adj.Bicategory.rightUnitor_inv_Ο„l, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_inv, Pith.compβ‚‚_iso_hom_assoc, CategoryTheory.Cat.leftUnitor_hom_app, associator_eqToHom_hom_assoc, whiskerRight_id, CategoryTheory.OplaxFunctor.mapβ‚‚_leftUnitor_app, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_naturality, CategoryTheory.Oplax.LaxTrans.naturality_comp_assoc, CategoryTheory.Oplax.OplaxTrans.categoryStruct_comp_app, CategoryTheory.LaxFunctor.id_mapId, CategoryTheory.StrictPseudofunctor.id_obj, CategoryTheory.Oplax.OplaxTrans.whiskerLeft_naturality_id, CategoryTheory.Oplax.StrongTrans.homCategory_id_as_app, CategoryTheory.Oplax.OplaxTrans.whiskerLeft_naturality_naturality, InducedBicategory.eqToHom_hom, CategoryTheory.Pseudofunctor.Grothendieck.ext_iff, lanLiftUnit_desc_assoc, whiskerLeft_hom_inv, CategoryTheory.Lax.LaxTrans.id_app, CategoryTheory.StrictlyUnitaryLaxFunctor.id_obj, CategoryTheory.Pseudofunctor.mapComp'_inv_naturality, mateEquiv_id_comp_right, leftUnitor_comp_inv, CategoryTheory.Pseudofunctor.mapComp_id_left, CategoryTheory.Iso.unop2_inv, postcomp_obj, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_naturality_app, CategoryTheory.Pseudofunctor.whiskerLeft_mapComp'_inv_comp_mapComp'₀₁₃_inv_app, CategoryTheory.StrictlyUnitaryPseudofunctorCore.mapβ‚‚_whisker_right, CategoryTheory.StrictPseudofunctor.comp_mapComp_hom, leftZigzagIso_hom, CategoryTheory.Pseudofunctor.ObjectProperty.fullsubcategory_mapComp, CategoryTheory.Functor.toOplaxFunctor'_obj, Bicategory.Opposite.bicategory_associator_hom_unop2, CategoryTheory.OplaxFunctor.PseudoCore.mapCompIso_hom, CategoryTheory.StrictPseudofunctor.comp_mapId_hom, Bicategory.Opposite.unop2_id_bop, CategoryTheory.LaxFunctor.mapComp_assoc_right_app, LeftExtension.ofCompId_left_as, CategoryTheory.Oplax.OplaxTrans.associator_hom_as_app, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id, CategoryTheory.Pseudofunctor.toOplax_mapComp, Bicategory.Opposite.unopFunctor_map, CategoryTheory.BicategoricalCoherence.tensorRight_iso, inv_hom_whiskerRight_whiskerRight, Prod.sectR_mapComp_inv, Prod.fst_mapComp_hom, whiskerLeft_whiskerLeft_hom_inv_assoc, id_whiskerLeft_symm, CategoryTheory.Pseudofunctor.mapComp'_naturality_1, CategoryTheory.Pseudofunctor.isStackFor_ofArrows_iff, CategoryTheory.LaxFunctor.mapβ‚‚_leftUnitor_hom_app, Pith.pseudofunctorToPith_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_of, LeftLift.IsKan.fac_assoc, postcomposing_obj, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_hom_app, pentagon_inv_hom_hom_hom_inv, Adj.rightUnitor_inv_Ο„l, Adj.Homβ‚‚.conjugateEquiv_symm_Ο„r, CategoryTheory.LaxFunctor.PseudoCore.mapCompIso_inv, CategoryTheory.Pseudofunctor.mapComp_id_right_inv_app_assoc, CategoryTheory.StrictlyUnitaryLaxFunctor.comp_mapId, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_comp_val_app, CategoryTheory.Pseudofunctor.mapβ‚‚_associator_app, CategoryTheory.Cat.rightUnitor_hom_toNatTrans, Prod.snd_mapβ‚‚, CategoryTheory.Lax.OplaxTrans.naturality_comp, leftUnitor_inv_whiskerRight_assoc, whiskerRight_comp_symm_assoc, CategoryTheory.Pseudofunctor.DescentData.iso_hom, CategoryTheory.Oplax.StrongTrans.Modification.whiskerRight_naturality, CategoryTheory.Pseudofunctor.mapComp'_comp_id_inv_app_assoc, CategoryTheory.Oplax.OplaxTrans.whiskerLeft_naturality_naturality_assoc, CategoryTheory.StrictlyUnitaryPseudofunctor.mk'_mapId, CategoryTheory.StrictlyUnitaryPseudofunctor.id_mapId_inv, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_hom, Adj.rightUnitor_hom_Ο„r, Pith.pseudofunctorToPith_mapId_inv_iso_inv, CategoryTheory.Pseudofunctor.StrongTrans.naturality_naturality, CategoryTheory.Pseudofunctor.mapComp_id_right, LeftExtension.whiskering_map, comp_whiskerRight, CategoryTheory.BicategoricalCoherence.left_iso, CategoryTheory.Oplax.OplaxTrans.whiskerRight_naturality_naturality, CategoryTheory.Pseudofunctor.mapComp'_inv_naturality_assoc, Bicategory.Opposite.bicategory_leftUnitor_hom_unop2, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_id_app, comp_whiskerLeft_symm, inv_whiskerRight, CategoryTheory.StrictlyUnitaryPseudofunctor.id_mapComp_inv, Pith.idβ‚‚_iso_inv, mateEquiv_symm_apply', CategoryTheory.Oplax.LaxTrans.naturality_naturality, CategoryTheory.Pseudofunctor.mapComp'_comp_id, CategoryTheory.Oplax.StrongTrans.naturality_comp, CategoryTheory.OplaxFunctor.mapβ‚‚_leftUnitor_assoc, CategoryTheory.Functor.toPseudoFunctor'_map, conjugateEquiv_id_comp_right_apply, CategoryTheory.Oplax.OplaxTrans.associator_inv_as_app, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_comp_app, CategoryTheory.Pseudofunctor.presheafHom_obj, Adjunction.homEquivβ‚‚_apply, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_hom_assoc, CategoryTheory.Oplax.StrongTrans.naturality_id_assoc, CategoryTheory.StrictlyUnitaryLaxFunctorCore.mapComp_naturality_right, Adj.forget₁_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj, CategoryTheory.Pseudofunctor.mapComp_assoc_right_inv_app, CategoryTheory.Oplax.LaxTrans.naturality_id, CategoryTheory.StrictlyUnitaryPseudofunctorCore.mapβ‚‚_left_unitor, CategoryTheory.Pseudofunctor.toLax_mapComp, CategoryTheory.Pseudofunctor.isoMapOfCommSq_horiz_id, CategoryTheory.Oplax.OplaxTrans.naturality_comp, CategoryTheory.Lax.LaxTrans.naturality_comp, CategoryTheory.Pseudofunctor.DescentData.iso_inv, CategoryTheory.Oplax.OplaxTrans.whiskerRight_naturality_naturality_assoc, CategoryTheory.Oplax.StrongTrans.id_naturality_inv, CategoryTheory.OplaxFunctor.mapComp_assoc_left_app, CategoryTheory.Lax.OplaxTrans.vComp_naturality_comp, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_hom_comp_whiskerLeft_mapComp'_hom_assoc, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_inv_assoc, CategoryTheory.Oplax.LaxTrans.id_app, CategoryTheory.Oplax.OplaxTrans.OplaxFunctor.bicategory_leftUnitor_inv_as_app, CategoryTheory.Pseudofunctor.mapβ‚‚_right_unitor_assoc, Prod.sectL_mapComp_hom, associator_inv_naturality_left, CategoryTheory.Pseudofunctor.CoGrothendieck.instFullΞ±CategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, CategoryTheory.Pseudofunctor.mapComp'_inv_whiskerRight_comp_mapComp'_inv, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_naturality_app, leftUnitor_inv_naturality, whiskerLeft_whiskerLeft_inv_hom, CategoryTheory.Pseudofunctor.DescentData.nonempty_fullyFaithful_toDescentData_iff_of_sieve_eq, unitors_equal, CategoryTheory.Oplax.OplaxTrans.Modification.whiskerLeft_naturality_assoc, CategoryTheory.Cat.associator_inv_app, associator_naturality_right, whiskerRightIso_inv, precomposing_map_app, Prod.sectL_obj, CategoryTheory.Cat.rightUnitor_hom_app, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_hom_app_assoc, CategoryTheory.Oplax.LaxTrans.id_naturality, CategoryTheory.Pseudofunctor.ObjectProperty.ΞΉ_naturality, CategoryTheory.Oplax.OplaxTrans.whiskerRight_naturality_id, CategoryTheory.Pseudofunctor.mapComp_id_right_hom, conjugateEquiv_symm_of_iso, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_comp, CategoryTheory.Oplax.StrongTrans.Modification.naturality_assoc, CategoryTheory.LaxFunctor.mapComp_naturality_right_app_assoc, CategoryTheory.Oplax.OplaxTrans.OplaxFunctor.bicategory_associator_hom_as_app, CategoryTheory.Lax.LaxTrans.vComp_naturality_naturality, prod_whiskerRight_snd, CategoryTheory.StrictlyUnitaryPseudofunctor.toStrictlyUnitaryLaxFunctor_mapβ‚‚, Adj.Bicategory.rightUnitor_hom_Ο„r, CategoryTheory.StrictPseudofunctor.comp_mapId_inv, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_obj_val_obj, Adj.id_Ο„l, Adj.comp_Ο„l, CategoryTheory.Pseudofunctor.ObjectProperty.mapId_inv_app, CategoryTheory.PrelaxFunctor.mkOfHomFunctors_toPrelaxFunctorStruct, Comonad.comul_assoc_flip_assoc, CategoryTheory.OplaxFunctor.mapβ‚‚_associator_app_assoc, CategoryTheory.StrictPseudofunctor.mk'_mapComp, CategoryTheory.Pseudofunctor.mapComp_id_left_hom_app_assoc, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp, CategoryTheory.LaxFunctor.mapβ‚‚_associator_app_assoc, conjugateEquiv_comp_id_right_apply, CategoryTheory.Pseudofunctor.ObjectProperty.fullsubcategory_toPrelaxFunctor_toPrelaxFunctorStruct_mapβ‚‚_toNatTrans, CategoryTheory.Lax.LaxTrans.id_naturality, CategoryTheory.Oplax.OplaxTrans.whiskerLeft_naturality_comp_assoc, whiskerLeft_rightUnitor_assoc, leftUnitor_inv_whiskerRight, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_naturality_assoc, CategoryTheory.StrictlyUnitaryPseudofunctorCore.mapβ‚‚_associator, CategoryTheory.pseudofunctorOfIsLocallyDiscrete_obj, CategoryTheory.Functor.toOplaxFunctor_obj, instIsIsoHomLeftZigzagHom, Prod.fst_mapβ‚‚, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_hom_comp_mapComp'_hom_whiskerRight_app, Equivalence.right_triangle, CategoryTheory.Functor.toPseudoFunctor_mapComp, CategoryTheory.StrictlyUnitaryPseudofunctor.comp_obj, CategoryTheory.Oplax.OplaxTrans.categoryStruct_id_app, InducedBicategory.forget_map, CategoryTheory.Pseudofunctor.DescentData.instIsIsoΞ±CategoryObjLocallyDiscreteOppositeCatMkOpHom, associator_eqToHom_inv, Equivalence.left_triangle, CategoryTheory.Pseudofunctor.whiskerLeft_mapId_inv_app, CategoryTheory.LaxFunctor.mapβ‚‚_leftUnitor_hom_app_assoc, CategoryTheory.PrelaxFunctor.mapβ‚‚_eqToHom, Mathlib.Tactic.Bicategory.naturality_associator, Lan.CommuteWith.lanCompIso_inv, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_hom, LanLift.existsUnique, CategoryTheory.Oplax.OplaxTrans.categoryStruct_comp_naturality, CategoryTheory.Iso.op2_hom_unop2, Bicategory.Opposite.bicategory_leftUnitor_inv_unop2, Prod.sectR_mapId_inv, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_naturality, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_hom_app, CategoryTheory.PrelaxFunctor.mapβ‚‚_hom_inv, CategoryTheory.StrictlyUnitaryLaxFunctor.id_mapComp, CategoryTheory.OplaxFunctor.mapComp_assoc_right_app, CategoryTheory.Pseudofunctor.CoGrothendieck.ΞΉ_map_base, CategoryTheory.Pseudofunctor.StrongTrans.Modification.naturality, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_comp_app, CommRingCat.moduleCatRestrictScalarsPseudofunctor_map, pentagon_inv_inv_hom_hom_inv, CategoryTheory.Pseudofunctor.StrongTrans.homCategory_id_as_app, CategoryTheory.Pseudofunctor.isPrestackFor_ofArrows_iff, CategoryTheory.Pseudofunctor.mapComp_assoc_right_hom_assoc, CategoryTheory.FreeBicategory.mk_left_unitor_hom, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_inv_app_assoc, CategoryTheory.Pseudofunctor.CoGrothendieck.map_obj_fiber, Pseudofunctor.ofLaxFunctorToLocallyGroupoid_mapIdIso_inv, CategoryTheory.oplaxFunctorOfIsLocallyDiscrete_map, CategoryTheory.Pseudofunctor.whiskerLeftIso_mapId, Lan.CommuteWith.lanCompIsoWhisker_hom_right, Prod.swap_map, CategoryTheory.Pseudofunctor.ObjectProperty.mapComp_hom_app, Pith.rightUnitor_hom_iso, CategoryTheory.Oplax.OplaxTrans.whiskerLeft_naturality_id_assoc, Comonad.counit_comul_assoc, CategoryTheory.OplaxFunctor.mapComp_assoc_left, Bicategory.Opposite.op2_rightUnitor_inv, CategoryTheory.LaxFunctor.mapβ‚‚_rightUnitor_hom_app, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_comp_assoc, CategoryTheory.Pseudofunctor.id_mapId, CategoryTheory.Pseudofunctor.DescentData.Hom.comm_assoc, CategoryTheory.BicategoricalCoherence.right'_iso, CategoryTheory.Lax.LaxTrans.naturality_comp_assoc, pentagon_assoc, CategoryTheory.WithInitial.prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_obj, Adj.id_Ο„r, CategoryTheory.Oplax.StrongTrans.Modification.id_app, prod_rightUnitor_inv_fst, CategoryTheory.Pseudofunctor.mapComp_id_left_inv_app_assoc, CategoryTheory.Oplax.LaxTrans.naturality_comp, Adj.Bicategory.leftUnitor_hom_Ο„l, CategoryTheory.WithInitial.prelaxfunctor_toPrelaxFunctorStruct_mapβ‚‚, CategoryTheory.Functor.toPseudoFunctor_map, whiskerLeft_isIso, CategoryTheory.Oplax.StrongTrans.isoMk_hom_as_app, conjugateIsoEquiv_apply_inv, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_id_app, CategoryTheory.PrelaxFunctor.mapβ‚‚_inv_hom_isIso, CategoryTheory.Pseudofunctor.mapComp'_hom_naturality_assoc, CategoryTheory.Pseudofunctor.mapComp'_naturality_2_assoc, CategoryTheory.Pseudofunctor.Grothendieck.categoryStruct_id_fiber, eqToHomTransIso_refl_right, CategoryTheory.Pseudofunctor.ObjectProperty.map_map_hom, CategoryTheory.Pseudofunctor.mapComp_id_left_inv_assoc, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_naturality_app, pentagon_inv_inv_hom_inv_inv, CategoryTheory.PrelaxFunctor.mapβ‚‚_inv_hom_isIso_assoc, CategoryTheory.Pseudofunctor.CoGrothendieck.Hom.congr, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_inv_comp_mapComp'₀₂₃_hom_app, CategoryTheory.Pseudofunctor.mapComp'_id_comp_inv_app_assoc, CategoryTheory.Lax.LaxTrans.naturality_id_assoc, CategoryTheory.LaxFunctor.mapComp_naturality_right_assoc, CategoryTheory.FreeBicategory.preinclusion_mapβ‚‚, CategoryTheory.OplaxFunctor.mapComp'_comp_mapComp'_whiskerRight, Pith.pseudofunctorToPith_mapComp_inv_iso_inv, prod_whiskerLeft_fst, CategoryTheory.Oplax.OplaxTrans.rightUnitor_hom_as_app, CategoryTheory.OplaxFunctor.mapβ‚‚_associator_assoc, precomp_obj, CategoryTheory.Pseudofunctor.mapβ‚‚_whisker_left, CategoryTheory.LaxFunctor.mapComp'_whiskerRight_comp_mapComp'_assoc, CategoryTheory.Pseudofunctor.StrongTrans.isoMk_hom_as_app, adjointifyCounit_left_triangle, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_inv_assoc, CategoryTheory.Lax.StrongTrans.toLax_naturality, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_id, CategoryTheory.Pseudofunctor.toOplax_mapId, prod_associator_inv_fst, whiskerLeft_rightUnitor_inv, CategoryTheory.PrelaxFunctor.mapβ‚‚_hom_inv_assoc, Mathlib.Tactic.Bicategory.evalWhiskerLeft_of_cons, CategoryTheory.StrictlyUnitaryLaxFunctor.mapId_eq_eqToHom, CategoryTheory.Join.pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_id, CategoryTheory.OplaxFunctor.mapComp_naturality_left_app, CategoryTheory.StrictlyUnitaryLaxFunctor.map_id, CategoryTheory.Pseudofunctor.StrongTrans.Modification.whiskerLeft_naturality, CategoryTheory.BicategoricalCoherence.tensorRight'_iso, CategoryTheory.oplaxFunctorOfIsLocallyDiscrete_obj, Pith.whiskerRight_iso_hom, comp_whiskerRight_assoc, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_inv, CategoryTheory.Pseudofunctor.whiskerLeft_mapId_inv, hom_inv_whiskerRight_whiskerRight, Pith.rightUnitor_inv_iso_inv, LeftExtension.whiskerIdCancel_right, prod_rightUnitor_inv_snd, Pith.associator_hom_iso, CategoryTheory.Pseudofunctor.mapComp_id_right_hom_assoc, CategoryTheory.Lax.LaxTrans.naturality_id, CategoryTheory.Pseudofunctor.DescentData.ofObj_obj, CategoryTheory.Lax.StrongTrans.naturality_comp_assoc, associator_naturality_left_assoc, CategoryTheory.StrictPseudofunctorCore.mapβ‚‚_right_unitor, CategoryTheory.Oplax.OplaxTrans.OplaxFunctor.bicategory_rightUnitor_inv_as_app, prod_leftUnitor_inv_fst, triangle_assoc_comp_right_inv_assoc, CategoryTheory.LaxFunctor.mapβ‚‚_rightUnitor_hom_app_assoc, hom_inv_whiskerRight, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_hom_app, prod_rightUnitor_hom_fst, Adjunction.left_triangle, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_id_val_app, CategoryTheory.Pseudofunctor.CoGrothendieck.ext_iff, CategoryTheory.Lax.OplaxTrans.naturality_naturality, CategoryTheory.LaxFunctor.whiskerLeft_mapComp'_comp_mapComp', Prod.fst_mapId_hom, triangle_assoc_comp_right_inv, associator_naturality_middle, CategoryTheory.Pseudofunctor.DescentData.hom_comp_assoc, CategoryTheory.Pseudofunctor.Grothendieck.map_obj_fiber, CategoryTheory.Oplax.LaxTrans.vComp_naturality_comp, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_comp_assoc, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_comp, prod_leftUnitor_inv_snd, CategoryTheory.Pseudofunctor.mapComp_assoc_left_hom_app_assoc, CategoryTheory.StrictPseudofunctor.comp_map, Adj.Bicategory.rightUnitor_hom_Ο„l, LeftExtension.IsKan.fac_assoc, leftUnitorNatIso_hom_app, CategoryTheory.Pseudofunctor.CoGrothendieck.ΞΉ_obj_fiber, CategoryTheory.Iso.unop2_op_inv, CategoryTheory.PrelaxFunctor.mapβ‚‚_inv, CategoryTheory.StrictPseudofunctorPreCore.map_comp, Adj.Bicategory.leftUnitor_inv_Ο„l, CategoryTheory.StrictPseudofunctor.mk''_map, CategoryTheory.Oplax.StrongTrans.naturality_naturality_assoc, CategoryTheory.Pseudofunctor.isStackFor_iff, Bicategory.Opposite.opFunctor_obj, Prod.sectL_mapId_hom, CategoryTheory.Pseudofunctor.StrongTrans.categoryStruct_id_naturality_hom, InducedBicategory.bicategory_rightUnitor_hom_hom, CategoryTheory.Pseudofunctor.isoMapOfCommSq_vert_id, LeftExtension.IsKan.uniqueUpToIso_hom_right, CommRingCat.moduleCatExtendScalarsPseudofunctor_map, Pith.whiskerLeft_iso_hom, CategoryTheory.Pseudofunctor.bijective_toDescentData_map_iff, mateEquiv_symm_apply, CategoryTheory.Pseudofunctor.mapβ‚‚_whisker_left_assoc, Strict.rightUnitor_eqToIso, leftUnitor_whiskerRight, Bicategory.Opposite.homCategory_comp_unop2, CategoryTheory.Pseudofunctor.CoGrothendieck.ΞΉ_map_fiber, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_comp_assoc, CategoryTheory.StrictPseudofunctor.toFunctor_obj, CategoryTheory.Oplax.StrongTrans.naturality_id, CategoryTheory.Pseudofunctor.mapComp'_id_comp_inv_assoc, associator_eqToHom_inv_assoc, CategoryTheory.StrictPseudofunctor.map_comp, CategoryTheory.Functor.toOplaxFunctor'_map, HasLeftKanLift.hasInitial, prod_leftUnitor_hom_snd, CategoryTheory.Pseudofunctor.mapComp_id_left_hom_assoc, CategoryTheory.Pseudofunctor.mapComp_id_right_inv_assoc, CategoryTheory.OplaxFunctor.mapComp_assoc_right_app_assoc, CategoryTheory.StrictlyUnitaryPseudofunctor.mapId_eq_eqToIso, CategoryTheory.Pseudofunctor.mapComp_assoc_right_inv_assoc, CategoryTheory.StrictlyUnitaryPseudofunctor.id_obj, whiskerLeft_inv_hom_whiskerRight_assoc, CategoryTheory.Pseudofunctor.StrongTrans.isoMk_inv_as_app, whisker_exchange_assoc, CategoryTheory.Oplax.OplaxTrans.OplaxFunctor.bicategory_rightUnitor_hom_as_app, InducedBicategory.bicategory_rightUnitor_inv_hom, CategoryTheory.Pseudofunctor.mapComp'_comp_id_inv, pentagon, CategoryTheory.Oplax.OplaxTrans.homCategory_comp_as_app, Prod.snd_obj, rightUnitor_naturality_assoc, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_inv_assoc, CategoryTheory.Lax.OplaxTrans.vComp_naturality_naturality, CategoryTheory.OplaxFunctor.mapβ‚‚_rightUnitor_assoc, CategoryTheory.Pseudofunctor.StrongTrans.naturality_naturality_hom, CategoryTheory.StrictlyUnitaryPseudofunctorCore.mapβ‚‚_id, CategoryTheory.LocallyDiscrete.mkPseudofunctor_map, CategoryTheory.Lax.LaxTrans.vComp_naturality_id, CategoryTheory.Oplax.OplaxTrans.Modification.naturality_assoc, CategoryTheory.Lax.OplaxTrans.id_naturality, Lan.CommuteWith.lanCompIsoWhisker_inv_right, CategoryTheory.Pseudofunctor.DescentData.pullFunctorObj_obj, CategoryTheory.PrelaxFunctor.mapFunctor_map, whiskerRight_congr, CategoryTheory.Oplax.StrongTrans.categoryStruct_comp_naturality, CategoryTheory.Pseudofunctor.mapComp_assoc_left_inv_assoc, LeftLift.whisker_unit, CategoryTheory.Oplax.OplaxTrans.naturality_id_assoc, prod_homCategory_id_fst, CategoryTheory.OplaxFunctor.mapβ‚‚_leftUnitor, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_id_assoc, conjugateEquiv_symm_comp, pentagon_hom_hom_inv_inv_hom_assoc, CategoryTheory.StrictPseudofunctor.mk'_map, mateEquiv_hcomp, CategoryTheory.StrictlyUnitaryLaxFunctor.mk'_obj, CategoryTheory.Lax.LaxTrans.naturality_naturality, Adj.leftUnitor_inv_Ο„l, CommRingCat.moduleCatExtendScalarsPseudofunctor_obj, Bicategory.Opposite.op2_rightUnitor_hom, whiskerLeft_eqToHom, CategoryTheory.Oplax.OplaxTrans.whiskerLeft_naturality_comp, Pith.idβ‚‚_iso_hom, associator_hom_congr, Mathlib.Tactic.Bicategory.naturality_leftUnitor, Bicategory.Opposite.unopFunctor_obj, pentagon_inv_inv_hom_inv_inv_assoc, CategoryTheory.Functor.toOplaxFunctor_mapComp, CategoryTheory.LaxFunctor.mapβ‚‚_rightUnitor_hom_assoc, Comonad.comul_assoc, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_hom, comp_whiskerLeft, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_inv_app, CategoryTheory.OplaxFunctor.mapComp_naturality_left, CategoryTheory.Lax.StrongTrans.naturality_id, LeftLift.whiskerHom_right, prod_associator_hom_fst, LeftExtension.ofCompId_hom, CategoryTheory.Oplax.OplaxTrans.OplaxFunctor.bicategory_leftUnitor_hom_as_app, CategoryTheory.Pseudofunctor.mapComp_assoc_left_inv, CategoryTheory.Pseudofunctor.whiskerLeft_mapComp'_inv_comp_mapComp'₀₁₃_inv, prod_homCategory_comp_fst, CategoryTheory.Pseudofunctor.toLax_mapId', CategoryTheory.Lax.StrongTrans.categoryStruct_id_naturality, CategoryTheory.StrictlyUnitaryLaxFunctor.id_map, CategoryTheory.Pseudofunctor.mapComp_id_left_inv, CategoryTheory.WithInitial.pseudofunctor_mapId, CategoryTheory.StrictlyUnitaryPseudofunctorCore.mapβ‚‚_whisker_left, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_iso, RingCat.moduleCatRestrictScalarsPseudofunctor_map, CategoryTheory.LaxFunctor.mapβ‚‚_associator, associator_inv_naturality_left_assoc, CategoryTheory.OplaxFunctor.mapComp_id_right_assoc, whiskerLeftIso_inv, CategoryTheory.StrictlyUnitaryPseudofunctor.toStrictlyUnitaryLaxFunctor_mapId, CategoryTheory.Oplax.StrongTrans.naturality_comp_assoc, CategoryTheory.StrictlyUnitaryPseudofunctor.comp_mapComp_hom, CategoryTheory.Iso.unop2_hom, CategoryTheory.OplaxFunctor.mapComp_assoc_right, mateEquiv_eq_iff, LeftLift.ofIdComp_right, CategoryTheory.OplaxFunctor.mapComp_assoc_left_assoc, InducedBicategory.forget_mapId_inv, CategoryTheory.Pseudofunctor.ObjectProperty.IsClosedUnderMapObj.map_obj, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_inv_comp_mapComp'₀₂₃_hom_app_assoc, postcomposing_map_app, Bicategory.Opposite.op2_comp, pentagon_inv_assoc, CategoryTheory.Pseudofunctor.mapComp'_hom_naturality, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_assoc, CategoryTheory.Pseudofunctor.StrongTrans.Modification.id_app, CategoryTheory.Oplax.OplaxTrans.whiskerRight_naturality_id_assoc, whiskerRight_comp, rightUnitorNatIso_inv_app, CategoryTheory.Pseudofunctor.StrongTrans.associator_inv_as_app, Bicategory.Opposite.op2_leftUnitor_hom, Comonad.comul_counit_assoc, congr_whiskerLeft, CategoryTheory.Pseudofunctor.toLax_mapId, CategoryTheory.Pseudofunctor.mapComp'_id_comp_inv, CategoryTheory.Oplax.OplaxTrans.isoMk_hom_as_app, CategoryTheory.Cat.leftUnitor_hom_toNatTrans, pentagon_inv_hom_hom_hom_hom_assoc, whiskerLeft_inv_hom_whiskerRight, CategoryTheory.Pseudofunctor.mapComp'_comp_id_hom_app_assoc, Adj.comp_Ο„r_assoc, whisker_assoc_assoc, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_inv_comp_mapComp'₀₁₃_hom, associator_eqToHom_hom, whisker_assoc_symm, CategoryTheory.Lax.StrongTrans.naturality_naturality_assoc, Prod.sectL_mapComp_inv, CategoryTheory.Oplax.OplaxTrans.whiskerRight_naturality_comp, AlgebraicGeometry.Scheme.Modules.pseudofunctor_obj_obj, id_whiskerLeft_assoc, LeftLift.IsKan.fac, InducedBicategory.forget_mapComp_inv, Bicategory.Opposite.op2_id, CategoryTheory.Pseudofunctor.IsStack.essSurj_of_sieve, toNatTrans_mateEquiv, CategoryTheory.Iso.unop2_op_hom, CategoryTheory.OplaxFunctor.mapβ‚‚_rightUnitor, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_inv_app_assoc, CategoryTheory.Pseudofunctor.mapComp_assoc_right_hom_app, CategoryTheory.StrictlyUnitaryLaxFunctorCore.mapComp_naturality_left, CategoryTheory.Cat.associator_inv_toNatTrans, CategoryTheory.WithTerminal.prelaxfunctor_toPrelaxFunctorStruct_mapβ‚‚, CategoryTheory.Join.pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_comp, Mathlib.Tactic.Bicategory.naturality_id, CategoryTheory.Cat.leftUnitor_inv_toNatTrans, CategoryTheory.Pseudofunctor.mapβ‚‚_left_unitor_app, associator_inv_naturality_right_assoc, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_comp, CategoryTheory.StrictPseudofunctor.toFunctor_map, Prod.snd_mapId_hom, hom_inv_whiskerRight_assoc, triangle, CategoryTheory.Pseudofunctor.StrongTrans.leftUnitor_hom_as_app, CategoryTheory.StrictlyUnitaryPseudofunctor.comp_mapId_hom, CategoryTheory.Pseudofunctor.ObjectProperty.mapId_hom_app, CategoryTheory.LaxFunctor.mapβ‚‚_leftUnitor_hom_assoc, Prod.sectR_mapβ‚‚, CategoryTheory.StrictPseudofunctorPreCore.mapβ‚‚_whisker_right, Pseudofunctor.ofOplaxFunctorToLocallyGroupoid_mapIdIso_inv, CategoryTheory.PrelaxFunctor.id_toPrelaxFunctorStruct, CategoryTheory.FreeBicategory.normalize_naturality, Adj.rIso_hom, CategoryTheory.Pseudofunctor.whiskerLeft_mapId_hom, CategoryTheory.StrictPseudofunctor.id_mapβ‚‚, Prod.sectL_map, CategoryTheory.Pseudofunctor.whiskerLeft_mapId_hom_app, conjugateIsoEquiv_apply_hom, id_whiskerRight, conjugateIsoEquiv_symm_apply_hom, CategoryTheory.Pseudofunctor.mapComp'_inv_comp_mapComp'_hom, CategoryTheory.Iso.op2_unop_inv_unop2, Pith.homβ‚‚_ext_iff, CategoryTheory.Lax.StrongTrans.naturality_id_assoc, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_id_assoc, iterated_mateEquiv_conjugateEquiv_symm, Adj.rightUnitor_inv_Ο„r, CategoryTheory.Oplax.OplaxTrans.naturality_id, rightUnitor_comp, whiskerRight_id_symm, whiskerLeft_whiskerLeft_hom_inv, CategoryTheory.StrictlyUnitaryPseudofunctor.mk'_obj, CategoryTheory.OplaxFunctor.mapComp_id_right, triangle_assoc_comp_right, CategoryTheory.Pseudofunctor.toDescentData_obj, comp_whiskerLeft_assoc, InducedBicategory.forget_mapComp_hom, CategoryTheory.Pseudofunctor.mapComp_id_right_inv, CategoryTheory.StrictlyUnitaryPseudofunctor.id_mapβ‚‚, whiskerLeft_inv_hom_assoc, associatorNatIsoMiddle_hom_app, instHasInitialLeftExtensionOfHasLeftKanExtension, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_inv_comp_mapComp'₀₁₃_hom_assoc, CategoryTheory.Pseudofunctor.mapβ‚‚_whisker_right_app_assoc, mateEquiv_square, CategoryTheory.Pseudofunctor.StrongTrans.Modification.naturality_assoc, LeftExtension.IsKan.uniqueUpToIso_inv_right, CategoryTheory.Lax.LaxTrans.naturality_naturality_assoc, Adj.forget₁_toPrelaxFunctor_toPrelaxFunctorStruct_mapβ‚‚, rightUnitor_naturality, CategoryTheory.StrictlyUnitaryPseudofunctor.id_map, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_map_val_app, whiskerLeft_comp_assoc, CategoryTheory.Pseudofunctor.StrongTrans.naturality_naturality_iso, Pith.whiskerLeft_iso_inv, rightZigzagIso_symm, Pseudofunctor.ofLaxFunctorToLocallyGroupoid_mapIdIso_hom, CategoryTheory.Pseudofunctor.whiskerLeft_mapComp'_inv_comp_mapComp'₀₁₃_inv_assoc, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_inv_comp_mapComp'₀₁₃_hom_app, CategoryTheory.LaxFunctor.mapβ‚‚_rightUnitor_assoc, CategoryTheory.Lax.StrongTrans.naturality_comp, whiskerLeftIso_hom, CategoryTheory.Lax.OplaxTrans.naturality_id_assoc, Mathlib.Tactic.Bicategory.structuralIso_inv, CategoryTheory.Functor.toOplaxFunctor_map, CategoryTheory.Pseudofunctor.mapβ‚‚_whisker_right, whiskerRight_id_assoc, Prod.sectR_obj, CategoryTheory.Pseudofunctor.presheafHomObjHomEquiv_apply, whisker_assoc_symm_assoc, conjugateEquiv_apply', mateEquiv_conjugateEquiv_vcomp, CategoryTheory.OplaxFunctor.mapComp_assoc_right_assoc, Adj.Bicategory.leftUnitor_hom_Ο„r, CategoryTheory.Pseudofunctor.StrongTrans.rightUnitor_inv_as_app, CategoryTheory.Pseudofunctor.mapComp_assoc_right_inv_app_assoc, CategoryTheory.Iso.op2_unop_hom_unop2, CategoryTheory.FreeBicategory.mk_associator_hom, Lan.CommuteWith.lanCompIso_hom, CategoryTheory.LaxFunctor.mapβ‚‚_leftUnitor, CategoryTheory.Pseudofunctor.StrongTrans.categoryStruct_id_naturality_inv, CategoryTheory.LaxFunctor.mapComp_assoc_left_app, conjugateEquiv_adjunction_id, CategoryTheory.Cat.rightUnitor_inv_app, CategoryTheory.Pseudofunctor.mapComp'_id_comp_hom_app_assoc, CategoryTheory.Pseudofunctor.Grothendieck.Hom.ext_iff, Prod.snd_mapId_inv, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_inv_app_assoc, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_as_app, InducedBicategory.bicategory_homCategory_comp_hom, CategoryTheory.Oplax.OplaxTrans.whiskerLeft_as_app, CategoryTheory.Lax.StrongTrans.naturality_naturality, precomposing_obj, CategoryTheory.Cat.rightUnitor_inv_toNatTrans, pentagon_hom_inv_inv_inv_hom_assoc, CategoryTheory.Functor.toPseudoFunctor_mapId, CategoryTheory.Oplax.OplaxTrans.naturality_naturality, conjugateEquiv_of_iso, CategoryTheory.Pseudofunctor.isPrestackFor_iff, CategoryTheory.Pseudofunctor.mapComp'_comp_id_inv_assoc, CategoryTheory.bicategoricalComp_refl, LeftLift.ofIdComp_hom, rightZigzagIso_inv, CategoryTheory.Pseudofunctor.whiskerLeft_mapComp'_inv_comp_mapComp'_inv, CategoryTheory.Pseudofunctor.StrongTrans.associator_hom_as_app, CategoryTheory.Pseudofunctor.mapβ‚‚_right_unitor, CategoryTheory.Lax.LaxTrans.StrongCore.naturality_hom, Pith.associator_inv_iso_inv, rightUnitor_comp_inv, CategoryTheory.Pseudofunctor.IsStackFor.isEquivalence, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_inv_app, whiskerLeft_hom_inv_assoc, CategoryTheory.Pseudofunctor.StrongTrans.categoryStruct_comp_naturality_inv, LeftLift.whiskerOfIdCompIsoSelf_hom_right, CategoryTheory.Pseudofunctor.CoGrothendieck.instEssSurjΞ±CategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_hom_app_assoc, CategoryTheory.Pseudofunctor.mapComp'_inv_whiskerRight_mapComp'₀₂₃_inv_assoc, Mathlib.Tactic.Bicategory.evalWhiskerRight_nil, CategoryTheory.Pseudofunctor.whiskerRight_mapId_hom_app_assoc, RingCat.moduleCatRestrictScalarsPseudofunctor_obj, CategoryTheory.pseudofunctorOfIsLocallyDiscrete_map, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_comp_app, HasLeftKanExtension.hasInitial, CategoryTheory.Pseudofunctor.Grothendieck.Hom.congr, CategoryTheory.PrelaxFunctor.mapβ‚‚_comp, Bicategory.Opposite.unop2_comp, CategoryTheory.OplaxFunctor.mapComp_naturality_left_assoc, CategoryTheory.StrictlyUnitaryLaxFunctor.mk'_mapβ‚‚, CategoryTheory.PrelaxFunctor.mapFunctor_obj, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_obj_val_map, CategoryTheory.Pseudofunctor.Grothendieck.map_map_fiber, Pith.pseudofunctorToPith_toPrelaxFunctor_toPrelaxFunctorStruct_mapβ‚‚_iso_hom, CategoryTheory.Pseudofunctor.StrongTrans.rightUnitor_hom_as_app, CategoryTheory.Pseudofunctor.mapβ‚‚_whisker_left_app_assoc, CategoryTheory.Join.pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_Ξ±, lanUnit_desc, CategoryTheory.StrictPseudofunctor.comp_mapComp_inv, whiskerLeft_id, pentagon_hom_inv_inv_inv_inv_assoc, CategoryTheory.Lax.StrongTrans.vComp_naturality_inv, Mathlib.Tactic.Bicategory.eval_of, CategoryTheory.LaxFunctor.mapComp_assoc_right_assoc, CategoryTheory.Pseudofunctor.mapComp'_naturality_2, CategoryTheory.Oplax.StrongTrans.vcomp_naturality_hom, CategoryTheory.Pseudofunctor.CoGrothendieck.ΞΉ_obj_base, CategoryTheory.Lax.StrongTrans.id_naturality_inv, CategoryTheory.Pseudofunctor.mapComp_id_right_inv_app, CategoryTheory.Pseudofunctor.mapComp'_inv_whiskerRight_mapComp'₀₂₃_inv_app_assoc, CategoryTheory.Oplax.OplaxTrans.naturality_naturality_assoc, CategoryTheory.Pseudofunctor.mapComp_id_left_hom_app, InducedBicategory.forget_obj, Adj.Bicategory.associator_inv_Ο„l, CategoryTheory.Pseudofunctor.StrongTrans.naturality_naturality_hom_app_assoc, CategoryTheory.StrictPseudofunctor.id_map, CategoryTheory.Pseudofunctor.toDescentData_map_hom, CategoryTheory.Pseudofunctor.mapβ‚‚_associator, conjugateEquiv_associator_hom, Prod.swap_obj, CategoryTheory.PrelaxFunctor.mapβ‚‚_hom_inv_isIso, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_hom_assoc, Pith.inclusion_mapId, CategoryTheory.Oplax.OplaxTrans.Modification.whiskerRight_naturality_assoc, CategoryTheory.Pseudofunctor.ObjectProperty.IsClosedUnderIsomorphisms.isClosedUnderIsomorphisms, CategoryTheory.StrictPseudofunctor.id_mapId_hom, Bicategory.Opposite.op2_leftUnitor_inv, InducedBicategory.Hom.category_comp_hom, Prod.fst_map, CategoryTheory.Pseudofunctor.whiskerLeft_mapId_hom_app_assoc, Adj.Homβ‚‚.conjugateEquiv_Ο„l, Pith.pseudofunctorToPith_toPrelaxFunctor_toPrelaxFunctorStruct_mapβ‚‚_iso_inv, Pseudofunctor.ofOplaxFunctorToLocallyGroupoid_mapCompIso_inv, eqToHom_whiskerRight, Adj.associator_inv_Ο„l, CategoryTheory.Pseudofunctor.DescentData.pullFunctorObjHom_eq_assoc, CategoryTheory.Oplax.OplaxTrans.rightUnitor_inv_as_app, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_hom_assoc, CategoryTheory.LaxFunctor.mapβ‚‚_rightUnitor_app_assoc, CategoryTheory.OplaxFunctor.mapComp'_comp_whiskerLeft_mapComp', Pith.compβ‚‚_iso_hom, lanLiftUnit_desc, leftUnitor_naturality_assoc, conjugateEquiv_id, CategoryTheory.Lax.StrongTrans.id_naturality_hom, CategoryTheory.StrictlyUnitaryLaxFunctor.mk'_map, whisker_assoc, CategoryTheory.Lax.OplaxTrans.naturality_id, Adj.comp_Ο„r, CategoryTheory.Join.pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_mapβ‚‚_toNatTrans_app, CategoryTheory.OplaxFunctor.PseudoCore.mapIdIso_hom, conjugateEquiv_symm_iso, InducedBicategory.isoMk_inv_hom, Prod.sectR_mapComp_hom, CategoryTheory.StrictPseudofunctor.mapComp_eq_eqToIso, CategoryTheory.StrictlyUnitaryPseudofunctor.comp_map, CategoryTheory.PrelaxFunctor.mapβ‚‚_comp_assoc, CategoryTheory.LaxFunctor.mapComp_naturality_right, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_as_app, CategoryTheory.StrictPseudofunctorPreCore.mapβ‚‚_whisker_left, associatorNatIsoRight_hom_app, Adj.lIso_inv, instIsIsoHomRightZigzagHom, CategoryTheory.WithTerminal.pseudofunctor_mapId, associator_inv_congr, inv_whiskerLeft, CategoryTheory.Pseudofunctor.StrongTrans.categoryStruct_id_app, CategoryTheory.Pseudofunctor.IsStackFor.essSurj, CategoryTheory.Pseudofunctor.id_mapComp, CategoryTheory.StrictPseudofunctor.mk'_mapβ‚‚, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_Ξ±, CategoryTheory.Functor.toPseudoFunctor'_mapId, CategoryTheory.WithInitial.prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_map, CategoryTheory.Iso.op2_inv_unop2, CategoryTheory.PrelaxFunctor.mapβ‚‚_isIso, mateEquiv_leftUnitor_hom_rightUnitor_inv, LeftExtension.whisker_unit, conjugateEquiv_mateEquiv_vcomp, CategoryTheory.LaxFunctor.mapβ‚‚_rightUnitor_app, CategoryTheory.Pseudofunctor.mapComp'_id_comp, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_inv_assoc, CategoryTheory.StrictPseudofunctor.comp_mapβ‚‚, prod_homCategory_id_snd, CategoryTheory.Pseudofunctor.mapComp'_id_comp_inv_app, Adj.Bicategory.associator_hom_Ο„r, InducedBicategory.forget_mapβ‚‚, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_inv_app_assoc, Bicategory.Opposite.bicategory_homCategory_id_unop2, associatorNatIsoLeft_hom_app, LeftLift.whiskerIdCancel_right, CategoryTheory.PrelaxFunctor.comp_toPrelaxFunctorStruct, CategoryTheory.PrelaxFunctor.mapβ‚‚_inv_hom_assoc, CategoryTheory.Oplax.StrongTrans.isoMk_inv_as_app, Prod.fst_mapComp_inv, CategoryTheory.Oplax.StrongTrans.Modification.naturality, CategoryTheory.Pseudofunctor.mapComp_assoc_left_hom, CategoryTheory.StrictlyUnitaryPseudofunctorCore.mapβ‚‚_comp, CategoryTheory.WithTerminal.pseudofunctor_mapComp, CategoryTheory.Join.pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_Ξ±, CategoryTheory.WithTerminal.prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_obj, Adj.associator_hom_Ο„r, CategoryTheory.Pseudofunctor.whiskerRight_mapId_hom, Bicategory.Opposite.unop2_id, LeftExtension.whiskerOfCompIdIsoSelf_hom_right, prod_leftUnitor_hom_fst, CategoryTheory.Pseudofunctor.whiskerLeft_mapComp'_inv_comp_mapComp'₀₁₃_inv_app_assoc, whiskerLeft_rightUnitor_inv_assoc, CategoryTheory.Oplax.OplaxTrans.naturality_comp_assoc, Adjunction.comp_left_triangle_aux, whiskerLeft_hom_inv_whiskerRight, CategoryTheory.Functor.toPseudoFunctor'_mapComp, CategoryTheory.Pseudofunctor.DescentData.exists_equivalence_of_sieve_eq, LeftLift.IsKan.uniqueUpToIso_hom_right, CategoryTheory.StrictlyUnitaryPseudofunctor.map_id, Bicategory.Opposite.bicategory_homCategory_comp_unop2, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_id_app, CategoryTheory.LocallyDiscrete.mkPseudofunctor_obj, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_inv_comp_mapComp'₀₂₃_hom, CategoryTheory.Pseudofunctor.mapComp_id_right_hom_app_assoc, CategoryTheory.Pseudofunctor.mapComp'_comp_id_hom, CategoryTheory.Lax.LaxTrans.vComp_naturality_comp, CategoryTheory.Pseudofunctor.DescentData.pullFunctorIdIso_inv_app_hom, id_whiskerLeft, Pith.associator_inv_iso_hom, whiskerLeft_hom_inv_whiskerRight_assoc, CategoryTheory.Pseudofunctor.mapComp_id_left_hom, prod_associator_inv_snd, CategoryTheory.OplaxFunctor.id_mapId, CategoryTheory.Pseudofunctor.LocallyDiscreteOpToCat.map_eq_pullHom_assoc, CategoryTheory.Oplax.LaxTrans.naturality_id_assoc, CategoryTheory.Pseudofunctor.mapβ‚‚_whisker_left_app, CategoryTheory.StrictlyUnitaryLaxFunctorCore.mapβ‚‚_rightUnitor, CategoryTheory.Pseudofunctor.DescentData.isEquivalence_toDescentData_iff_of_sieve_eq, CategoryTheory.Pseudofunctor.CoGrothendieck.comp_const, CategoryTheory.WithTerminal.prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_map, CategoryTheory.StrictlyUnitaryLaxFunctor.ext_iff, Prod.snd_mapComp_hom, leftUnitor_hom_congr, CategoryTheory.Oplax.StrongTrans.Modification.whiskerLeft_naturality_assoc, CategoryTheory.StrictlyUnitaryPseudofunctor.id_mapId_hom, Adj.leftUnitor_inv_Ο„r, whiskerRight_isIso, CategoryTheory.Pseudofunctor.whiskerRight_mapId_inv_app, CategoryTheory.PrelaxFunctor.mapβ‚‚_id, rightUnitor_inv_naturality_assoc, CategoryTheory.Pseudofunctor.CoGrothendieck.compIso_inv_app, CategoryTheory.Oplax.OplaxTrans.isoMk_inv_as_app, CategoryTheory.StrictlyUnitaryLaxFunctor.comp_map, CategoryTheory.StrictPseudofunctor.mk''_mapComp, CategoryTheory.OplaxFunctor.mapβ‚‚_leftUnitor_app_assoc, CategoryTheory.Functor.toOplaxFunctor_mapId, CategoryTheory.BicategoricalCoherence.assoc_iso, Comonad.comul_assoc_assoc, CategoryTheory.Pseudofunctor.DescentData.pullFunctorIdIso_hom_app_hom, CategoryTheory.Pseudofunctor.whiskerRight_mapId_inv_assoc, CategoryTheory.Pseudofunctor.StrongTrans.naturality_naturality_hom_assoc, Pith.leftUnitor_hom_iso, CategoryTheory.Pseudofunctor.mapComp'_id_comp_hom_app, instHasInitialLeftLiftOfHasLeftKanLift, Mathlib.Tactic.BicategoryCoherence.assoc_liftHomβ‚‚, lanUnit_desc_assoc, CategoryTheory.Pseudofunctor.whiskerLeft_mapId_inv_assoc, CategoryTheory.Oplax.LaxTrans.vComp_naturality_naturality, associator_naturality_left, whiskerLeft_whiskerLeft_inv_hom_assoc, Pith.rightUnitor_inv_iso_hom, Pith.compβ‚‚_iso_inv_assoc, CategoryTheory.StrictlyUnitaryPseudofunctor.mk'_mapβ‚‚, prod_homCategory_comp_snd, CategoryTheory.Oplax.StrongTrans.id_naturality_hom, leftUnitor_naturality, InducedBicategory.bicategory_homCategory_id_hom, CategoryTheory.StrictlyUnitaryLaxFunctor.mk'_mapId, Adj.Bicategory.associator_inv_Ο„r, CategoryTheory.LaxFunctor.mapComp_assoc_left, Comonad.counit_comul, Pith.pseudofunctorToPith_mapId_inv_iso_hom, CategoryTheory.OplaxFunctor.mapβ‚‚_rightUnitor_app, CategoryTheory.StrictlyUnitaryPseudofunctorCore.mapβ‚‚_right_unitor, CategoryTheory.Pseudofunctor.mapComp'_id_comp_hom_assoc, CategoryTheory.Pseudofunctor.mapComp_assoc_left_hom_app, CategoryTheory.LaxFunctor.mapComp_naturality_right_app, CategoryTheory.LaxFunctor.mapComp_assoc_right, LanLift.CommuteWith.lanLiftCompIsoWhisker_inv_right, mateEquiv_apply, Adj.associator_hom_Ο„l, LeftExtension.whiskerHom_right, CategoryTheory.StrictlyUnitaryLaxFunctor.comp_mapComp, InducedBicategory.bicategory_associator_hom_hom, CategoryTheory.Oplax.StrongTrans.naturality_naturality, pentagon_hom_hom_inv_inv_hom, CategoryTheory.PrelaxFunctor.mapβ‚‚Iso_hom, Pseudofunctor.ofOplaxFunctorToLocallyGroupoid_mapIdIso_hom, CategoryTheory.Oplax.OplaxTrans.leftUnitor_hom_as_app, CategoryTheory.PrelaxFunctor.mapβ‚‚Iso_inv, CategoryTheory.Pseudofunctor.LocallyDiscreteOpToCat.map_eq_pullHom, CategoryTheory.Pseudofunctor.mapComp_id_right_hom_app, Pith.inclusion_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map, CategoryTheory.Pseudofunctor.whiskerLeft_mapId_hom_assoc, Bicategory.Opposite.bicategory_associator_inv_unop2, CategoryTheory.Pseudofunctor.whiskerRight_mapId_hom_assoc, CategoryTheory.Lax.OplaxTrans.naturality_comp_assoc, CategoryTheory.Pseudofunctor.DescentData.id_hom, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_inv_comp_mapComp'₀₁₃_hom_app_assoc, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_id, CategoryTheory.LaxFunctor.mapComp_naturality_left_app, pentagon_inv_inv_hom_hom_inv_assoc, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_comp, CategoryTheory.OplaxFunctor.mapComp_id_left_assoc, CategoryTheory.StrictPseudofunctor.mk'_mapId, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_naturality, Pseudofunctor.ofLaxFunctorToLocallyGroupoid_mapCompIso_hom, CategoryTheory.Pseudofunctor.DescentData.pullFunctorCompIso_hom_app_hom, Prod.swap_mapComp_hom, CategoryTheory.Pseudofunctor.StrongTrans.Modification.vcomp_app, CategoryTheory.Pseudofunctor.StrongTrans.naturality_naturality_hom_app, CategoryTheory.Pseudofunctor.DescentData.isoMk_hom_hom, CategoryTheory.Pseudofunctor.StrongTrans.naturality_naturality_assoc, LeftLift.ofIdComp_left_as, CategoryTheory.StrictPseudofunctor.id_mapId_inv, LeftExtension.whiskerOfCompIdIsoSelf_inv_right, CategoryTheory.Pseudofunctor.DescentData.pullFunctorObjHom_eq, CategoryTheory.StrictlyUnitaryLaxFunctor.mapIdIso_inv, Pith.pseudofunctorToPith_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_as, CategoryTheory.FreeBicategory.mk_associator_inv, CategoryTheory.Oplax.OplaxTrans.whiskerRight_naturality_comp_assoc, rightUnitor_comp_assoc, Mathlib.Tactic.Bicategory.evalComp_nil_cons, Adj.leftUnitor_hom_Ο„r, CategoryTheory.Pseudofunctor.mapId'_hom_naturality, CategoryTheory.Pseudofunctor.DescentData.hom_self, Mathlib.Tactic.Bicategory.evalWhiskerRightAux_of, CategoryTheory.Pseudofunctor.DescentData.comp_hom_assoc, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_inv_app, LeftExtension.IsKan.fac, CategoryTheory.Pseudofunctor.ObjectProperty.fullsubcategory_mapId, CategoryTheory.Oplax.StrongTrans.categoryStruct_id_naturality, CategoryTheory.Pseudofunctor.ObjectProperty.map_obj_obj, LeftLift.IsKan.uniqueUpToIso_inv_right, CategoryTheory.FreeBicategory.lift_mapComp, Comonad.comul_counit, leftZigzagIso_inv, CategoryTheory.Functor.toOplaxFunctor'_mapComp, Adjunction.comp_right_triangle_aux, CategoryTheory.Pseudofunctor.CoGrothendieck.categoryStruct_comp_fiber, Adj.lIso_hom, Prod.sectL_mapβ‚‚, CategoryTheory.Oplax.StrongTrans.toOplax_naturality, CategoryTheory.Pseudofunctor.mapId'_hom_naturality_assoc, CategoryTheory.OplaxFunctor.mapComp_naturality_right_app_assoc, Adjunction.homEquiv₁_symm_apply, CategoryTheory.Oplax.StrongTrans.Modification.whiskerRight_naturality_assoc, toNatTrans_conjugateEquiv, CategoryTheory.Lax.StrongTrans.categoryStruct_comp_naturality, CategoryTheory.FreeBicategory.lift_toPrelaxFunctor_toPrelaxFunctorStruct_mapβ‚‚, CategoryTheory.Pseudofunctor.comp_mapComp, Prod.swap_mapComp_inv, CategoryTheory.PrelaxFunctor.mapβ‚‚Iso_eqToIso, CategoryTheory.Join.pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_comp, Bicategory.Opposite.opFunctor_map, CategoryTheory.StrictlyUnitaryPseudofunctor.toStrictlyUnitaryLaxFunctor_mapComp, CategoryTheory.Pseudofunctor.toOplax_mapId', LeftLift.whiskering_obj, Prod.snd_mapComp_inv, Adj.Bicategory.associator_hom_Ο„l, CategoryTheory.StrictPseudofunctor.mk''_obj, Pith.compβ‚‚_iso_inv, CategoryTheory.Pseudofunctor.mapβ‚‚_whisker_right_app, CategoryTheory.Oplax.OplaxTrans.Modification.whiskerLeft_naturality, conjugateEquiv_symm_apply', AlgebraicGeometry.Scheme.Modules.pseudofunctor_map_r, CategoryTheory.Pseudofunctor.CoGrothendieck.instFaithfulΞ±CategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_iso, InducedBicategory.isoMk_hom_hom, Pith.inclusion_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj, whiskerLeft_rightUnitor, CategoryTheory.WithInitial.pseudofunctor_mapComp, CategoryTheory.FreeBicategory.preinclusion_obj, CategoryTheory.Pseudofunctor.mapβ‚‚_left_unitor_app_assoc, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_assoc, CategoryTheory.Pseudofunctor.mapβ‚‚_right_unitor_app_assoc, pentagon_hom_inv_inv_inv_inv, CategoryTheory.Pseudofunctor.mapβ‚‚_right_unitor_app, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_naturality_app, CategoryTheory.FreeBicategory.lift_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map, CategoryTheory.LaxFunctor.comp_mapComp, CategoryTheory.Join.pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_obj, CategoryTheory.PrelaxFunctor.mapβ‚‚_hom_inv_isIso_assoc, Pith.inclusion_toPrelaxFunctor_toPrelaxFunctorStruct_mapβ‚‚, CategoryTheory.PrelaxFunctor.mapβ‚‚_inv_hom, conjugateEquiv_iso, Prod.sectR_mapId_hom, CategoryTheory.OplaxFunctor.mapComp_naturality_right, Strict.leftUnitor_eqToIso, CategoryTheory.OplaxFunctor.mapComp_naturality_left_app_assoc, CategoryTheory.Pseudofunctor.presheafHomObjHomEquiv_symm_apply, Prod.swap_mapId_hom, conjugateEquiv_whiskerLeft, CategoryTheory.StrictlyUnitaryLaxFunctor.id_mapId, CategoryTheory.LaxFunctor.mapβ‚‚_associator_app, CategoryTheory.FreeBicategory.mk_right_unitor_hom, LeftExtension.whiskering_obj, CategoryTheory.Pseudofunctor.toLax_mapComp', CategoryTheory.OplaxFunctor.mapComp'_comp_mapComp'_whiskerRight_assoc, CategoryTheory.StrictPseudofunctor.comp_obj, Bicategory.Opposite.homCategory_id_unop2, CategoryTheory.StrictPseudofunctor.id_mapComp_inv, InducedBicategory.mkHom_eqToHom, comp_whiskerLeft_symm_assoc, CommRingCat.moduleCatRestrictScalarsPseudofunctor_obj, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_hom_app_assoc, Bicategory.Opposite.op2_id_unbop, leftUnitor_comp, CategoryTheory.BicategoricalCoherence.assoc'_iso, LeftExtension.w, CategoryTheory.Lax.OplaxTrans.vComp_naturality_id, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_hom_comp_whiskerLeft_mapComp'_hom_app, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_id, CategoryTheory.Cat.associator_hom_toNatTrans, Mathlib.Tactic.Bicategory.evalComp_nil_nil, CategoryTheory.Pseudofunctor.isoMapOfCommSq_eq, CategoryTheory.LaxFunctor.mapComp_naturality_left, CategoryTheory.LaxFunctor.mapComp_assoc_left_assoc, LeftLift.whiskerOfIdCompIsoSelf_inv_right, associatorNatIsoMiddle_inv_app, CategoryTheory.Pseudofunctor.mapβ‚‚_whisker_right_assoc, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_hom_app_assoc, InducedBicategory.forget_mapId_hom, CategoryTheory.Pseudofunctor.mapComp_assoc_left_hom_assoc, Pith.pseudofunctorToPith_mapComp_inv_iso_hom, prod_rightUnitor_hom_snd, precomp_map, pentagon_hom_hom_inv_hom_hom, conjugateEquiv_symm_apply, prod_associator_hom_snd, Adjunction.right_triangle, triangle_assoc_comp_left_inv, CategoryTheory.Pseudofunctor.StrongTrans.Modification.whiskerRight_naturality, CategoryTheory.Pseudofunctor.ObjectProperty.mapComp_inv_app, CategoryTheory.Oplax.OplaxTrans.Modification.naturality, CategoryTheory.BicategoricalCoherence.right_iso, Equivalence.right_triangle_hom, Prod.fst_obj, CategoryTheory.Pseudofunctor.mapComp_assoc_right_inv, CategoryTheory.Pseudofunctor.StrongTrans.naturality_naturality_inv, CategoryTheory.LaxFunctor.mapComp_assoc_right_app_assoc, associatorNatIsoRight_inv_app, leftUnitor_comp_inv_assoc, leftUnitor_whiskerRight_assoc, leftUnitor_inv_congr, conjugateIsoEquiv_symm_apply_inv, Adj.forget₁_mapComp, rightUnitor_hom_congr, CategoryTheory.StrictlyUnitaryPseudofunctor.comp_mapComp_inv, CategoryTheory.Pseudofunctor.comp_mapId, Prod.swap_mapId_inv, CategoryTheory.OplaxFunctor.mapComp_naturality_right_app, Prod.sectR_map, CategoryTheory.StrictPseudofunctor.mk''_mapβ‚‚, CategoryTheory.OplaxFunctor.mapComp'_comp_whiskerLeft_mapComp'_assoc, CategoryTheory.StrictlyUnitaryPseudofunctor.comp_mapId_inv, Bicategory.Opposite.op2_associator_hom, pentagon_hom_inv_inv_inv_hom, Adj.Bicategory.leftUnitor_inv_Ο„r, CategoryTheory.LaxFunctor.mapComp_assoc_left_app_assoc, CategoryTheory.Lax.OplaxTrans.id_app, CategoryTheory.Oplax.StrongTrans.homCategory_comp_as_app, rightZigzagIso_hom, CategoryTheory.LaxFunctor.id_mapComp, CategoryTheory.Cat.leftUnitor_inv_app, CategoryTheory.Functor.toPseudoFunctor_obj, associator_inv_naturality_middle_assoc, CategoryTheory.LaxFunctor.mapβ‚‚_leftUnitor_app, CategoryTheory.BicategoricalCoherence.refl_iso, rightUnitor_comp_inv_assoc, CategoryTheory.Join.pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_obj, CategoryTheory.Lax.OplaxTrans.naturality_naturality_assoc, InducedBicategory.bicategory_leftUnitor_hom_hom, CategoryTheory.Pseudofunctor.Grothendieck.categoryStruct_comp_fiber, CategoryTheory.StrictlyUnitaryLaxFunctor.comp_mapβ‚‚, CategoryTheory.Pseudofunctor.whiskerRight_mapId_hom_app, Bicategory.Opposite.bicategory_rightUnitor_hom_unop2, CategoryTheory.Pseudofunctor.mapComp'_inv_whiskerRight_mapComp'₀₂₃_inv, CategoryTheory.Pseudofunctor.CoGrothendieck.compIso_hom_app, CategoryTheory.Pseudofunctor.DescentData.hom_comp, Strict.associator_eqToIso, CategoryTheory.Pseudofunctor.IsPrestackFor.nonempty_fullyFaithful, CategoryTheory.Pseudofunctor.mapComp'_hom_comp_mapComp'_hom_whiskerRight, RightLift.w, CategoryTheory.Pseudofunctor.ObjectProperty.mapβ‚‚_app_hom, triangle_assoc, leftUnitorNatIso_inv_app, CategoryTheory.Pseudofunctor.CoGrothendieck.Hom.ext_iff, CategoryTheory.OplaxFunctor.mapβ‚‚_rightUnitor_app_assoc, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_hom_comp_mapComp'_hom_whiskerRight, CategoryTheory.Oplax.StrongTrans.vcomp_naturality_inv, CategoryTheory.Pseudofunctor.whiskerRight_mapId_inv, CategoryTheory.Oplax.OplaxTrans.whiskerRight_as_app, associator_naturality_middle_assoc, Bicategory.Opposite.bicategory_rightUnitor_inv_unop2, CategoryTheory.Pseudofunctor.whiskerRightIso_mapId, CategoryTheory.Pseudofunctor.Grothendieck.map_map_base, CategoryTheory.Oplax.OplaxTrans.OplaxFunctor.bicategory_associator_inv_as_app, CategoryTheory.Pseudofunctor.toOplax_mapComp', CategoryTheory.Oplax.OplaxTrans.leftUnitor_inv_as_app, CategoryTheory.FreeBicategory.lift_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj, CategoryTheory.Functor.toOplaxFunctor'_mapId, CategoryTheory.LaxFunctor.mapβ‚‚_leftUnitor_hom, RightExtension.w, Prod.fst_mapId_inv, CategoryTheory.LaxFunctor.mapβ‚‚_rightUnitor_hom, Adj.leftUnitor_hom_Ο„l, LanLift.CommuteWith.lanLiftCompIso_inv, CategoryTheory.Oplax.OplaxTrans.Modification.id_app, CategoryTheory.StrictlyUnitaryLaxFunctor.comp_obj, Pith.pseudofunctorToPith_mapComp_hom_iso, mateEquiv_apply', Equivalence.left_triangle_hom, conjugateEquiv_comp, CategoryTheory.OplaxFunctor.mapComp_id_left, CategoryTheory.LaxFunctor.mapβ‚‚_leftUnitor_app_assoc, CategoryTheory.Pseudofunctor.ObjectProperty.fullsubcategory_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor, postcomp_map, CategoryTheory.LaxFunctor.mapβ‚‚_rightUnitor, LanLift.CommuteWith.lanLiftCompIsoWhisker_hom_right, triangle_assoc_comp_right_assoc, CategoryTheory.Pseudofunctor.whiskerRight_mapId_inv_app_assoc, CategoryTheory.StrictlyUnitaryPseudofunctor.comp_mapβ‚‚, rightUnitorNatIso_hom_app, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_hom_app, pentagon_inv_hom_hom_hom_inv_assoc, CategoryTheory.LaxFunctor.PseudoCore.mapIdIso_inv, leftUnitor_comp_assoc, LeftLift.w, CategoryTheory.Pseudofunctor.mapId'_inv_naturality, CategoryTheory.LaxFunctor.mapComp_naturality_left_assoc, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_hom_comp_mapComp'_hom_whiskerRight_app_assoc, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_inv_app, CategoryTheory.Pseudofunctor.mapComp_assoc_left_inv_app, CategoryTheory.Pseudofunctor.DescentData.Hom.comm, CategoryTheory.StrictlyUnitaryLaxFunctorCore.mapβ‚‚_comp, CategoryTheory.Join.pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_map, triangle_assoc_comp_left_inv_assoc, CategoryTheory.StrictlyUnitaryPseudofunctor.toStrictlyUnitaryLaxFunctor_map, CategoryTheory.Pseudofunctor.StrongTrans.Modification.whiskerRight_naturality_assoc
leftUnitor πŸ“–CompOp
200 mathmath: eqToHomTransIso_refl_left, leftUnitor_inv_naturality_assoc, CategoryTheory.StrictlyUnitaryLaxFunctorCore.mapβ‚‚_leftUnitor, Prod.sectL_mapId_inv, CategoryTheory.Pseudofunctor.mapComp'_id_comp_hom, mateEquiv_comp_id_right, CategoryTheory.LaxFunctor.mapβ‚‚_leftUnitor_assoc, CategoryTheory.Pseudofunctor.mapβ‚‚_left_unitor_assoc, CategoryTheory.Oplax.LaxTrans.vComp_naturality_id, CategoryTheory.StrictPseudofunctorCore.mapβ‚‚_left_unitor, eqToHomTransIso_refl_refl, CategoryTheory.FreeBicategory.mk_left_unitor_inv, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_hom_assoc, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_id, CategoryTheory.BicategoricalCoherence.left'_iso, InducedBicategory.bicategory_leftUnitor_inv_hom, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_id_assoc, CategoryTheory.Pseudofunctor.StrongTrans.leftUnitor_inv_as_app, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_id_assoc, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_inv, CategoryTheory.Oplax.OplaxTrans.categoryStruct_id_naturality, Adj.Bicategory.rightUnitor_inv_Ο„r, CategoryTheory.Pseudofunctor.mapComp_id_left_inv_app, Adjunction.homEquiv₁_apply, CategoryTheory.Pseudofunctor.mapβ‚‚_left_unitor, unitors_inv_equal, Pith.leftUnitor_inv_iso_hom, triangle_assoc_comp_left, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_hom, conjugateEquiv_apply, CategoryTheory.Cat.leftUnitor_hom_app, CategoryTheory.OplaxFunctor.mapβ‚‚_leftUnitor_app, CategoryTheory.Oplax.OplaxTrans.whiskerLeft_naturality_id, mateEquiv_id_comp_right, leftUnitor_comp_inv, CategoryTheory.Pseudofunctor.mapComp_id_left, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id, id_whiskerLeft_symm, CategoryTheory.LaxFunctor.mapβ‚‚_leftUnitor_hom_app, leftUnitor_inv_whiskerRight_assoc, Adj.rightUnitor_hom_Ο„r, CategoryTheory.BicategoricalCoherence.left_iso, Bicategory.Opposite.bicategory_leftUnitor_hom_unop2, CategoryTheory.OplaxFunctor.mapβ‚‚_leftUnitor_assoc, conjugateEquiv_id_comp_right_apply, CategoryTheory.Oplax.StrongTrans.naturality_id_assoc, CategoryTheory.Oplax.LaxTrans.naturality_id, CategoryTheory.StrictlyUnitaryPseudofunctorCore.mapβ‚‚_left_unitor, CategoryTheory.Pseudofunctor.isoMapOfCommSq_horiz_id, CategoryTheory.Oplax.StrongTrans.id_naturality_inv, CategoryTheory.Oplax.OplaxTrans.OplaxFunctor.bicategory_leftUnitor_inv_as_app, Prod.sectL_mapComp_hom, leftUnitor_inv_naturality, unitors_equal, CategoryTheory.Oplax.LaxTrans.id_naturality, CategoryTheory.Oplax.OplaxTrans.whiskerRight_naturality_id, Adj.Bicategory.rightUnitor_hom_Ο„r, CategoryTheory.Pseudofunctor.mapComp_id_left_hom_app_assoc, conjugateEquiv_comp_id_right_apply, CategoryTheory.Lax.LaxTrans.id_naturality, leftUnitor_inv_whiskerRight, Equivalence.right_triangle, Equivalence.left_triangle, CategoryTheory.LaxFunctor.mapβ‚‚_leftUnitor_hom_app_assoc, Bicategory.Opposite.bicategory_leftUnitor_inv_unop2, CategoryTheory.FreeBicategory.mk_left_unitor_hom, CategoryTheory.Oplax.OplaxTrans.whiskerLeft_naturality_id_assoc, Comonad.counit_comul_assoc, Bicategory.Opposite.op2_rightUnitor_inv, CategoryTheory.Pseudofunctor.mapComp_id_left_inv_app_assoc, Adj.Bicategory.leftUnitor_hom_Ο„l, CategoryTheory.Pseudofunctor.mapComp_id_left_inv_assoc, CategoryTheory.Lax.LaxTrans.naturality_id_assoc, adjointifyCounit_left_triangle, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_id, CategoryTheory.Lax.LaxTrans.naturality_id, prod_leftUnitor_inv_fst, triangle_assoc_comp_right_inv_assoc, Adjunction.left_triangle, triangle_assoc_comp_right_inv, prod_leftUnitor_inv_snd, leftUnitorNatIso_hom_app, Adj.Bicategory.leftUnitor_inv_Ο„l, Prod.sectL_mapId_hom, CategoryTheory.Pseudofunctor.StrongTrans.categoryStruct_id_naturality_hom, CategoryTheory.Pseudofunctor.isoMapOfCommSq_vert_id, leftUnitor_whiskerRight, CategoryTheory.Oplax.StrongTrans.naturality_id, CategoryTheory.Pseudofunctor.mapComp'_id_comp_inv_assoc, prod_leftUnitor_hom_snd, CategoryTheory.Pseudofunctor.mapComp_id_left_hom_assoc, CategoryTheory.Lax.LaxTrans.vComp_naturality_id, CategoryTheory.Lax.OplaxTrans.id_naturality, Bicategory.Opposite.op2_rightUnitor, CategoryTheory.Oplax.OplaxTrans.naturality_id_assoc, CategoryTheory.OplaxFunctor.mapβ‚‚_leftUnitor, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_id_assoc, Adj.leftUnitor_inv_Ο„l, Bicategory.Opposite.op2_rightUnitor_hom, Mathlib.Tactic.Bicategory.naturality_leftUnitor, CategoryTheory.Lax.StrongTrans.naturality_id, CategoryTheory.Oplax.OplaxTrans.OplaxFunctor.bicategory_leftUnitor_hom_as_app, CategoryTheory.Lax.StrongTrans.categoryStruct_id_naturality, CategoryTheory.Pseudofunctor.mapComp_id_left_inv, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_iso, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_assoc, CategoryTheory.Oplax.OplaxTrans.whiskerRight_naturality_id_assoc, Bicategory.Opposite.op2_leftUnitor_hom, CategoryTheory.Pseudofunctor.mapComp'_id_comp_inv, CategoryTheory.Cat.leftUnitor_hom_toNatTrans, Prod.sectL_mapComp_inv, id_whiskerLeft_assoc, CategoryTheory.Cat.leftUnitor_inv_toNatTrans, CategoryTheory.Pseudofunctor.mapβ‚‚_left_unitor_app, triangle, CategoryTheory.Pseudofunctor.StrongTrans.leftUnitor_hom_as_app, CategoryTheory.LaxFunctor.mapβ‚‚_leftUnitor_hom_assoc, CategoryTheory.Lax.StrongTrans.naturality_id_assoc, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_id_assoc, Adj.rightUnitor_inv_Ο„r, CategoryTheory.Oplax.OplaxTrans.naturality_id, triangle_assoc_comp_right, CategoryTheory.Cat.Hom.toNatIso_leftUnitor, CategoryTheory.Lax.OplaxTrans.naturality_id_assoc, conjugateEquiv_apply', CategoryTheory.LaxFunctor.mapβ‚‚_leftUnitor, CategoryTheory.Pseudofunctor.StrongTrans.categoryStruct_id_naturality_inv, LeftLift.ofIdComp_hom, LeftLift.whiskerOfIdCompIsoSelf_hom_right, CategoryTheory.Pseudofunctor.whiskerRight_mapId_hom_app_assoc, CategoryTheory.Lax.StrongTrans.id_naturality_inv, CategoryTheory.Pseudofunctor.mapComp_id_left_hom_app, Bicategory.Opposite.op2_leftUnitor_inv, leftUnitor_naturality_assoc, CategoryTheory.Lax.StrongTrans.id_naturality_hom, CategoryTheory.Lax.OplaxTrans.naturality_id, Bicategory.Opposite.op2_leftUnitor, mateEquiv_leftUnitor_hom_rightUnitor_inv, CategoryTheory.Pseudofunctor.mapComp'_id_comp, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_inv_assoc, LeftLift.whiskerIdCancel_right, CategoryTheory.Pseudofunctor.whiskerRight_mapId_hom, prod_leftUnitor_hom_fst, Adjunction.comp_left_triangle_aux, id_whiskerLeft, CategoryTheory.Pseudofunctor.mapComp_id_left_hom, CategoryTheory.Oplax.LaxTrans.naturality_id_assoc, leftUnitor_hom_congr, Adj.leftUnitor_inv_Ο„r, CategoryTheory.Pseudofunctor.whiskerRight_mapId_inv_app, CategoryTheory.OplaxFunctor.mapβ‚‚_leftUnitor_app_assoc, CategoryTheory.Pseudofunctor.whiskerRight_mapId_inv_assoc, Pith.leftUnitor_hom_iso, CategoryTheory.Oplax.StrongTrans.id_naturality_hom, leftUnitor_naturality, Comonad.counit_comul, CategoryTheory.Pseudofunctor.mapComp'_id_comp_hom_assoc, CategoryTheory.Oplax.OplaxTrans.leftUnitor_hom_as_app, CategoryTheory.Pseudofunctor.whiskerRight_mapId_hom_assoc, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_id, CategoryTheory.OplaxFunctor.mapComp_id_left_assoc, Adj.leftUnitor_hom_Ο„r, CategoryTheory.Oplax.StrongTrans.categoryStruct_id_naturality, Adjunction.comp_right_triangle_aux, Adjunction.homEquiv₁_symm_apply, conjugateEquiv_symm_apply', CategoryTheory.leftUnitor_def, CategoryTheory.Pseudofunctor.mapβ‚‚_left_unitor_app_assoc, Strict.leftUnitor_eqToIso, leftUnitor_comp, CategoryTheory.Lax.OplaxTrans.vComp_naturality_id, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_id, LeftLift.whiskerOfIdCompIsoSelf_inv_right, conjugateEquiv_symm_apply, Adjunction.right_triangle, triangle_assoc_comp_left_inv, Equivalence.right_triangle_hom, leftUnitor_comp_inv_assoc, leftUnitor_whiskerRight_assoc, leftUnitor_inv_congr, CategoryTheory.Cat.leftUnitor_inv_app, CategoryTheory.LaxFunctor.mapβ‚‚_leftUnitor_app, InducedBicategory.bicategory_leftUnitor_hom_hom, CategoryTheory.Pseudofunctor.whiskerRight_mapId_hom_app, Bicategory.Opposite.bicategory_rightUnitor_hom_unop2, triangle_assoc, leftUnitorNatIso_inv_app, CategoryTheory.Pseudofunctor.whiskerRight_mapId_inv, Bicategory.Opposite.bicategory_rightUnitor_inv_unop2, CategoryTheory.Pseudofunctor.whiskerRightIso_mapId, CategoryTheory.Oplax.OplaxTrans.leftUnitor_inv_as_app, CategoryTheory.LaxFunctor.mapβ‚‚_leftUnitor_hom, Adj.leftUnitor_hom_Ο„l, Equivalence.left_triangle_hom, CategoryTheory.OplaxFunctor.mapComp_id_left, CategoryTheory.LaxFunctor.mapβ‚‚_leftUnitor_app_assoc, triangle_assoc_comp_right_assoc, CategoryTheory.Pseudofunctor.whiskerRight_mapId_inv_app_assoc, leftUnitor_comp_assoc, triangle_assoc_comp_left_inv_assoc
leftUnitorNatIso πŸ“–CompOp
2 mathmath: leftUnitorNatIso_hom_app, leftUnitorNatIso_inv_app
postcomp πŸ“–CompOp
23 mathmath: LeftLift.whiskering_map, RightLift.w_assoc, LeftLift.w_assoc, postcomp_obj, postcomposing_obj, HasLeftKanLift.hasInitial, LeftLift.whiskerHom_right, LeftLift.ofIdComp_right, postcomposing_map_app, LeftLift.ofIdComp_hom, LeftLift.whiskerOfIdCompIsoSelf_hom_right, LeftLift.whiskerIdCancel_right, LeftLift.IsKan.uniqueUpToIso_hom_right, instHasInitialLeftLiftOfHasLeftKanLift, LanLift.CommuteWith.lanLiftCompIsoWhisker_inv_right, LeftLift.ofIdComp_left_as, LeftLift.IsKan.uniqueUpToIso_inv_right, LeftLift.whiskering_obj, LeftLift.whiskerOfIdCompIsoSelf_inv_right, RightLift.w, postcomp_map, LanLift.CommuteWith.lanLiftCompIsoWhisker_hom_right, LeftLift.w
postcomposing πŸ“–CompOp
8 mathmath: associatorNatIsoLeft_inv_app, postcomposing_obj, postcomposing_map_app, rightUnitorNatIso_inv_app, associatorNatIsoMiddle_hom_app, associatorNatIsoLeft_hom_app, associatorNatIsoMiddle_inv_app, rightUnitorNatIso_hom_app
precomp πŸ“–CompOp
23 mathmath: RightExtension.w_assoc, LeftExtension.w_assoc, LeftExtension.ofCompId_right, LeftExtension.ofCompId_left_as, LeftExtension.whiskering_map, precomposing_map_app, Lan.CommuteWith.lanCompIsoWhisker_hom_right, precomp_obj, LeftExtension.whiskerIdCancel_right, LeftExtension.IsKan.uniqueUpToIso_hom_right, Lan.CommuteWith.lanCompIsoWhisker_inv_right, LeftExtension.ofCompId_hom, instHasInitialLeftExtensionOfHasLeftKanExtension, LeftExtension.IsKan.uniqueUpToIso_inv_right, precomposing_obj, HasLeftKanExtension.hasInitial, LeftExtension.whiskerOfCompIdIsoSelf_hom_right, LeftExtension.whiskerHom_right, LeftExtension.whiskerOfCompIdIsoSelf_inv_right, LeftExtension.whiskering_obj, LeftExtension.w, precomp_map, RightExtension.w
precomposing πŸ“–CompOp
8 mathmath: precomposing_map_app, leftUnitorNatIso_hom_app, associatorNatIsoMiddle_hom_app, precomposing_obj, associatorNatIsoRight_hom_app, associatorNatIsoMiddle_inv_app, associatorNatIsoRight_inv_app, leftUnitorNatIso_inv_app
rightUnitor πŸ“–CompOp
207 mathmath: CategoryTheory.Pseudofunctor.mapComp'_comp_id_hom_assoc, Adj.rightUnitor_hom_Ο„l, mateEquiv_comp_id_right, Adjunction.homEquivβ‚‚_symm_apply, CategoryTheory.Oplax.LaxTrans.vComp_naturality_id, conjugateEquiv_adjunction_id_symm, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_hom_assoc, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_id, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_id_assoc, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_id_assoc, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_inv, CategoryTheory.Oplax.OplaxTrans.categoryStruct_id_naturality, CategoryTheory.Pseudofunctor.whiskerLeft_mapId_inv_app_assoc, rightUnitor_inv_naturality, Mathlib.Tactic.Bicategory.naturality_rightUnitor, rightUnitor_inv_congr, unitors_inv_equal, triangle_assoc_comp_left, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_hom, CategoryTheory.FreeBicategory.mk_right_unitor_inv, conjugateEquiv_apply, Adj.Bicategory.rightUnitor_inv_Ο„l, whiskerRight_id, CategoryTheory.Oplax.OplaxTrans.whiskerLeft_naturality_id, mateEquiv_id_comp_right, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id, CategoryTheory.BicategoricalCoherence.tensorRight_iso, Prod.sectR_mapComp_inv, Adj.rightUnitor_inv_Ο„l, CategoryTheory.Pseudofunctor.mapComp_id_right_inv_app_assoc, CategoryTheory.Cat.rightUnitor_hom_toNatTrans, Adj.rightUnitor_hom_Ο„r, CategoryTheory.Pseudofunctor.mapComp_id_right, Bicategory.Opposite.bicategory_leftUnitor_hom_unop2, CategoryTheory.Pseudofunctor.mapComp'_comp_id, conjugateEquiv_id_comp_right_apply, Adjunction.homEquivβ‚‚_apply, CategoryTheory.Oplax.StrongTrans.naturality_id_assoc, CategoryTheory.Oplax.LaxTrans.naturality_id, CategoryTheory.Pseudofunctor.isoMapOfCommSq_horiz_id, CategoryTheory.Oplax.StrongTrans.id_naturality_inv, CategoryTheory.Pseudofunctor.mapβ‚‚_right_unitor_assoc, Prod.sectL_mapComp_hom, unitors_equal, CategoryTheory.Cat.rightUnitor_hom_app, CategoryTheory.Oplax.LaxTrans.id_naturality, CategoryTheory.Oplax.OplaxTrans.whiskerRight_naturality_id, CategoryTheory.Pseudofunctor.mapComp_id_right_hom, conjugateEquiv_comp_id_right_apply, CategoryTheory.Lax.LaxTrans.id_naturality, whiskerLeft_rightUnitor_assoc, Equivalence.right_triangle, Equivalence.left_triangle, CategoryTheory.Pseudofunctor.whiskerLeft_mapId_inv_app, Bicategory.Opposite.bicategory_leftUnitor_inv_unop2, Prod.sectR_mapId_inv, CategoryTheory.Pseudofunctor.whiskerLeftIso_mapId, Pith.rightUnitor_hom_iso, CategoryTheory.Oplax.OplaxTrans.whiskerLeft_naturality_id_assoc, Bicategory.Opposite.op2_rightUnitor_inv, CategoryTheory.LaxFunctor.mapβ‚‚_rightUnitor_hom_app, CategoryTheory.BicategoricalCoherence.right'_iso, prod_rightUnitor_inv_fst, eqToHomTransIso_refl_right, CategoryTheory.Lax.LaxTrans.naturality_id_assoc, CategoryTheory.Oplax.OplaxTrans.rightUnitor_hom_as_app, adjointifyCounit_left_triangle, CategoryTheory.rightUnitor_def, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_id, whiskerLeft_rightUnitor_inv, CategoryTheory.BicategoricalCoherence.tensorRight'_iso, CategoryTheory.Pseudofunctor.whiskerLeft_mapId_inv, Pith.rightUnitor_inv_iso_inv, LeftExtension.whiskerIdCancel_right, prod_rightUnitor_inv_snd, CategoryTheory.Pseudofunctor.mapComp_id_right_hom_assoc, CategoryTheory.Lax.LaxTrans.naturality_id, CategoryTheory.StrictPseudofunctorCore.mapβ‚‚_right_unitor, CategoryTheory.Oplax.OplaxTrans.OplaxFunctor.bicategory_rightUnitor_inv_as_app, triangle_assoc_comp_right_inv_assoc, CategoryTheory.LaxFunctor.mapβ‚‚_rightUnitor_hom_app_assoc, prod_rightUnitor_hom_fst, Adjunction.left_triangle, triangle_assoc_comp_right_inv, Adj.Bicategory.rightUnitor_hom_Ο„l, CategoryTheory.Pseudofunctor.StrongTrans.categoryStruct_id_naturality_hom, InducedBicategory.bicategory_rightUnitor_hom_hom, CategoryTheory.Pseudofunctor.isoMapOfCommSq_vert_id, Strict.rightUnitor_eqToIso, CategoryTheory.Oplax.StrongTrans.naturality_id, CategoryTheory.Pseudofunctor.mapComp_id_right_inv_assoc, CategoryTheory.Oplax.OplaxTrans.OplaxFunctor.bicategory_rightUnitor_hom_as_app, InducedBicategory.bicategory_rightUnitor_inv_hom, CategoryTheory.Pseudofunctor.mapComp'_comp_id_inv, rightUnitor_naturality_assoc, CategoryTheory.OplaxFunctor.mapβ‚‚_rightUnitor_assoc, CategoryTheory.Lax.LaxTrans.vComp_naturality_id, CategoryTheory.Lax.OplaxTrans.id_naturality, Bicategory.Opposite.op2_rightUnitor, CategoryTheory.Oplax.OplaxTrans.naturality_id_assoc, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_id_assoc, Bicategory.Opposite.op2_rightUnitor_hom, Mathlib.Tactic.Bicategory.naturality_leftUnitor, CategoryTheory.LaxFunctor.mapβ‚‚_rightUnitor_hom_assoc, CategoryTheory.Lax.StrongTrans.naturality_id, LeftExtension.ofCompId_hom, CategoryTheory.Lax.StrongTrans.categoryStruct_id_naturality, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_iso, CategoryTheory.OplaxFunctor.mapComp_id_right_assoc, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_assoc, CategoryTheory.Oplax.OplaxTrans.whiskerRight_naturality_id_assoc, rightUnitorNatIso_inv_app, Bicategory.Opposite.op2_leftUnitor_hom, Comonad.comul_counit_assoc, Prod.sectL_mapComp_inv, CategoryTheory.OplaxFunctor.mapβ‚‚_rightUnitor, triangle, CategoryTheory.Pseudofunctor.whiskerLeft_mapId_hom, CategoryTheory.Pseudofunctor.whiskerLeft_mapId_hom_app, CategoryTheory.Lax.StrongTrans.naturality_id_assoc, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_id_assoc, Adj.rightUnitor_inv_Ο„r, CategoryTheory.Oplax.OplaxTrans.naturality_id, rightUnitor_comp, whiskerRight_id_symm, CategoryTheory.OplaxFunctor.mapComp_id_right, triangle_assoc_comp_right, CategoryTheory.Pseudofunctor.mapComp_id_right_inv, rightUnitor_naturality, CategoryTheory.LaxFunctor.mapβ‚‚_rightUnitor_assoc, CategoryTheory.Lax.OplaxTrans.naturality_id_assoc, whiskerRight_id_assoc, CategoryTheory.Cat.Hom.toNatIso_rightUnitor, conjugateEquiv_apply', Adj.Bicategory.leftUnitor_hom_Ο„r, CategoryTheory.Pseudofunctor.StrongTrans.rightUnitor_inv_as_app, CategoryTheory.Pseudofunctor.StrongTrans.categoryStruct_id_naturality_inv, conjugateEquiv_adjunction_id, CategoryTheory.Cat.rightUnitor_inv_app, CategoryTheory.Cat.rightUnitor_inv_toNatTrans, CategoryTheory.Pseudofunctor.mapComp'_comp_id_inv_assoc, CategoryTheory.Pseudofunctor.mapβ‚‚_right_unitor, rightUnitor_comp_inv, CategoryTheory.Pseudofunctor.StrongTrans.rightUnitor_hom_as_app, CategoryTheory.Lax.StrongTrans.id_naturality_inv, CategoryTheory.Pseudofunctor.mapComp_id_right_inv_app, Bicategory.Opposite.op2_leftUnitor_inv, CategoryTheory.Pseudofunctor.whiskerLeft_mapId_hom_app_assoc, CategoryTheory.Oplax.OplaxTrans.rightUnitor_inv_as_app, CategoryTheory.LaxFunctor.mapβ‚‚_rightUnitor_app_assoc, CategoryTheory.Lax.StrongTrans.id_naturality_hom, CategoryTheory.Lax.OplaxTrans.naturality_id, Prod.sectR_mapComp_hom, Bicategory.Opposite.op2_leftUnitor, mateEquiv_leftUnitor_hom_rightUnitor_inv, CategoryTheory.LaxFunctor.mapβ‚‚_rightUnitor_app, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_inv_assoc, LeftExtension.whiskerOfCompIdIsoSelf_hom_right, whiskerLeft_rightUnitor_inv_assoc, Adjunction.comp_left_triangle_aux, CategoryTheory.Pseudofunctor.mapComp_id_right_hom_app_assoc, CategoryTheory.Pseudofunctor.mapComp'_comp_id_hom, CategoryTheory.Oplax.LaxTrans.naturality_id_assoc, CategoryTheory.StrictlyUnitaryLaxFunctorCore.mapβ‚‚_rightUnitor, Adj.leftUnitor_inv_Ο„r, rightUnitor_inv_naturality_assoc, CategoryTheory.Pseudofunctor.whiskerLeft_mapId_inv_assoc, Pith.rightUnitor_inv_iso_hom, CategoryTheory.Oplax.StrongTrans.id_naturality_hom, CategoryTheory.OplaxFunctor.mapβ‚‚_rightUnitor_app, CategoryTheory.StrictlyUnitaryPseudofunctorCore.mapβ‚‚_right_unitor, CategoryTheory.Pseudofunctor.mapComp_id_right_hom_app, CategoryTheory.Pseudofunctor.whiskerLeft_mapId_hom_assoc, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_id, LeftExtension.whiskerOfCompIdIsoSelf_inv_right, rightUnitor_comp_assoc, Adj.leftUnitor_hom_Ο„r, CategoryTheory.Oplax.StrongTrans.categoryStruct_id_naturality, Comonad.comul_counit, Adjunction.comp_right_triangle_aux, conjugateEquiv_symm_apply', whiskerLeft_rightUnitor, CategoryTheory.Pseudofunctor.mapβ‚‚_right_unitor_app_assoc, CategoryTheory.Pseudofunctor.mapβ‚‚_right_unitor_app, Prod.sectR_mapId_hom, CategoryTheory.FreeBicategory.mk_right_unitor_hom, CategoryTheory.Lax.OplaxTrans.vComp_naturality_id, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_id, prod_rightUnitor_hom_snd, conjugateEquiv_symm_apply, Adjunction.right_triangle, triangle_assoc_comp_left_inv, CategoryTheory.BicategoricalCoherence.right_iso, Equivalence.right_triangle_hom, rightUnitor_hom_congr, Adj.Bicategory.leftUnitor_inv_Ο„r, rightUnitor_comp_inv_assoc, Bicategory.Opposite.bicategory_rightUnitor_hom_unop2, triangle_assoc, CategoryTheory.OplaxFunctor.mapβ‚‚_rightUnitor_app_assoc, Bicategory.Opposite.bicategory_rightUnitor_inv_unop2, CategoryTheory.LaxFunctor.mapβ‚‚_rightUnitor_hom, Equivalence.left_triangle_hom, CategoryTheory.LaxFunctor.mapβ‚‚_rightUnitor, triangle_assoc_comp_right_assoc, rightUnitorNatIso_hom_app, triangle_assoc_comp_left_inv_assoc
rightUnitorNatIso πŸ“–CompOp
2 mathmath: rightUnitorNatIso_inv_app, rightUnitorNatIso_hom_app
termΞ±_ πŸ“–CompOpβ€”
termρ_ πŸ“–CompOpβ€”
toCategoryStruct πŸ“–CompOp
1285 mathmath: iterated_mateEquiv_conjugateEquiv, CategoryTheory.Join.pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_id, CategoryTheory.Join.pseudofunctorLeft_mapId_inv_toNatTrans_app, CategoryTheory.Pseudofunctor.mapComp'_comp_id_hom_assoc, CategoryTheory.Pseudofunctor.DescentData.isEquivalence_toDescentData_of_sieve_le, prod_whiskerLeft_snd, Bicategory.Opposite.op2_associator, CategoryTheory.StrictPseudofunctorPreCore.map_id, CategoryTheory.Join.pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_mapβ‚‚_toNatTrans_app, CategoryTheory.Pseudofunctor.DescentData.ofObj_hom, CategoryTheory.Pseudofunctor.mapComp_assoc_right_hom, RightExtension.w_assoc, CategoryTheory.Pseudofunctor.DescentData.subtypeCompatibleHomEquiv_toCompatible_presheafHomObjHomEquiv, CategoryTheory.Oplax.StrongTrans.Modification.vcomp_app, AlgebraicGeometry.Scheme.Modules.pseudofunctor_map_adj, CategoryTheory.Pseudofunctor.mapβ‚‚_associator_assoc, CategoryTheory.LaxFunctor.mapβ‚‚_associator_assoc, CategoryTheory.Join.pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_map, Adj.rightUnitor_hom_Ο„l, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_naturality_assoc, Comonad.comul_assoc_flip, Mathlib.Tactic.Bicategory.evalWhiskerLeft_nil, CategoryTheory.Cat.whiskerRight_toNatTrans, CategoryTheory.OplaxFunctor.id_mapComp, InducedBicategory.bicategory_whiskerLeft_hom, Adj.comp_r, Bicategory.Opposite.op2_unop2, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_mapβ‚‚, CategoryTheory.Join.pseudofunctorRight_mapComp_inv_toNatTrans_app, eqToHomTransIso_refl_left, CategoryTheory.StrictlyUnitaryLaxFunctor.id_mapβ‚‚, CategoryTheory.Pseudofunctor.mapComp_assoc_right_hom_app_assoc, Bicategory.Opposite.op2_associator_inv, CategoryTheory.Pseudofunctor.mapβ‚‚_associator_app_assoc, Pith.inclusion_mapComp, Pith.pseudofunctorToPith_mapId_hom_iso, leftAdjointSquare.comp_hvcomp, CategoryTheory.Pseudofunctor.DescentData.pullFunctorCompIso_inv_app_hom, CategoryTheory.Pseudofunctor.isEquivalence_toDescentData, conjugateEquiv_whiskerRight, CategoryTheory.Oplax.OplaxTrans.Modification.whiskerRight_naturality, LeftLift.whiskering_map, leftUnitor_inv_naturality_assoc, rightAdjointSquare.comp_vhcomp, CategoryTheory.Cat.Hom.id_map, CategoryTheory.Lax.StrongTrans.vComp_naturality_hom, whiskerLeft_inv_hom, CategoryTheory.StrictlyUnitaryLaxFunctor.mapIdIso_hom, CategoryTheory.FreeBicategory.lift_mapId, CategoryTheory.StrictlyUnitaryLaxFunctorCore.mapβ‚‚_leftUnitor, Adj.associator_inv_Ο„r, Prod.sectL_mapId_inv, whiskerRight_comp_assoc, Prod.snd_map, CategoryTheory.Pseudofunctor.mapComp'_id_comp_hom, CategoryTheory.Cat.Hom.toNatIso_associator, InducedBicategory.bicategory_associator_inv_hom, LeftExtension.w_assoc, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_naturality, CategoryTheory.OplaxFunctor.mapβ‚‚_associator, inv_hom_whiskerRight_whiskerRight_assoc, Adj.rIso_inv, mateEquiv_comp_id_right, CategoryTheory.Pseudofunctor.StrongTrans.homCategory_comp_as_app, inv_hom_whiskerRight_assoc, whisker_exchange, inv_hom_whiskerRight, CategoryTheory.LaxFunctor.mapβ‚‚_leftUnitor_assoc, CategoryTheory.Cat.associator_hom_app, CategoryTheory.StrictlyUnitaryPseudofunctor.toStrictlyUnitaryLaxFunctor_obj, pentagon_inv, Bicategory.Opposite.op2_whiskerLeft, isLeftAdjoint_TFAE, Adjunction.homEquivβ‚‚_symm_apply, InducedBicategory.Hom.category_id_hom, CategoryTheory.LaxFunctor.comp_mapId, CategoryTheory.Pseudofunctor.mapβ‚‚_left_unitor_assoc, Pith.comp_of, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_id_app, CategoryTheory.OplaxFunctor.mapβ‚‚_associator_app, CategoryTheory.Oplax.LaxTrans.vComp_naturality_id, CategoryTheory.StrictPseudofunctorCore.mapβ‚‚_left_unitor, Lan.existsUnique, CategoryTheory.Pseudofunctor.CoGrothendieck.categoryStruct_id_fiber, CategoryTheory.Oplax.OplaxTrans.OplaxFunctor.bicategory_whiskerRight_as_app, CategoryTheory.Oplax.OplaxTrans.Modification.vcomp_app, eqToHomTransIso_refl_refl, CategoryTheory.FreeBicategory.mk_left_unitor_inv, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_naturality_assoc, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_naturality_assoc, RightLift.w_assoc, mateEquiv_vcomp, CategoryTheory.Pseudofunctor.StrongTrans.comp_app, CategoryTheory.Pseudofunctor.ObjectProperty.fullsubcategory_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj, conjugateEquiv_adjunction_id_symm, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_hom_assoc, Adj.comp_Ο„l_assoc, CategoryTheory.StrictPseudofunctor.mk'_obj, CategoryTheory.Oplax.OplaxTrans.StrongCore.naturality_hom, Adj.forget₁_mapId, CategoryTheory.Adjunction.ofCat_counit, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_id, CategoryTheory.Iso.unop2_op2, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_comp_assoc, CategoryTheory.Oplax.OplaxTrans.homCategory_id_as_app, CategoryTheory.Pseudofunctor.mapComp'_comp_id_hom_app, CategoryTheory.BicategoricalCoherence.left'_iso, CategoryTheory.Pseudofunctor.mapComp'_comp_id_inv_app, CategoryTheory.StrictlyUnitaryLaxFunctorCore.mapβ‚‚_associator, Pseudofunctor.ofLaxFunctorToLocallyGroupoid_mapCompIso_inv, LeftExtension.ofCompId_right, CategoryTheory.StrictlyUnitaryLaxFunctorCore.mapβ‚‚_id, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_comp_app, CategoryTheory.Pseudofunctor.StrongTrans.categoryStruct_comp_naturality_hom, CategoryTheory.OplaxFunctor.mapComp_naturality_right_assoc, CategoryTheory.Oplax.LaxTrans.naturality_naturality_assoc, InducedBicategory.categoryStruct_comp_hom, CategoryTheory.StrictPseudofunctor.id_mapComp_hom, InducedBicategory.bicategory_leftUnitor_inv_hom, CategoryTheory.Pseudofunctor.mapComp_assoc_left_inv_app_assoc, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_id_assoc, CategoryTheory.Pseudofunctor.DescentData.pullFunctor_map_hom, CategoryTheory.Pseudofunctor.StrongTrans.leftUnitor_inv_as_app, CategoryTheory.Oplax.OplaxTrans.OplaxFunctor.bicategory_whiskerLeft_as_app, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_id_assoc, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_inv, LanLift.CommuteWith.instHasLeftKanLiftComp, pentagon_hom_hom_inv_hom_hom_assoc, CategoryTheory.Functor.toPseudoFunctor'_obj, CategoryTheory.Oplax.OplaxTrans.categoryStruct_id_naturality, Adj.Bicategory.rightUnitor_inv_Ο„r, LeftLift.w_assoc, whiskerRightIso_hom, associatorNatIsoLeft_inv_app, CategoryTheory.StrictlyUnitaryPseudofunctor.mk'_map, CategoryTheory.Pseudofunctor.mapComp_id_left_inv_app, pentagon_inv_hom_hom_hom_hom, CategoryTheory.Pseudofunctor.whiskerLeft_mapId_inv_app_assoc, rightUnitor_inv_naturality, CategoryTheory.OplaxFunctor.mapComp_assoc_left_app_assoc, CategoryTheory.Pseudofunctor.CoGrothendieck.instIsEquivalenceΞ±CategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, Adjunction.homEquiv₁_apply, CategoryTheory.StrictPseudofunctorCore.mapβ‚‚_associator, Prod.swap_mapβ‚‚, CategoryTheory.Pseudofunctor.DescentData.isoMk_inv_hom, Mathlib.Tactic.Bicategory.naturality_rightUnitor, Pith.whiskerRight_iso_inv, rightUnitor_inv_congr, CategoryTheory.Pseudofunctor.mapβ‚‚_left_unitor, CategoryTheory.Pseudofunctor.CoGrothendieck.map_map_base, unitors_inv_equal, Adj.forget₁_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map, Pith.leftUnitor_inv_iso_hom, leftZigzagIso_symm, CategoryTheory.StrictPseudofunctor.mk''_mapId, associator_inv_naturality_middle, associator_naturality_right_assoc, CategoryTheory.Pseudofunctor.CoGrothendieck.map_map_fiber, CategoryTheory.Pseudofunctor.StrongTrans.Modification.whiskerLeft_naturality_assoc, hom_inv_whiskerRight_whiskerRight_assoc, CategoryTheory.StrictlyUnitaryLaxFunctor.mapId_isIso, prod_id_fst, triangle_assoc_comp_left, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_hom, associator_inv_naturality_right, LanLift.CommuteWith.lanLiftCompIso_hom, Pseudofunctor.ofOplaxFunctorToLocallyGroupoid_mapCompIso_hom, CategoryTheory.StrictlyUnitaryPseudofunctor.id_mapComp_hom, whiskerLeft_iff, CategoryTheory.FreeBicategory.mk_right_unitor_inv, AlgebraicGeometry.Scheme.Modules.pseudofunctor_map_l, whiskerLeft_comp, CategoryTheory.Pseudofunctor.ObjectProperty.ΞΉ_app_toFunctor, conjugateEquiv_symm_id, CategoryTheory.Oplax.StrongTrans.Modification.whiskerLeft_naturality, CategoryTheory.LaxFunctor.mapComp_naturality_left_app_assoc, conjugateEquiv_apply, prod_whiskerRight_fst, CategoryTheory.Pseudofunctor.DescentData.comp_hom, whiskerRight_comp_symm, Adj.Bicategory.rightUnitor_inv_Ο„l, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_inv, Pith.compβ‚‚_iso_hom_assoc, CategoryTheory.Cat.leftUnitor_hom_app, associator_eqToHom_hom_assoc, whiskerRight_id, CategoryTheory.OplaxFunctor.mapβ‚‚_leftUnitor_app, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_naturality, CategoryTheory.Oplax.LaxTrans.naturality_comp_assoc, CategoryTheory.Oplax.OplaxTrans.categoryStruct_comp_app, CategoryTheory.LaxFunctor.id_mapId, CategoryTheory.StrictPseudofunctor.id_obj, CategoryTheory.Oplax.OplaxTrans.whiskerLeft_naturality_id, CategoryTheory.Oplax.StrongTrans.homCategory_id_as_app, CategoryTheory.Oplax.OplaxTrans.whiskerLeft_naturality_naturality, InducedBicategory.eqToHom_hom, CategoryTheory.Pseudofunctor.Grothendieck.ext_iff, lanLiftUnit_desc_assoc, whiskerLeft_hom_inv, CategoryTheory.Lax.LaxTrans.id_app, CategoryTheory.StrictlyUnitaryLaxFunctor.id_obj, mateEquiv_id_comp_right, leftUnitor_comp_inv, CategoryTheory.Pseudofunctor.mapComp_id_left, CategoryTheory.Iso.unop2_inv, postcomp_obj, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_naturality_app, CategoryTheory.StrictlyUnitaryPseudofunctorCore.mapβ‚‚_whisker_right, CategoryTheory.StrictPseudofunctor.comp_mapComp_hom, leftZigzagIso_hom, CategoryTheory.Pseudofunctor.ObjectProperty.fullsubcategory_mapComp, CategoryTheory.Functor.toOplaxFunctor'_obj, Bicategory.Opposite.bicategory_associator_hom_unop2, CategoryTheory.OplaxFunctor.PseudoCore.mapCompIso_hom, CategoryTheory.StrictPseudofunctor.comp_mapId_hom, Bicategory.Opposite.unop2_id_bop, CategoryTheory.LaxFunctor.mapComp_assoc_right_app, LeftExtension.ofCompId_left_as, CategoryTheory.Oplax.OplaxTrans.associator_hom_as_app, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id, CategoryTheory.Pseudofunctor.toOplax_mapComp, Bicategory.Opposite.unopFunctor_map, CategoryTheory.BicategoricalCoherence.tensorRight_iso, inv_hom_whiskerRight_whiskerRight, Prod.sectR_mapComp_inv, Prod.fst_mapComp_hom, whiskerLeft_whiskerLeft_hom_inv_assoc, id_whiskerLeft_symm, CategoryTheory.Pseudofunctor.isStackFor_ofArrows_iff, CategoryTheory.LaxFunctor.mapβ‚‚_leftUnitor_hom_app, Pith.pseudofunctorToPith_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_of, LeftLift.IsKan.fac_assoc, postcomposing_obj, pentagon_inv_hom_hom_hom_inv, Adj.rightUnitor_inv_Ο„l, Adj.Homβ‚‚.conjugateEquiv_symm_Ο„r, CategoryTheory.LaxFunctor.PseudoCore.mapCompIso_inv, CategoryTheory.Join.pseudofunctorLeft_mapId_hom_toNatTrans_app, CategoryTheory.Pseudofunctor.mapComp_id_right_inv_app_assoc, CategoryTheory.StrictlyUnitaryLaxFunctor.comp_mapId, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_comp_val_app, CategoryTheory.Pseudofunctor.mapβ‚‚_associator_app, CategoryTheory.Cat.rightUnitor_hom_toNatTrans, Prod.snd_mapβ‚‚, CategoryTheory.Lax.OplaxTrans.naturality_comp, leftUnitor_inv_whiskerRight_assoc, whiskerRight_comp_symm_assoc, CategoryTheory.Pseudofunctor.DescentData.iso_hom, CategoryTheory.Oplax.StrongTrans.Modification.whiskerRight_naturality, CategoryTheory.Pseudofunctor.mapComp'_comp_id_inv_app_assoc, CategoryTheory.Oplax.OplaxTrans.whiskerLeft_naturality_naturality_assoc, CategoryTheory.StrictlyUnitaryPseudofunctor.mk'_mapId, CategoryTheory.whiskerLeft_def, CategoryTheory.StrictlyUnitaryPseudofunctor.id_mapId_inv, Adj.rightUnitor_hom_Ο„r, Pith.pseudofunctorToPith_mapId_inv_iso_inv, CategoryTheory.Pseudofunctor.StrongTrans.naturality_naturality, CategoryTheory.Pseudofunctor.mapComp_id_right, Adjunction.comp_counit, LeftExtension.whiskering_map, comp_whiskerRight, CategoryTheory.BicategoricalCoherence.left_iso, CategoryTheory.Oplax.OplaxTrans.whiskerRight_naturality_naturality, Bicategory.Opposite.bicategory_leftUnitor_hom_unop2, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_id_app, comp_whiskerLeft_symm, Bicategory.Opposite.op2_whiskerRight, inv_whiskerRight, CategoryTheory.StrictlyUnitaryPseudofunctor.id_mapComp_inv, Pith.idβ‚‚_iso_inv, mateEquiv_symm_apply', CategoryTheory.Oplax.LaxTrans.naturality_naturality, CategoryTheory.Pseudofunctor.mapComp'_comp_id, CategoryTheory.Oplax.StrongTrans.naturality_comp, CategoryTheory.OplaxFunctor.mapβ‚‚_leftUnitor_assoc, CategoryTheory.Functor.toPseudoFunctor'_map, conjugateEquiv_id_comp_right_apply, CategoryTheory.Oplax.OplaxTrans.associator_inv_as_app, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_comp_app, CategoryTheory.Pseudofunctor.presheafHom_obj, Adjunction.homEquivβ‚‚_apply, CategoryTheory.Oplax.StrongTrans.naturality_id_assoc, CategoryTheory.StrictlyUnitaryLaxFunctorCore.mapComp_naturality_right, Adj.forget₁_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj, CategoryTheory.Pseudofunctor.mapComp_assoc_right_inv_app, CategoryTheory.Oplax.LaxTrans.naturality_id, CategoryTheory.whiskerRight_def, CategoryTheory.StrictlyUnitaryPseudofunctorCore.mapβ‚‚_left_unitor, CategoryTheory.Pseudofunctor.toLax_mapComp, CategoryTheory.Pseudofunctor.isoMapOfCommSq_horiz_id, CategoryTheory.Oplax.OplaxTrans.naturality_comp, CategoryTheory.Join.pseudofunctorLeft_mapComp_hom_toNatTrans_app, CategoryTheory.Lax.LaxTrans.naturality_comp, CategoryTheory.Pseudofunctor.DescentData.iso_inv, InducedBicategory.bicategory_whiskerRight_hom, CategoryTheory.Oplax.OplaxTrans.whiskerRight_naturality_naturality_assoc, CategoryTheory.Oplax.StrongTrans.id_naturality_inv, CategoryTheory.OplaxFunctor.mapComp_assoc_left_app, CategoryTheory.Lax.OplaxTrans.vComp_naturality_comp, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_inv_assoc, CategoryTheory.Oplax.LaxTrans.id_app, CategoryTheory.Oplax.OplaxTrans.OplaxFunctor.bicategory_leftUnitor_inv_as_app, CategoryTheory.Pseudofunctor.mapβ‚‚_right_unitor_assoc, Prod.sectL_mapComp_hom, associator_inv_naturality_left, CategoryTheory.Pseudofunctor.CoGrothendieck.instFullΞ±CategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_naturality_app, leftUnitor_inv_naturality, whiskerLeft_whiskerLeft_inv_hom, CategoryTheory.Pseudofunctor.DescentData.nonempty_fullyFaithful_toDescentData_iff_of_sieve_eq, unitors_equal, CategoryTheory.Oplax.OplaxTrans.Modification.whiskerLeft_naturality_assoc, CategoryTheory.Cat.associator_inv_app, associator_naturality_right, whiskerRightIso_inv, precomposing_map_app, Prod.sectL_obj, CategoryTheory.Cat.Hom.comp_toFunctor, CategoryTheory.Cat.rightUnitor_hom_app, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_hom_app_assoc, CategoryTheory.Oplax.LaxTrans.id_naturality, CategoryTheory.Pseudofunctor.ObjectProperty.ΞΉ_naturality, CategoryTheory.Oplax.OplaxTrans.whiskerRight_naturality_id, CategoryTheory.Pseudofunctor.mapComp_id_right_hom, conjugateEquiv_symm_of_iso, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_comp, CategoryTheory.Oplax.StrongTrans.Modification.naturality_assoc, CategoryTheory.LaxFunctor.mapComp_naturality_right_app_assoc, CategoryTheory.Oplax.OplaxTrans.OplaxFunctor.bicategory_associator_hom_as_app, CategoryTheory.Lax.LaxTrans.vComp_naturality_naturality, prod_whiskerRight_snd, CategoryTheory.StrictlyUnitaryPseudofunctor.toStrictlyUnitaryLaxFunctor_mapβ‚‚, Adj.Bicategory.rightUnitor_hom_Ο„r, CategoryTheory.StrictPseudofunctor.comp_mapId_inv, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_obj_val_obj, Adj.id_Ο„l, Adj.comp_Ο„l, CategoryTheory.Pseudofunctor.ObjectProperty.mapId_inv_app, CategoryTheory.PrelaxFunctor.mkOfHomFunctors_toPrelaxFunctorStruct, Comonad.comul_assoc_flip_assoc, CategoryTheory.OplaxFunctor.mapβ‚‚_associator_app_assoc, CategoryTheory.StrictPseudofunctor.mk'_mapComp, CategoryTheory.Pseudofunctor.mapComp_id_left_hom_app_assoc, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp, CategoryTheory.LaxFunctor.mapβ‚‚_associator_app_assoc, conjugateEquiv_comp_id_right_apply, CategoryTheory.Pseudofunctor.ObjectProperty.fullsubcategory_toPrelaxFunctor_toPrelaxFunctorStruct_mapβ‚‚_toNatTrans, CategoryTheory.Lax.LaxTrans.id_naturality, CategoryTheory.Oplax.OplaxTrans.whiskerLeft_naturality_comp_assoc, whiskerLeft_rightUnitor_assoc, leftUnitor_inv_whiskerRight, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_naturality_assoc, CategoryTheory.StrictlyUnitaryPseudofunctorCore.mapβ‚‚_associator, CategoryTheory.pseudofunctorOfIsLocallyDiscrete_obj, CategoryTheory.Functor.toOplaxFunctor_obj, instIsIsoHomLeftZigzagHom, Prod.fst_mapβ‚‚, Equivalence.right_triangle, CategoryTheory.Functor.toPseudoFunctor_mapComp, CategoryTheory.StrictlyUnitaryPseudofunctor.comp_obj, CategoryTheory.Oplax.OplaxTrans.categoryStruct_id_app, InducedBicategory.forget_map, CategoryTheory.Pseudofunctor.DescentData.instIsIsoΞ±CategoryObjLocallyDiscreteOppositeCatMkOpHom, associator_eqToHom_inv, Equivalence.left_triangle, CategoryTheory.Pseudofunctor.whiskerLeft_mapId_inv_app, CategoryTheory.StrictlyUnitaryLaxFunctorCore.map_id, CategoryTheory.LaxFunctor.mapβ‚‚_leftUnitor_hom_app_assoc, CategoryTheory.OplaxFunctor.mapId'_eq_mapId, CategoryTheory.PrelaxFunctor.mapβ‚‚_eqToHom, Mathlib.Tactic.Bicategory.naturality_associator, Lan.CommuteWith.lanCompIso_inv, LanLift.existsUnique, CategoryTheory.Oplax.OplaxTrans.categoryStruct_comp_naturality, CategoryTheory.Iso.op2_hom_unop2, Bicategory.Opposite.bicategory_leftUnitor_inv_unop2, Prod.sectR_mapId_inv, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_naturality, CategoryTheory.Adjunction.toCat_counit_toNatTrans, CategoryTheory.PrelaxFunctor.mapβ‚‚_hom_inv, CategoryTheory.StrictlyUnitaryLaxFunctor.id_mapComp, CategoryTheory.OplaxFunctor.mapComp_assoc_right_app, CategoryTheory.Pseudofunctor.CoGrothendieck.ΞΉ_map_base, CategoryTheory.Pseudofunctor.StrongTrans.Modification.naturality, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_comp_app, CommRingCat.moduleCatRestrictScalarsPseudofunctor_map, InducedBicategory.bicategory_comp_hom, pentagon_inv_inv_hom_hom_inv, CategoryTheory.Pseudofunctor.StrongTrans.homCategory_id_as_app, CategoryTheory.Pseudofunctor.isPrestackFor_ofArrows_iff, CategoryTheory.Pseudofunctor.mapComp_assoc_right_hom_assoc, CategoryTheory.FreeBicategory.mk_left_unitor_hom, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_inv_app_assoc, Adjunction.ofCat_id, CategoryTheory.Join.pseudofunctorLeft_mapComp_inv_toNatTrans_app, CategoryTheory.Pseudofunctor.CoGrothendieck.map_obj_fiber, Adjunction.ofCat_comp, Pseudofunctor.ofLaxFunctorToLocallyGroupoid_mapIdIso_inv, CategoryTheory.oplaxFunctorOfIsLocallyDiscrete_map, CategoryTheory.Pseudofunctor.whiskerLeftIso_mapId, Lan.CommuteWith.lanCompIsoWhisker_hom_right, Prod.swap_map, CategoryTheory.Pseudofunctor.ObjectProperty.mapComp_hom_app, Pith.rightUnitor_hom_iso, CategoryTheory.Oplax.OplaxTrans.whiskerLeft_naturality_id_assoc, Comonad.counit_comul_assoc, CategoryTheory.OplaxFunctor.mapComp_assoc_left, Bicategory.Opposite.op2_rightUnitor_inv, CategoryTheory.LaxFunctor.mapβ‚‚_rightUnitor_hom_app, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_comp_assoc, CategoryTheory.Pseudofunctor.id_mapId, CategoryTheory.Pseudofunctor.DescentData.Hom.comm_assoc, CategoryTheory.BicategoricalCoherence.right'_iso, CategoryTheory.Lax.LaxTrans.naturality_comp_assoc, pentagon_assoc, CategoryTheory.WithInitial.prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_obj, Adj.id_Ο„r, CategoryTheory.Oplax.StrongTrans.Modification.id_app, prod_rightUnitor_inv_fst, CategoryTheory.LaxFunctor.mapComp'_eq_mapComp, CategoryTheory.Pseudofunctor.mapComp_id_left_inv_app_assoc, CategoryTheory.Oplax.LaxTrans.naturality_comp, Adj.Bicategory.leftUnitor_hom_Ο„l, CategoryTheory.WithInitial.prelaxfunctor_toPrelaxFunctorStruct_mapβ‚‚, CategoryTheory.Functor.toPseudoFunctor_map, whiskerLeft_isIso, CategoryTheory.Oplax.StrongTrans.isoMk_hom_as_app, conjugateIsoEquiv_apply_inv, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_id_app, CategoryTheory.PrelaxFunctor.mapβ‚‚_inv_hom_isIso, CategoryTheory.Pseudofunctor.Grothendieck.categoryStruct_id_fiber, eqToHomTransIso_refl_right, CategoryTheory.Pseudofunctor.ObjectProperty.map_map_hom, CategoryTheory.Pseudofunctor.mapComp_id_left_inv_assoc, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_naturality_app, pentagon_inv_inv_hom_inv_inv, CategoryTheory.PrelaxFunctor.mapβ‚‚_inv_hom_isIso_assoc, whiskerRight_iff, CategoryTheory.Pseudofunctor.CoGrothendieck.Hom.congr, CategoryTheory.Pseudofunctor.mapComp'_id_comp_inv_app_assoc, CategoryTheory.Lax.LaxTrans.naturality_id_assoc, CategoryTheory.LaxFunctor.mapComp_naturality_right_assoc, CategoryTheory.FreeBicategory.preinclusion_mapβ‚‚, Pith.pseudofunctorToPith_mapComp_inv_iso_inv, prod_whiskerLeft_fst, CategoryTheory.Oplax.OplaxTrans.rightUnitor_hom_as_app, CategoryTheory.OplaxFunctor.mapβ‚‚_associator_assoc, precomp_obj, rightAdjointSquare.comp_hvcomp, CategoryTheory.Pseudofunctor.mapβ‚‚_whisker_left, CategoryTheory.Pseudofunctor.StrongTrans.isoMk_hom_as_app, adjointifyCounit_left_triangle, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapComp_hom_Ο„l, CategoryTheory.rightUnitor_def, CategoryTheory.Lax.StrongTrans.toLax_naturality, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_id, CategoryTheory.Pseudofunctor.toOplax_mapId, prod_associator_inv_fst, whiskerLeft_rightUnitor_inv, CategoryTheory.PrelaxFunctor.mapβ‚‚_hom_inv_assoc, Mathlib.Tactic.Bicategory.evalWhiskerLeft_of_cons, CategoryTheory.StrictlyUnitaryLaxFunctor.mapId_eq_eqToHom, CategoryTheory.Join.pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_id, CategoryTheory.OplaxFunctor.mapComp_naturality_left_app, InducedBicategory.bicategory_Hom, CategoryTheory.StrictlyUnitaryLaxFunctor.map_id, CategoryTheory.Pseudofunctor.StrongTrans.Modification.whiskerLeft_naturality, CategoryTheory.BicategoricalCoherence.tensorRight'_iso, CategoryTheory.oplaxFunctorOfIsLocallyDiscrete_obj, prod_Hom, Pith.whiskerRight_iso_hom, comp_whiskerRight_assoc, CategoryTheory.tensorHom_def, CategoryTheory.Pseudofunctor.whiskerLeft_mapId_inv, hom_inv_whiskerRight_whiskerRight, Pith.rightUnitor_inv_iso_inv, LeftExtension.whiskerIdCancel_right, prod_rightUnitor_inv_snd, Pith.associator_hom_iso, Strict.id_comp, CategoryTheory.Cat.Hom.comp_map, CategoryTheory.Pseudofunctor.mapComp_id_right_hom_assoc, CategoryTheory.Lax.LaxTrans.naturality_id, CategoryTheory.Pseudofunctor.DescentData.ofObj_obj, CategoryTheory.Lax.StrongTrans.naturality_comp_assoc, associator_naturality_left_assoc, CategoryTheory.StrictPseudofunctorCore.mapβ‚‚_right_unitor, CategoryTheory.Oplax.OplaxTrans.OplaxFunctor.bicategory_rightUnitor_inv_as_app, prod_leftUnitor_inv_fst, triangle_assoc_comp_right_inv_assoc, CategoryTheory.LaxFunctor.mapβ‚‚_rightUnitor_hom_app_assoc, hom_inv_whiskerRight, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_hom_app, prod_rightUnitor_hom_fst, Adjunction.left_triangle, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_id_val_app, CategoryTheory.Pseudofunctor.CoGrothendieck.ext_iff, CategoryTheory.Lax.OplaxTrans.naturality_naturality, Prod.fst_mapId_hom, triangle_assoc_comp_right_inv, associator_naturality_middle, prod_id_snd, CategoryTheory.Pseudofunctor.DescentData.hom_comp_assoc, CategoryTheory.Pseudofunctor.Grothendieck.map_obj_fiber, CategoryTheory.Oplax.LaxTrans.vComp_naturality_comp, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_comp_assoc, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_comp, prod_leftUnitor_inv_snd, CategoryTheory.Pseudofunctor.mapComp_assoc_left_hom_app_assoc, CategoryTheory.StrictPseudofunctor.comp_map, Adj.Bicategory.rightUnitor_hom_Ο„l, LeftExtension.IsKan.fac_assoc, leftUnitorNatIso_hom_app, CategoryTheory.Pseudofunctor.CoGrothendieck.ΞΉ_obj_fiber, CategoryTheory.Iso.unop2_op_inv, Strict.assoc, CategoryTheory.PrelaxFunctor.mapβ‚‚_inv, CategoryTheory.StrictPseudofunctorPreCore.map_comp, Adj.Bicategory.leftUnitor_inv_Ο„l, CategoryTheory.StrictPseudofunctor.mk''_map, CategoryTheory.Oplax.StrongTrans.naturality_naturality_assoc, CategoryTheory.Pseudofunctor.isStackFor_iff, Bicategory.Opposite.opFunctor_obj, Prod.sectL_mapId_hom, CategoryTheory.Pseudofunctor.StrongTrans.categoryStruct_id_naturality_hom, InducedBicategory.bicategory_rightUnitor_hom_hom, CategoryTheory.Pseudofunctor.isoMapOfCommSq_vert_id, LeftExtension.IsKan.uniqueUpToIso_hom_right, CommRingCat.moduleCatExtendScalarsPseudofunctor_map, Pith.whiskerLeft_iso_hom, CategoryTheory.Pseudofunctor.bijective_toDescentData_map_iff, mateEquiv_symm_apply, CategoryTheory.Pseudofunctor.mapβ‚‚_whisker_left_assoc, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapComp_hom_Ο„r, Strict.rightUnitor_eqToIso, Bicategory.Opposite.bicategory_whiskerRight_unop2, leftUnitor_whiskerRight, Bicategory.Opposite.homCategory_comp_unop2, CategoryTheory.Join.pseudofunctorRight_mapId_hom_toNatTrans_app, CategoryTheory.Pseudofunctor.CoGrothendieck.ΞΉ_map_fiber, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_comp_assoc, CategoryTheory.StrictPseudofunctor.toFunctor_obj, CategoryTheory.Oplax.StrongTrans.naturality_id, CategoryTheory.Pseudofunctor.mapComp'_id_comp_inv_assoc, associator_eqToHom_inv_assoc, CategoryTheory.StrictPseudofunctor.map_comp, CategoryTheory.associator_def, CategoryTheory.Functor.toOplaxFunctor'_map, HasLeftKanLift.hasInitial, prod_leftUnitor_hom_snd, Lan.CommuteWith.instHasLeftKanExtensionComp, CategoryTheory.Pseudofunctor.mapComp_id_left_hom_assoc, CategoryTheory.Pseudofunctor.mapComp_id_right_inv_assoc, CategoryTheory.OplaxFunctor.mapComp_assoc_right_app_assoc, CategoryTheory.StrictlyUnitaryPseudofunctor.mapId_eq_eqToIso, CategoryTheory.Pseudofunctor.mapComp_assoc_right_inv_assoc, CategoryTheory.StrictlyUnitaryPseudofunctor.id_obj, whiskerLeft_inv_hom_whiskerRight_assoc, CategoryTheory.Pseudofunctor.StrongTrans.isoMk_inv_as_app, whisker_exchange_assoc, CategoryTheory.Oplax.OplaxTrans.OplaxFunctor.bicategory_rightUnitor_hom_as_app, InducedBicategory.bicategory_rightUnitor_inv_hom, CategoryTheory.Pseudofunctor.mapComp'_comp_id_inv, pentagon, CategoryTheory.Oplax.OplaxTrans.homCategory_comp_as_app, Prod.snd_obj, rightUnitor_naturality_assoc, CategoryTheory.Lax.OplaxTrans.vComp_naturality_naturality, CategoryTheory.OplaxFunctor.mapβ‚‚_rightUnitor_assoc, CategoryTheory.Pseudofunctor.StrongTrans.naturality_naturality_hom, CategoryTheory.StrictlyUnitaryPseudofunctorCore.mapβ‚‚_id, CategoryTheory.LocallyDiscrete.mkPseudofunctor_map, CategoryTheory.Lax.LaxTrans.vComp_naturality_id, CategoryTheory.Oplax.OplaxTrans.Modification.naturality_assoc, CategoryTheory.Lax.OplaxTrans.id_naturality, Lan.CommuteWith.lanCompIsoWhisker_inv_right, CategoryTheory.Pseudofunctor.DescentData.pullFunctorObj_obj, CategoryTheory.PrelaxFunctor.mapFunctor_map, whiskerRight_congr, CategoryTheory.Oplax.StrongTrans.categoryStruct_comp_naturality, Bicategory.Opposite.op2_rightUnitor, CategoryTheory.Pseudofunctor.mapComp_assoc_left_inv_assoc, LeftLift.whisker_unit, CategoryTheory.Oplax.OplaxTrans.naturality_id_assoc, prod_homCategory_id_fst, CategoryTheory.OplaxFunctor.mapβ‚‚_leftUnitor, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_id_assoc, conjugateEquiv_symm_comp, pentagon_hom_hom_inv_inv_hom_assoc, CategoryTheory.StrictPseudofunctor.mk'_map, mateEquiv_hcomp, CategoryTheory.StrictlyUnitaryLaxFunctor.mk'_obj, CategoryTheory.Lax.LaxTrans.naturality_naturality, Adj.leftUnitor_inv_Ο„l, CommRingCat.moduleCatExtendScalarsPseudofunctor_obj, Bicategory.Opposite.op2_rightUnitor_hom, whiskerLeft_eqToHom, CategoryTheory.Oplax.OplaxTrans.whiskerLeft_naturality_comp, Pith.idβ‚‚_iso_hom, associator_hom_congr, Mathlib.Tactic.Bicategory.naturality_leftUnitor, Bicategory.Opposite.unopFunctor_obj, pentagon_inv_inv_hom_inv_inv_assoc, CategoryTheory.Functor.toOplaxFunctor_mapComp, CategoryTheory.LaxFunctor.mapβ‚‚_rightUnitor_hom_assoc, Comonad.comul_assoc, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_hom, comp_whiskerLeft, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_inv_app, CategoryTheory.OplaxFunctor.mapComp_naturality_left, CategoryTheory.Lax.StrongTrans.naturality_id, LeftLift.whiskerHom_right, prod_associator_hom_fst, LeftExtension.ofCompId_hom, CategoryTheory.Oplax.OplaxTrans.OplaxFunctor.bicategory_leftUnitor_hom_as_app, CategoryTheory.Pseudofunctor.mapComp_assoc_left_inv, prod_homCategory_comp_fst, CategoryTheory.Lax.StrongTrans.categoryStruct_id_naturality, CategoryTheory.StrictlyUnitaryLaxFunctor.id_map, CategoryTheory.Pseudofunctor.mapComp_id_left_inv, CategoryTheory.WithInitial.pseudofunctor_mapId, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapId_hom_Ο„r, CategoryTheory.Join.pseudofunctorRight_mapId_inv_toNatTrans_app, CategoryTheory.StrictlyUnitaryPseudofunctorCore.mapβ‚‚_whisker_left, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_iso, Comonad.counit_def, RingCat.moduleCatRestrictScalarsPseudofunctor_map, CategoryTheory.LaxFunctor.mapβ‚‚_associator, associator_inv_naturality_left_assoc, CategoryTheory.OplaxFunctor.mapComp_id_right_assoc, whiskerLeftIso_inv, CategoryTheory.StrictlyUnitaryPseudofunctor.toStrictlyUnitaryLaxFunctor_mapId, CategoryTheory.Oplax.StrongTrans.naturality_comp_assoc, CategoryTheory.StrictlyUnitaryPseudofunctor.comp_mapComp_hom, CategoryTheory.tensorObj_def, CategoryTheory.Iso.unop2_hom, CategoryTheory.OplaxFunctor.mapComp_assoc_right, mateEquiv_eq_iff, LeftLift.ofIdComp_right, CategoryTheory.OplaxFunctor.mapComp_assoc_left_assoc, InducedBicategory.forget_mapId_inv, CategoryTheory.Pseudofunctor.ObjectProperty.IsClosedUnderMapObj.map_obj, postcomposing_map_app, Bicategory.Opposite.op2_comp, pentagon_inv_assoc, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_assoc, CategoryTheory.Pseudofunctor.StrongTrans.Modification.id_app, CategoryTheory.Oplax.OplaxTrans.whiskerRight_naturality_id_assoc, whiskerRight_comp, rightUnitorNatIso_inv_app, CategoryTheory.Pseudofunctor.StrongTrans.associator_inv_as_app, Bicategory.Opposite.op2_leftUnitor_hom, Comonad.comul_counit_assoc, congr_whiskerLeft, CategoryTheory.Pseudofunctor.toLax_mapId, CategoryTheory.Pseudofunctor.mapComp'_id_comp_inv, CategoryTheory.Cat.comp_eq_comp, CategoryTheory.Oplax.OplaxTrans.isoMk_hom_as_app, CategoryTheory.Cat.leftUnitor_hom_toNatTrans, pentagon_inv_hom_hom_hom_hom_assoc, whiskerLeft_inv_hom_whiskerRight, CategoryTheory.Pseudofunctor.mapComp'_comp_id_hom_app_assoc, Adj.comp_Ο„r_assoc, whisker_assoc_assoc, associator_eqToHom_hom, whisker_assoc_symm, CategoryTheory.Lax.StrongTrans.naturality_naturality_assoc, Prod.sectL_mapComp_inv, CategoryTheory.Oplax.OplaxTrans.whiskerRight_naturality_comp, AlgebraicGeometry.Scheme.Modules.pseudofunctor_obj_obj, id_whiskerLeft_assoc, LeftLift.IsKan.fac, Pith.id_of, Lan.CommuteWith.commute, InducedBicategory.forget_mapComp_inv, Bicategory.Opposite.op2_id, CategoryTheory.Pseudofunctor.IsStack.essSurj_of_sieve, toNatTrans_mateEquiv, CategoryTheory.Iso.unop2_op_hom, CategoryTheory.OplaxFunctor.mapβ‚‚_rightUnitor, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_inv_app_assoc, CategoryTheory.Pseudofunctor.mapComp_assoc_right_hom_app, CategoryTheory.StrictlyUnitaryLaxFunctorCore.mapComp_naturality_left, CategoryTheory.Cat.associator_inv_toNatTrans, CategoryTheory.WithTerminal.prelaxfunctor_toPrelaxFunctorStruct_mapβ‚‚, CategoryTheory.Join.pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_comp, Mathlib.Tactic.Bicategory.naturality_id, CategoryTheory.Cat.leftUnitor_inv_toNatTrans, CategoryTheory.Pseudofunctor.mapβ‚‚_left_unitor_app, CategoryTheory.Pseudofunctor.mapId'_eq_mapId, associator_inv_naturality_right_assoc, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_comp, CategoryTheory.StrictPseudofunctor.toFunctor_map, Prod.snd_mapId_hom, hom_inv_whiskerRight_assoc, triangle, CategoryTheory.Pseudofunctor.StrongTrans.leftUnitor_hom_as_app, CategoryTheory.StrictlyUnitaryPseudofunctor.comp_mapId_hom, CategoryTheory.Pseudofunctor.ObjectProperty.mapId_hom_app, CategoryTheory.LaxFunctor.mapβ‚‚_leftUnitor_hom_assoc, Prod.sectR_mapβ‚‚, CategoryTheory.StrictPseudofunctorPreCore.mapβ‚‚_whisker_right, Pseudofunctor.ofOplaxFunctorToLocallyGroupoid_mapIdIso_inv, CategoryTheory.PrelaxFunctor.id_toPrelaxFunctorStruct, CategoryTheory.FreeBicategory.normalize_naturality, Adj.rIso_hom, CategoryTheory.Pseudofunctor.whiskerLeft_mapId_hom, CategoryTheory.StrictPseudofunctor.id_mapβ‚‚, Prod.sectL_map, CategoryTheory.Pseudofunctor.whiskerLeft_mapId_hom_app, conjugateIsoEquiv_apply_hom, id_whiskerRight, conjugateIsoEquiv_symm_apply_hom, CategoryTheory.Iso.op2_unop_inv_unop2, Pith.homβ‚‚_ext_iff, CategoryTheory.Lax.StrongTrans.naturality_id_assoc, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_id_assoc, iterated_mateEquiv_conjugateEquiv_symm, Adj.rightUnitor_inv_Ο„r, CategoryTheory.Oplax.OplaxTrans.naturality_id, rightUnitor_comp, whiskerRight_id_symm, whiskerLeft_whiskerLeft_hom_inv, CategoryTheory.StrictlyUnitaryPseudofunctor.mk'_obj, CategoryTheory.OplaxFunctor.mapComp_id_right, triangle_assoc_comp_right, CategoryTheory.Pseudofunctor.toDescentData_obj, CategoryTheory.Cat.Hom.toNatIso_leftUnitor, comp_whiskerLeft_assoc, InducedBicategory.forget_mapComp_hom, CategoryTheory.Pseudofunctor.mapComp_id_right_inv, CategoryTheory.StrictlyUnitaryPseudofunctor.id_mapβ‚‚, LeftLift.whisker_lift, whiskerLeft_inv_hom_assoc, associatorNatIsoMiddle_hom_app, instHasInitialLeftExtensionOfHasLeftKanExtension, CategoryTheory.Pseudofunctor.mapβ‚‚_whisker_right_app_assoc, mateEquiv_square, CategoryTheory.Pseudofunctor.StrongTrans.Modification.naturality_assoc, LeftExtension.IsKan.uniqueUpToIso_inv_right, CategoryTheory.Lax.LaxTrans.naturality_naturality_assoc, Adj.forget₁_toPrelaxFunctor_toPrelaxFunctorStruct_mapβ‚‚, rightUnitor_naturality, CategoryTheory.StrictlyUnitaryPseudofunctor.id_map, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_map_val_app, whiskerLeft_comp_assoc, CategoryTheory.Pseudofunctor.StrongTrans.naturality_naturality_iso, Pith.whiskerLeft_iso_inv, rightZigzagIso_symm, CategoryTheory.Join.pseudofunctorRight_mapComp_hom_toNatTrans_app, Pseudofunctor.ofLaxFunctorToLocallyGroupoid_mapIdIso_hom, CategoryTheory.LaxFunctor.mapβ‚‚_rightUnitor_assoc, CategoryTheory.Lax.StrongTrans.naturality_comp, whiskerLeftIso_hom, CategoryTheory.Lax.OplaxTrans.naturality_id_assoc, Mathlib.Tactic.Bicategory.structuralIso_inv, CategoryTheory.Functor.toOplaxFunctor_map, CategoryTheory.Pseudofunctor.mapβ‚‚_whisker_right, whiskerRight_id_assoc, Prod.sectR_obj, CategoryTheory.Pseudofunctor.presheafHomObjHomEquiv_apply, whisker_assoc_symm_assoc, CategoryTheory.Cat.Hom.toNatIso_rightUnitor, conjugateEquiv_apply', mateEquiv_conjugateEquiv_vcomp, CategoryTheory.OplaxFunctor.mapComp_assoc_right_assoc, Adj.Bicategory.leftUnitor_hom_Ο„r, CategoryTheory.Cat.Hom.id_obj, CategoryTheory.Pseudofunctor.StrongTrans.rightUnitor_inv_as_app, CategoryTheory.Pseudofunctor.mapComp_assoc_right_inv_app_assoc, CategoryTheory.Iso.op2_unop_hom_unop2, CategoryTheory.FreeBicategory.mk_associator_hom, Lan.CommuteWith.lanCompIso_hom, CategoryTheory.LaxFunctor.mapβ‚‚_leftUnitor, CategoryTheory.Pseudofunctor.StrongTrans.categoryStruct_id_naturality_inv, CategoryTheory.LaxFunctor.mapComp_assoc_left_app, conjugateEquiv_adjunction_id, CategoryTheory.Cat.rightUnitor_inv_app, CategoryTheory.Pseudofunctor.mapComp'_id_comp_hom_app_assoc, CategoryTheory.Pseudofunctor.Grothendieck.Hom.ext_iff, Prod.snd_mapId_inv, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_as_app, InducedBicategory.bicategory_homCategory_comp_hom, CategoryTheory.Oplax.OplaxTrans.whiskerLeft_as_app, CategoryTheory.Lax.StrongTrans.naturality_naturality, precomposing_obj, CategoryTheory.Cat.rightUnitor_inv_toNatTrans, pentagon_hom_inv_inv_inv_hom_assoc, CategoryTheory.Functor.toPseudoFunctor_mapId, CategoryTheory.Oplax.OplaxTrans.naturality_naturality, conjugateEquiv_of_iso, CategoryTheory.Pseudofunctor.isPrestackFor_iff, CategoryTheory.Pseudofunctor.mapComp'_comp_id_inv_assoc, CategoryTheory.bicategoricalComp_refl, LeftLift.ofIdComp_hom, rightZigzagIso_inv, prod_comp_fst, CategoryTheory.Pseudofunctor.StrongTrans.associator_hom_as_app, CategoryTheory.Pseudofunctor.mapβ‚‚_right_unitor, CategoryTheory.Lax.LaxTrans.StrongCore.naturality_hom, CategoryTheory.tensorUnit_def, Pith.associator_inv_iso_inv, rightUnitor_comp_inv, CategoryTheory.Pseudofunctor.IsStackFor.isEquivalence, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_inv_app, CategoryTheory.Adjunction.toCat_unit_toNatTrans, CategoryTheory.BicategoricalCoherence.whiskerRight_iso, whiskerLeft_hom_inv_assoc, CategoryTheory.Pseudofunctor.StrongTrans.categoryStruct_comp_naturality_inv, LeftLift.whiskerOfIdCompIsoSelf_hom_right, CategoryTheory.Pseudofunctor.CoGrothendieck.instEssSurjΞ±CategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, Adj.id_l, Mathlib.Tactic.Bicategory.evalWhiskerRight_nil, CategoryTheory.Pseudofunctor.whiskerRight_mapId_hom_app_assoc, CategoryTheory.Pseudofunctor.mapComp'_eq_mapComp, CategoryTheory.Cat.Hom.comp_obj, RingCat.moduleCatRestrictScalarsPseudofunctor_obj, CategoryTheory.pseudofunctorOfIsLocallyDiscrete_map, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_comp_app, HasLeftKanExtension.hasInitial, CategoryTheory.Pseudofunctor.Grothendieck.Hom.congr, CategoryTheory.PrelaxFunctor.mapβ‚‚_comp, Bicategory.Opposite.unop2_comp, CategoryTheory.OplaxFunctor.mapComp_naturality_left_assoc, CategoryTheory.StrictlyUnitaryLaxFunctor.mk'_mapβ‚‚, CategoryTheory.PrelaxFunctor.mapFunctor_obj, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_obj_val_map, CategoryTheory.Pseudofunctor.Grothendieck.map_map_fiber, Pith.pseudofunctorToPith_toPrelaxFunctor_toPrelaxFunctorStruct_mapβ‚‚_iso_hom, CategoryTheory.Pseudofunctor.StrongTrans.rightUnitor_hom_as_app, CategoryTheory.Pseudofunctor.mapβ‚‚_whisker_left_app_assoc, CategoryTheory.Join.pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_Ξ±, lanUnit_desc, CategoryTheory.StrictPseudofunctor.comp_mapComp_inv, whiskerLeft_id, pentagon_hom_inv_inv_inv_inv_assoc, CategoryTheory.Lax.StrongTrans.vComp_naturality_inv, Mathlib.Tactic.Bicategory.eval_of, CategoryTheory.LaxFunctor.mapComp_assoc_right_assoc, CategoryTheory.Oplax.StrongTrans.vcomp_naturality_hom, CategoryTheory.Pseudofunctor.CoGrothendieck.ΞΉ_obj_base, CategoryTheory.Lax.StrongTrans.id_naturality_inv, CategoryTheory.Pseudofunctor.mapComp_id_right_inv_app, CategoryTheory.Oplax.OplaxTrans.naturality_naturality_assoc, CategoryTheory.Pseudofunctor.mapComp_id_left_hom_app, InducedBicategory.forget_obj, Adj.Bicategory.associator_inv_Ο„l, CategoryTheory.Pseudofunctor.StrongTrans.naturality_naturality_hom_app_assoc, CategoryTheory.StrictPseudofunctor.id_map, CategoryTheory.Pseudofunctor.toDescentData_map_hom, CategoryTheory.Pseudofunctor.mapβ‚‚_associator, conjugateEquiv_associator_hom, Prod.swap_obj, CategoryTheory.PrelaxFunctor.mapβ‚‚_hom_inv_isIso, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_hom_assoc, Pith.inclusion_mapId, CategoryTheory.Oplax.OplaxTrans.Modification.whiskerRight_naturality_assoc, CategoryTheory.Pseudofunctor.ObjectProperty.IsClosedUnderIsomorphisms.isClosedUnderIsomorphisms, Strict.comp_id, CategoryTheory.StrictPseudofunctor.id_mapId_hom, Bicategory.Opposite.op2_leftUnitor_inv, InducedBicategory.Hom.category_comp_hom, Prod.fst_map, Adj.id_r, CategoryTheory.Pseudofunctor.whiskerLeft_mapId_hom_app_assoc, Adj.Homβ‚‚.conjugateEquiv_Ο„l, Pith.pseudofunctorToPith_toPrelaxFunctor_toPrelaxFunctorStruct_mapβ‚‚_iso_inv, Pseudofunctor.ofOplaxFunctorToLocallyGroupoid_mapCompIso_inv, eqToHom_whiskerRight, Adj.associator_inv_Ο„l, prod_comp_snd, CategoryTheory.Pseudofunctor.DescentData.pullFunctorObjHom_eq_assoc, CategoryTheory.Oplax.OplaxTrans.rightUnitor_inv_as_app, CategoryTheory.LaxFunctor.mapβ‚‚_rightUnitor_app_assoc, leftAdjointSquare.comp_vhcomp, Pith.compβ‚‚_iso_hom, lanLiftUnit_desc, leftUnitor_naturality_assoc, conjugateEquiv_id, CategoryTheory.Lax.StrongTrans.id_naturality_hom, CategoryTheory.StrictlyUnitaryLaxFunctor.mk'_map, whisker_assoc, CategoryTheory.Lax.OplaxTrans.naturality_id, Adj.comp_Ο„r, CategoryTheory.Join.pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_mapβ‚‚_toNatTrans_app, CategoryTheory.OplaxFunctor.PseudoCore.mapIdIso_hom, conjugateEquiv_symm_iso, InducedBicategory.isoMk_inv_hom, Prod.sectR_mapComp_hom, CategoryTheory.StrictPseudofunctor.mapComp_eq_eqToIso, CategoryTheory.StrictlyUnitaryPseudofunctor.comp_map, CategoryTheory.PrelaxFunctor.mapβ‚‚_comp_assoc, CategoryTheory.LaxFunctor.mapComp_naturality_right, Bicategory.Opposite.unop2_op2, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_as_app, CategoryTheory.StrictPseudofunctorPreCore.mapβ‚‚_whisker_left, associatorNatIsoRight_hom_app, Adj.lIso_inv, instIsIsoHomRightZigzagHom, CategoryTheory.WithTerminal.pseudofunctor_mapId, associator_inv_congr, inv_whiskerLeft, CategoryTheory.Pseudofunctor.StrongTrans.categoryStruct_id_app, CategoryTheory.Pseudofunctor.IsStackFor.essSurj, CategoryTheory.Pseudofunctor.id_mapComp, CategoryTheory.StrictPseudofunctor.mk'_mapβ‚‚, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_Ξ±, CategoryTheory.Functor.toPseudoFunctor'_mapId, CategoryTheory.WithInitial.prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_map, CategoryTheory.Iso.op2_inv_unop2, Bicategory.Opposite.op2_leftUnitor, CategoryTheory.PrelaxFunctor.mapβ‚‚_isIso, mateEquiv_leftUnitor_hom_rightUnitor_inv, LeftExtension.whisker_unit, conjugateEquiv_mateEquiv_vcomp, CategoryTheory.LaxFunctor.mapβ‚‚_rightUnitor_app, CategoryTheory.Pseudofunctor.mapComp'_id_comp, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_inv_assoc, CategoryTheory.StrictPseudofunctor.comp_mapβ‚‚, prod_homCategory_id_snd, CategoryTheory.Pseudofunctor.mapComp'_id_comp_inv_app, Adj.Bicategory.associator_hom_Ο„r, InducedBicategory.forget_mapβ‚‚, Bicategory.Opposite.bicategory_homCategory_id_unop2, associatorNatIsoLeft_hom_app, LeftLift.whiskerIdCancel_right, CategoryTheory.PrelaxFunctor.comp_toPrelaxFunctorStruct, CategoryTheory.PrelaxFunctor.mapβ‚‚_inv_hom_assoc, CategoryTheory.Oplax.StrongTrans.isoMk_inv_as_app, Prod.fst_mapComp_inv, CategoryTheory.Oplax.StrongTrans.Modification.naturality, CategoryTheory.Pseudofunctor.mapComp_assoc_left_hom, CategoryTheory.StrictlyUnitaryPseudofunctorCore.mapβ‚‚_comp, CategoryTheory.WithTerminal.pseudofunctor_mapComp, CategoryTheory.Join.pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_Ξ±, CategoryTheory.WithTerminal.prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_obj, Adj.associator_hom_Ο„r, CategoryTheory.Pseudofunctor.whiskerRight_mapId_hom, Bicategory.Opposite.unop2_id, LeftExtension.whiskerOfCompIdIsoSelf_hom_right, prod_leftUnitor_hom_fst, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapComp_inv_Ο„l, whiskerLeft_rightUnitor_inv_assoc, CategoryTheory.Oplax.OplaxTrans.naturality_comp_assoc, Adjunction.comp_left_triangle_aux, whiskerLeft_hom_inv_whiskerRight, CategoryTheory.Functor.toPseudoFunctor'_mapComp, CategoryTheory.Pseudofunctor.DescentData.exists_equivalence_of_sieve_eq, LeftLift.IsKan.uniqueUpToIso_hom_right, CategoryTheory.StrictlyUnitaryPseudofunctor.map_id, Bicategory.Opposite.bicategory_homCategory_comp_unop2, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_id_app, CategoryTheory.LocallyDiscrete.mkPseudofunctor_obj, CategoryTheory.Pseudofunctor.mapComp_id_right_hom_app_assoc, CategoryTheory.Pseudofunctor.mapComp'_comp_id_hom, CategoryTheory.Lax.LaxTrans.vComp_naturality_comp, CategoryTheory.Pseudofunctor.DescentData.pullFunctorIdIso_inv_app_hom, id_whiskerLeft, LeftExtension.whisker_extension, Pith.associator_inv_iso_hom, whiskerLeft_hom_inv_whiskerRight_assoc, CategoryTheory.Pseudofunctor.mapComp_id_left_hom, prod_associator_inv_snd, CategoryTheory.OplaxFunctor.id_mapId, CategoryTheory.Pseudofunctor.LocallyDiscreteOpToCat.map_eq_pullHom_assoc, CategoryTheory.Oplax.LaxTrans.naturality_id_assoc, CategoryTheory.Pseudofunctor.mapβ‚‚_whisker_left_app, CategoryTheory.StrictlyUnitaryLaxFunctorCore.mapβ‚‚_rightUnitor, CategoryTheory.Pseudofunctor.DescentData.isEquivalence_toDescentData_iff_of_sieve_eq, CategoryTheory.Pseudofunctor.CoGrothendieck.comp_const, CategoryTheory.WithTerminal.prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_map, LanLift.CommuteWith.commute, CategoryTheory.StrictlyUnitaryLaxFunctor.ext_iff, Prod.snd_mapComp_hom, leftUnitor_hom_congr, CategoryTheory.Oplax.StrongTrans.Modification.whiskerLeft_naturality_assoc, CategoryTheory.StrictlyUnitaryPseudofunctor.id_mapId_hom, Adj.leftUnitor_inv_Ο„r, whiskerRight_isIso, CategoryTheory.Pseudofunctor.whiskerRight_mapId_inv_app, CategoryTheory.PrelaxFunctor.mapβ‚‚_id, rightUnitor_inv_naturality_assoc, CategoryTheory.Pseudofunctor.CoGrothendieck.compIso_inv_app, CategoryTheory.Oplax.OplaxTrans.isoMk_inv_as_app, CategoryTheory.StrictlyUnitaryLaxFunctor.comp_map, CategoryTheory.StrictPseudofunctor.mk''_mapComp, CategoryTheory.OplaxFunctor.mapβ‚‚_leftUnitor_app_assoc, CategoryTheory.Functor.toOplaxFunctor_mapId, CategoryTheory.BicategoricalCoherence.assoc_iso, Comonad.comul_assoc_assoc, CategoryTheory.Pseudofunctor.DescentData.pullFunctorIdIso_hom_app_hom, CategoryTheory.Pseudofunctor.whiskerRight_mapId_inv_assoc, CategoryTheory.Pseudofunctor.StrongTrans.naturality_naturality_hom_assoc, Pith.leftUnitor_hom_iso, CategoryTheory.Pseudofunctor.mapComp'_id_comp_hom_app, instHasInitialLeftLiftOfHasLeftKanLift, CategoryTheory.StrictlyUnitaryPseudofunctorCore.map_id, Mathlib.Tactic.BicategoryCoherence.assoc_liftHomβ‚‚, lanUnit_desc_assoc, CategoryTheory.Pseudofunctor.whiskerLeft_mapId_inv_assoc, CategoryTheory.Oplax.LaxTrans.vComp_naturality_naturality, associator_naturality_left, whiskerLeft_whiskerLeft_inv_hom_assoc, Pith.rightUnitor_inv_iso_hom, Pith.compβ‚‚_iso_inv_assoc, InducedBicategory.bicategory_id_hom, CategoryTheory.StrictlyUnitaryPseudofunctor.mk'_mapβ‚‚, prod_homCategory_comp_snd, CategoryTheory.Oplax.StrongTrans.id_naturality_hom, leftUnitor_naturality, InducedBicategory.bicategory_homCategory_id_hom, CategoryTheory.StrictlyUnitaryLaxFunctor.mk'_mapId, Adj.Bicategory.associator_inv_Ο„r, CategoryTheory.LaxFunctor.mapComp_assoc_left, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapId_hom_Ο„l, Comonad.counit_comul, CategoryTheory.Adjunction.ofCat_unit, Pith.pseudofunctorToPith_mapId_inv_iso_hom, CategoryTheory.OplaxFunctor.mapβ‚‚_rightUnitor_app, CategoryTheory.StrictlyUnitaryPseudofunctorCore.mapβ‚‚_right_unitor, CategoryTheory.Pseudofunctor.mapComp'_id_comp_hom_assoc, CategoryTheory.Pseudofunctor.mapComp_assoc_left_hom_app, CategoryTheory.LaxFunctor.mapComp_naturality_right_app, CategoryTheory.LaxFunctor.mapComp_assoc_right, LanLift.CommuteWith.lanLiftCompIsoWhisker_inv_right, mateEquiv_apply, Adj.associator_hom_Ο„l, LeftExtension.whiskerHom_right, CategoryTheory.StrictlyUnitaryLaxFunctor.comp_mapComp, InducedBicategory.bicategory_associator_hom_hom, CategoryTheory.Oplax.StrongTrans.naturality_naturality, CategoryTheory.Cat.id_eq_id, pentagon_hom_hom_inv_inv_hom, CategoryTheory.PrelaxFunctor.mapβ‚‚Iso_hom, Pseudofunctor.ofOplaxFunctorToLocallyGroupoid_mapIdIso_hom, CategoryTheory.Oplax.OplaxTrans.leftUnitor_hom_as_app, CategoryTheory.PrelaxFunctor.mapβ‚‚Iso_inv, CategoryTheory.Pseudofunctor.LocallyDiscreteOpToCat.map_eq_pullHom, CategoryTheory.Pseudofunctor.mapComp_id_right_hom_app, Pith.inclusion_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map, CategoryTheory.Pseudofunctor.whiskerLeft_mapId_hom_assoc, Bicategory.Opposite.bicategory_associator_inv_unop2, CategoryTheory.Pseudofunctor.whiskerRight_mapId_hom_assoc, CategoryTheory.Lax.OplaxTrans.naturality_comp_assoc, CategoryTheory.Pseudofunctor.DescentData.id_hom, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_id, CategoryTheory.LaxFunctor.mapComp_naturality_left_app, pentagon_inv_inv_hom_hom_inv_assoc, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_comp, CategoryTheory.OplaxFunctor.mapComp_id_left_assoc, CategoryTheory.StrictPseudofunctor.mk'_mapId, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_naturality, Pseudofunctor.ofLaxFunctorToLocallyGroupoid_mapCompIso_hom, CategoryTheory.Pseudofunctor.DescentData.pullFunctorCompIso_hom_app_hom, Prod.swap_mapComp_hom, CategoryTheory.Pseudofunctor.StrongTrans.Modification.vcomp_app, CategoryTheory.Pseudofunctor.StrongTrans.naturality_naturality_hom_app, CategoryTheory.Pseudofunctor.DescentData.isoMk_hom_hom, CategoryTheory.Pseudofunctor.StrongTrans.naturality_naturality_assoc, LeftLift.ofIdComp_left_as, CategoryTheory.StrictPseudofunctor.id_mapId_inv, LeftExtension.whiskerOfCompIdIsoSelf_inv_right, CategoryTheory.Pseudofunctor.DescentData.pullFunctorObjHom_eq, CategoryTheory.StrictlyUnitaryLaxFunctor.mapIdIso_inv, Pith.pseudofunctorToPith_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_as, CategoryTheory.FreeBicategory.mk_associator_inv, Adj.comp_l, CategoryTheory.Oplax.OplaxTrans.whiskerRight_naturality_comp_assoc, rightUnitor_comp_assoc, Mathlib.Tactic.Bicategory.evalComp_nil_cons, Adj.leftUnitor_hom_Ο„r, CategoryTheory.Pseudofunctor.DescentData.hom_self, Mathlib.Tactic.Bicategory.evalWhiskerRightAux_of, CategoryTheory.Pseudofunctor.DescentData.comp_hom_assoc, LeftExtension.IsKan.fac, CategoryTheory.Pseudofunctor.ObjectProperty.fullsubcategory_mapId, CategoryTheory.Oplax.StrongTrans.categoryStruct_id_naturality, CategoryTheory.Pseudofunctor.ObjectProperty.map_obj_obj, LeftLift.IsKan.uniqueUpToIso_inv_right, CategoryTheory.FreeBicategory.lift_mapComp, Comonad.comul_counit, leftZigzagIso_inv, CategoryTheory.Functor.toOplaxFunctor'_mapComp, Adjunction.comp_right_triangle_aux, CategoryTheory.Pseudofunctor.CoGrothendieck.categoryStruct_comp_fiber, Adj.lIso_hom, CategoryTheory.Cat.whiskerLeft_toNatTrans, Prod.sectL_mapβ‚‚, CategoryTheory.Oplax.StrongTrans.toOplax_naturality, CategoryTheory.OplaxFunctor.mapComp_naturality_right_app_assoc, Adjunction.homEquiv₁_symm_apply, CategoryTheory.Oplax.StrongTrans.Modification.whiskerRight_naturality_assoc, toNatTrans_conjugateEquiv, CategoryTheory.Lax.StrongTrans.categoryStruct_comp_naturality, Adjunction.comp_unit, CategoryTheory.FreeBicategory.lift_toPrelaxFunctor_toPrelaxFunctorStruct_mapβ‚‚, CategoryTheory.Pseudofunctor.comp_mapComp, Prod.swap_mapComp_inv, CategoryTheory.PrelaxFunctor.mapβ‚‚Iso_eqToIso, CategoryTheory.Join.pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_comp, Bicategory.Opposite.opFunctor_map, CategoryTheory.StrictlyUnitaryPseudofunctor.toStrictlyUnitaryLaxFunctor_mapComp, LeftLift.whiskering_obj, Prod.snd_mapComp_inv, Adj.Bicategory.associator_hom_Ο„l, CategoryTheory.StrictPseudofunctor.mk''_obj, Pith.compβ‚‚_iso_inv, CategoryTheory.Pseudofunctor.mapβ‚‚_whisker_right_app, CategoryTheory.Oplax.OplaxTrans.Modification.whiskerLeft_naturality, conjugateEquiv_symm_apply', AlgebraicGeometry.Scheme.Modules.pseudofunctor_map_r, CategoryTheory.Pseudofunctor.CoGrothendieck.instFaithfulΞ±CategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_iso, InducedBicategory.isoMk_hom_hom, Pith.inclusion_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj, whiskerLeft_rightUnitor, CategoryTheory.WithInitial.pseudofunctor_mapComp, CategoryTheory.leftUnitor_def, CategoryTheory.FreeBicategory.preinclusion_obj, CategoryTheory.Pseudofunctor.mapβ‚‚_left_unitor_app_assoc, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_assoc, CategoryTheory.Pseudofunctor.mapβ‚‚_right_unitor_app_assoc, pentagon_hom_inv_inv_inv_inv, CategoryTheory.Pseudofunctor.mapβ‚‚_right_unitor_app, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_naturality_app, CategoryTheory.FreeBicategory.lift_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map, CategoryTheory.LaxFunctor.comp_mapComp, CategoryTheory.Join.pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_obj, CategoryTheory.PrelaxFunctor.mapβ‚‚_hom_inv_isIso_assoc, Pith.inclusion_toPrelaxFunctor_toPrelaxFunctorStruct_mapβ‚‚, CategoryTheory.PrelaxFunctor.mapβ‚‚_inv_hom, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapComp_inv_Ο„r, conjugateEquiv_iso, Prod.sectR_mapId_hom, CategoryTheory.OplaxFunctor.mapComp_naturality_right, Strict.leftUnitor_eqToIso, CategoryTheory.OplaxFunctor.mapComp_naturality_left_app_assoc, CategoryTheory.Pseudofunctor.presheafHomObjHomEquiv_symm_apply, Prod.swap_mapId_hom, CategoryTheory.Cat.whiskerRight_app, conjugateEquiv_whiskerLeft, CategoryTheory.StrictlyUnitaryLaxFunctor.id_mapId, CategoryTheory.LaxFunctor.mapβ‚‚_associator_app, CategoryTheory.FreeBicategory.mk_right_unitor_hom, LeftExtension.whiskering_obj, CategoryTheory.StrictPseudofunctor.comp_obj, Bicategory.Opposite.homCategory_id_unop2, CategoryTheory.StrictPseudofunctor.id_mapComp_inv, InducedBicategory.mkHom_eqToHom, comp_whiskerLeft_symm_assoc, CommRingCat.moduleCatRestrictScalarsPseudofunctor_obj, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_hom_app_assoc, Bicategory.Opposite.op2_id_unbop, leftUnitor_comp, CategoryTheory.BicategoricalCoherence.assoc'_iso, LeftExtension.w, CategoryTheory.Lax.OplaxTrans.vComp_naturality_id, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_id, CategoryTheory.Cat.associator_hom_toNatTrans, Mathlib.Tactic.Bicategory.evalComp_nil_nil, CategoryTheory.LaxFunctor.mapComp_naturality_left, CategoryTheory.LaxFunctor.mapComp_assoc_left_assoc, LeftLift.whiskerOfIdCompIsoSelf_inv_right, associatorNatIsoMiddle_inv_app, CategoryTheory.Pseudofunctor.mapβ‚‚_whisker_right_assoc, CategoryTheory.Cat.Hom.id_toFunctor, InducedBicategory.forget_mapId_hom, InducedBicategory.categoryStruct_id_hom, CategoryTheory.Pseudofunctor.mapComp_assoc_left_hom_assoc, Pith.pseudofunctorToPith_mapComp_inv_iso_hom, prod_rightUnitor_hom_snd, precomp_map, pentagon_hom_hom_inv_hom_hom, conjugateEquiv_symm_apply, prod_associator_hom_snd, Adjunction.right_triangle, triangle_assoc_comp_left_inv, CategoryTheory.Pseudofunctor.StrongTrans.Modification.whiskerRight_naturality, CategoryTheory.Pseudofunctor.ObjectProperty.mapComp_inv_app, CategoryTheory.Oplax.OplaxTrans.Modification.naturality, CategoryTheory.BicategoricalCoherence.right_iso, Equivalence.right_triangle_hom, Prod.fst_obj, CategoryTheory.Pseudofunctor.mapComp_assoc_right_inv, CategoryTheory.Pseudofunctor.StrongTrans.naturality_naturality_inv, CategoryTheory.LaxFunctor.mapComp_assoc_right_app_assoc, associatorNatIsoRight_inv_app, CategoryTheory.BicategoricalCoherence.whiskerLeft_iso, leftUnitor_comp_inv_assoc, leftUnitor_whiskerRight_assoc, leftUnitor_inv_congr, conjugateIsoEquiv_symm_apply_inv, Adj.forget₁_mapComp, rightUnitor_hom_congr, CategoryTheory.StrictlyUnitaryPseudofunctor.comp_mapComp_inv, CategoryTheory.Pseudofunctor.comp_mapId, Prod.swap_mapId_inv, CategoryTheory.OplaxFunctor.mapComp_naturality_right_app, Prod.sectR_map, CategoryTheory.StrictPseudofunctor.mk''_mapβ‚‚, CategoryTheory.StrictlyUnitaryPseudofunctor.comp_mapId_inv, Bicategory.Opposite.op2_associator_hom, pentagon_hom_inv_inv_inv_hom, Adj.Bicategory.leftUnitor_inv_Ο„r, CategoryTheory.LaxFunctor.mapComp_assoc_left_app_assoc, CategoryTheory.Lax.OplaxTrans.id_app, CategoryTheory.Oplax.StrongTrans.homCategory_comp_as_app, rightZigzagIso_hom, CategoryTheory.LaxFunctor.id_mapComp, CategoryTheory.Cat.leftUnitor_inv_app, CategoryTheory.Functor.toPseudoFunctor_obj, associator_inv_naturality_middle_assoc, CategoryTheory.LaxFunctor.mapβ‚‚_leftUnitor_app, CategoryTheory.BicategoricalCoherence.refl_iso, rightUnitor_comp_inv_assoc, CategoryTheory.Join.pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_obj, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapId_inv_Ο„l, CategoryTheory.Lax.OplaxTrans.naturality_naturality_assoc, InducedBicategory.bicategory_leftUnitor_hom_hom, CategoryTheory.Pseudofunctor.Grothendieck.categoryStruct_comp_fiber, CategoryTheory.StrictlyUnitaryLaxFunctor.comp_mapβ‚‚, CategoryTheory.Pseudofunctor.whiskerRight_mapId_hom_app, Bicategory.Opposite.bicategory_rightUnitor_hom_unop2, CategoryTheory.Pseudofunctor.CoGrothendieck.compIso_hom_app, CategoryTheory.Pseudofunctor.DescentData.hom_comp, Strict.associator_eqToIso, CategoryTheory.Pseudofunctor.IsPrestackFor.nonempty_fullyFaithful, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapId_inv_Ο„r, CategoryTheory.Cat.whiskerLeft_app, CategoryTheory.OplaxFunctor.mapComp'_eq_mapComp, isRightAdjoint_TFAE, RightLift.w, CategoryTheory.Pseudofunctor.ObjectProperty.mapβ‚‚_app_hom, triangle_assoc, leftUnitorNatIso_inv_app, CategoryTheory.Pseudofunctor.CoGrothendieck.Hom.ext_iff, CategoryTheory.OplaxFunctor.mapβ‚‚_rightUnitor_app_assoc, CategoryTheory.Oplax.StrongTrans.vcomp_naturality_inv, Bicategory.Opposite.bicategory_whiskerLeft_unop2, CategoryTheory.Pseudofunctor.whiskerRight_mapId_inv, CategoryTheory.Oplax.OplaxTrans.whiskerRight_as_app, associator_naturality_middle_assoc, Bicategory.Opposite.bicategory_rightUnitor_inv_unop2, CategoryTheory.Pseudofunctor.whiskerRightIso_mapId, CategoryTheory.Pseudofunctor.Grothendieck.map_map_base, CategoryTheory.Oplax.OplaxTrans.OplaxFunctor.bicategory_associator_inv_as_app, CategoryTheory.Oplax.OplaxTrans.leftUnitor_inv_as_app, CategoryTheory.FreeBicategory.lift_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj, CategoryTheory.Functor.toOplaxFunctor'_mapId, CategoryTheory.LaxFunctor.mapβ‚‚_leftUnitor_hom, RightExtension.w, Prod.fst_mapId_inv, CategoryTheory.LaxFunctor.mapβ‚‚_rightUnitor_hom, Adj.leftUnitor_hom_Ο„l, LanLift.CommuteWith.lanLiftCompIso_inv, CategoryTheory.Oplax.OplaxTrans.Modification.id_app, CategoryTheory.StrictlyUnitaryLaxFunctor.comp_obj, Pith.pseudofunctorToPith_mapComp_hom_iso, mateEquiv_apply', Equivalence.left_triangle_hom, conjugateEquiv_comp, CategoryTheory.OplaxFunctor.mapComp_id_left, CategoryTheory.LaxFunctor.mapβ‚‚_leftUnitor_app_assoc, CategoryTheory.Pseudofunctor.ObjectProperty.fullsubcategory_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor, postcomp_map, CategoryTheory.LaxFunctor.mapβ‚‚_rightUnitor, LanLift.CommuteWith.lanLiftCompIsoWhisker_hom_right, triangle_assoc_comp_right_assoc, CategoryTheory.LaxFunctor.mapId'_eq_mapId, CategoryTheory.Pseudofunctor.whiskerRight_mapId_inv_app_assoc, CategoryTheory.StrictlyUnitaryPseudofunctor.comp_mapβ‚‚, rightUnitorNatIso_hom_app, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_hom_app, pentagon_inv_hom_hom_hom_inv_assoc, CategoryTheory.LaxFunctor.PseudoCore.mapIdIso_inv, leftUnitor_comp_assoc, LeftLift.w, CategoryTheory.LaxFunctor.mapComp_naturality_left_assoc, CategoryTheory.Pseudofunctor.mapComp_assoc_left_inv_app, CategoryTheory.Pseudofunctor.DescentData.Hom.comm, CategoryTheory.StrictlyUnitaryLaxFunctorCore.mapβ‚‚_comp, CategoryTheory.Join.pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_map, triangle_assoc_comp_left_inv_assoc, CategoryTheory.StrictlyUnitaryPseudofunctor.toStrictlyUnitaryLaxFunctor_map, CategoryTheory.Pseudofunctor.StrongTrans.Modification.whiskerRight_naturality_assoc
whiskerLeft πŸ“–CompOp
365 mathmath: CategoryTheory.Pseudofunctor.mapComp'_comp_id_hom_assoc, prod_whiskerLeft_snd, CategoryTheory.Pseudofunctor.mapComp_assoc_right_hom, RightExtension.w_assoc, CategoryTheory.LaxFunctor.mapComp'_whiskerRight_comp_mapComp', CategoryTheory.Pseudofunctor.mapβ‚‚_associator_assoc, CategoryTheory.LaxFunctor.mapβ‚‚_associator_assoc, CategoryTheory.LaxFunctor.whiskerLeft_mapComp'_comp_mapComp'_assoc, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_naturality_assoc, Comonad.comul_assoc_flip, InducedBicategory.bicategory_whiskerLeft_hom, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_inv_comp_mapComp'₀₂₃_hom_assoc, conjugateEquiv_whiskerRight, CategoryTheory.Oplax.OplaxTrans.Modification.whiskerRight_naturality, LeftLift.whiskering_map, leftUnitor_inv_naturality_assoc, CategoryTheory.Lax.StrongTrans.vComp_naturality_hom, whiskerLeft_inv_hom, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_hom_comp_mapComp'_hom_whiskerRight_assoc, LeftExtension.w_assoc, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_naturality, CategoryTheory.OplaxFunctor.mapβ‚‚_associator, mateEquiv_comp_id_right, whisker_exchange, pentagon_inv, Bicategory.Opposite.op2_whiskerLeft, Adjunction.homEquivβ‚‚_symm_apply, CategoryTheory.Oplax.LaxTrans.vComp_naturality_id, Lan.existsUnique, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_naturality_assoc, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_naturality_assoc, CategoryTheory.Pseudofunctor.mapComp'_hom_comp_whiskerLeft_mapComp'_hom, conjugateEquiv_adjunction_id_symm, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_hom_assoc, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_id, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_comp_assoc, CategoryTheory.StrictlyUnitaryLaxFunctorCore.mapβ‚‚_associator, CategoryTheory.Pseudofunctor.StrongTrans.categoryStruct_comp_naturality_hom, CategoryTheory.OplaxFunctor.mapComp_naturality_right_assoc, CategoryTheory.Oplax.LaxTrans.naturality_naturality_assoc, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_hom_comp_whiskerLeft_mapComp'_hom, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_id_assoc, CategoryTheory.Oplax.OplaxTrans.OplaxFunctor.bicategory_whiskerLeft_as_app, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_id_assoc, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_inv, pentagon_hom_hom_inv_hom_hom_assoc, pentagon_inv_hom_hom_hom_hom, Adjunction.homEquiv₁_apply, associator_inv_naturality_middle, associator_naturality_right_assoc, CategoryTheory.Pseudofunctor.StrongTrans.Modification.whiskerLeft_naturality_assoc, triangle_assoc_comp_left, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_hom, associator_inv_naturality_right, whiskerLeft_iff, whiskerLeft_comp, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_inv, CategoryTheory.Oplax.StrongTrans.Modification.whiskerLeft_naturality, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_inv, associator_eqToHom_hom_assoc, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_naturality, CategoryTheory.Oplax.LaxTrans.naturality_comp_assoc, CategoryTheory.Oplax.OplaxTrans.whiskerLeft_naturality_id, CategoryTheory.Oplax.OplaxTrans.whiskerLeft_naturality_naturality, whiskerLeft_hom_inv, mateEquiv_id_comp_right, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id, whiskerLeft_whiskerLeft_hom_inv_assoc, id_whiskerLeft_symm, pentagon_inv_hom_hom_hom_inv, CategoryTheory.Lax.OplaxTrans.naturality_comp, CategoryTheory.Oplax.StrongTrans.Modification.whiskerRight_naturality, CategoryTheory.Oplax.OplaxTrans.whiskerLeft_naturality_naturality_assoc, CategoryTheory.whiskerLeft_def, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_hom, CategoryTheory.Pseudofunctor.StrongTrans.naturality_naturality, CategoryTheory.Oplax.OplaxTrans.whiskerRight_naturality_naturality, comp_whiskerLeft_symm, Bicategory.Opposite.op2_whiskerRight, mateEquiv_symm_apply', CategoryTheory.Oplax.LaxTrans.naturality_naturality, CategoryTheory.Oplax.StrongTrans.naturality_comp, Adjunction.homEquivβ‚‚_apply, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_hom_assoc, CategoryTheory.Oplax.StrongTrans.naturality_id_assoc, CategoryTheory.StrictlyUnitaryLaxFunctorCore.mapComp_naturality_right, CategoryTheory.Oplax.LaxTrans.naturality_id, CategoryTheory.Oplax.OplaxTrans.naturality_comp, CategoryTheory.Lax.LaxTrans.naturality_comp, CategoryTheory.Oplax.OplaxTrans.whiskerRight_naturality_naturality_assoc, CategoryTheory.Lax.OplaxTrans.vComp_naturality_comp, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_hom_comp_whiskerLeft_mapComp'_hom_assoc, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_inv_assoc, CategoryTheory.Pseudofunctor.mapβ‚‚_right_unitor_assoc, CategoryTheory.Pseudofunctor.mapComp'_inv_whiskerRight_comp_mapComp'_inv, leftUnitor_inv_naturality, whiskerLeft_whiskerLeft_inv_hom, CategoryTheory.Oplax.OplaxTrans.Modification.whiskerLeft_naturality_assoc, associator_naturality_right, Mathlib.Tactic.Bicategory.structuralIsoOfExpr_whiskerLeft, CategoryTheory.Oplax.OplaxTrans.whiskerRight_naturality_id, CategoryTheory.Pseudofunctor.mapComp_id_right_hom, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_comp, CategoryTheory.Oplax.StrongTrans.Modification.naturality_assoc, CategoryTheory.LaxFunctor.mapComp_naturality_right_app_assoc, CategoryTheory.Lax.LaxTrans.vComp_naturality_naturality, Comonad.comul_assoc_flip_assoc, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp, CategoryTheory.Oplax.OplaxTrans.whiskerLeft_naturality_comp_assoc, whiskerLeft_rightUnitor_assoc, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_naturality_assoc, CategoryTheory.StrictlyUnitaryPseudofunctorCore.mapβ‚‚_associator, associator_eqToHom_inv, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_hom, CategoryTheory.Oplax.OplaxTrans.categoryStruct_comp_naturality, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_naturality, CategoryTheory.Pseudofunctor.StrongTrans.Modification.naturality, pentagon_inv_inv_hom_hom_inv, CategoryTheory.Pseudofunctor.mapComp_assoc_right_hom_assoc, Adj.Bicategory.whiskerLeft_Ο„l, CategoryTheory.Oplax.OplaxTrans.whiskerLeft_naturality_id_assoc, CategoryTheory.OplaxFunctor.mapComp_assoc_left, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_comp_assoc, CategoryTheory.Lax.LaxTrans.naturality_comp_assoc, pentagon_assoc, CategoryTheory.Oplax.LaxTrans.naturality_comp, whiskerLeft_isIso, pentagon_inv_inv_hom_inv_inv, Adj.whiskerRight_Ο„r, CategoryTheory.Lax.LaxTrans.naturality_id_assoc, CategoryTheory.LaxFunctor.mapComp_naturality_right_assoc, CategoryTheory.OplaxFunctor.mapComp'_comp_mapComp'_whiskerRight, prod_whiskerLeft_fst, CategoryTheory.OplaxFunctor.mapβ‚‚_associator_assoc, CategoryTheory.Pseudofunctor.mapβ‚‚_whisker_left, CategoryTheory.LaxFunctor.mapComp'_whiskerRight_comp_mapComp'_assoc, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_inv_assoc, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_id, whiskerLeft_rightUnitor_inv, CategoryTheory.Pseudofunctor.StrongTrans.Modification.whiskerLeft_naturality, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_inv, CategoryTheory.Pseudofunctor.whiskerLeft_mapId_inv, CategoryTheory.Pseudofunctor.mapComp_id_right_hom_assoc, CategoryTheory.Lax.LaxTrans.naturality_id, CategoryTheory.Lax.StrongTrans.naturality_comp_assoc, triangle_assoc_comp_right_inv_assoc, CategoryTheory.Lax.OplaxTrans.naturality_naturality, CategoryTheory.LaxFunctor.whiskerLeft_mapComp'_comp_mapComp', triangle_assoc_comp_right_inv, associator_naturality_middle, CategoryTheory.Oplax.LaxTrans.vComp_naturality_comp, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_comp_assoc, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_comp, LeftExtension.IsKan.fac_assoc, CategoryTheory.Oplax.StrongTrans.naturality_naturality_assoc, Pith.whiskerLeft_iso_hom, CategoryTheory.Pseudofunctor.mapβ‚‚_whisker_left_assoc, Bicategory.Opposite.bicategory_whiskerRight_unop2, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_comp_assoc, CategoryTheory.Oplax.StrongTrans.naturality_id, associator_eqToHom_inv_assoc, CategoryTheory.Pseudofunctor.mapComp_id_right_inv_assoc, CategoryTheory.Pseudofunctor.mapComp_assoc_right_inv_assoc, whiskerLeft_inv_hom_whiskerRight_assoc, whisker_exchange_assoc, CategoryTheory.Pseudofunctor.mapComp'_comp_id_inv, pentagon, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_inv_assoc, CategoryTheory.Lax.OplaxTrans.vComp_naturality_naturality, CategoryTheory.OplaxFunctor.mapβ‚‚_rightUnitor_assoc, CategoryTheory.Pseudofunctor.StrongTrans.naturality_naturality_hom, CategoryTheory.Lax.LaxTrans.vComp_naturality_id, CategoryTheory.FreeBicategory.mk_whisker_left, CategoryTheory.Oplax.OplaxTrans.Modification.naturality_assoc, CategoryTheory.Pseudofunctor.mapComp_assoc_left_inv_assoc, LeftLift.whisker_unit, CategoryTheory.Oplax.OplaxTrans.naturality_id_assoc, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_id_assoc, pentagon_hom_hom_inv_inv_hom_assoc, CategoryTheory.Lax.LaxTrans.naturality_naturality, whiskerLeft_eqToHom, CategoryTheory.Oplax.OplaxTrans.whiskerLeft_naturality_comp, Adj.whiskerLeft_Ο„r, pentagon_inv_inv_hom_inv_inv_assoc, CategoryTheory.LaxFunctor.mapβ‚‚_rightUnitor_hom_assoc, Comonad.comul_assoc, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_hom, comp_whiskerLeft, CategoryTheory.Lax.StrongTrans.naturality_id, LeftLift.whiskerHom_right, CategoryTheory.Pseudofunctor.mapComp_assoc_left_inv, CategoryTheory.Pseudofunctor.whiskerLeft_mapComp'_inv_comp_mapComp'₀₁₃_inv, CategoryTheory.StrictlyUnitaryPseudofunctorCore.mapβ‚‚_whisker_left, CategoryTheory.LaxFunctor.mapβ‚‚_associator, CategoryTheory.OplaxFunctor.mapComp_id_right_assoc, whiskerLeftIso_inv, CategoryTheory.Oplax.StrongTrans.naturality_comp_assoc, CategoryTheory.OplaxFunctor.mapComp_assoc_right, CategoryTheory.OplaxFunctor.mapComp_assoc_left_assoc, postcomposing_map_app, pentagon_inv_assoc, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_assoc, CategoryTheory.Oplax.OplaxTrans.whiskerRight_naturality_id_assoc, Comonad.comul_counit_assoc, congr_whiskerLeft, pentagon_inv_hom_hom_hom_hom_assoc, whiskerLeft_inv_hom_whiskerRight, whisker_assoc_assoc, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_inv_comp_mapComp'₀₁₃_hom, associator_eqToHom_hom, whisker_assoc_symm, CategoryTheory.Lax.StrongTrans.naturality_naturality_assoc, CategoryTheory.Oplax.OplaxTrans.whiskerRight_naturality_comp, id_whiskerLeft_assoc, CategoryTheory.OplaxFunctor.mapβ‚‚_rightUnitor, associator_inv_naturality_right_assoc, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_comp, triangle, CategoryTheory.FreeBicategory.normalize_naturality, CategoryTheory.Pseudofunctor.whiskerLeft_mapId_hom, CategoryTheory.Pseudofunctor.mapComp'_inv_comp_mapComp'_hom, CategoryTheory.Lax.StrongTrans.naturality_id_assoc, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_id_assoc, CategoryTheory.Oplax.OplaxTrans.naturality_id, rightUnitor_comp, whiskerLeft_whiskerLeft_hom_inv, CategoryTheory.OplaxFunctor.mapComp_id_right, triangle_assoc_comp_right, comp_whiskerLeft_assoc, CategoryTheory.Pseudofunctor.mapComp_id_right_inv, whiskerLeft_inv_hom_assoc, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_inv_comp_mapComp'₀₁₃_hom_assoc, CategoryTheory.Pseudofunctor.StrongTrans.Modification.naturality_assoc, CategoryTheory.Lax.LaxTrans.naturality_naturality_assoc, whiskerLeft_comp_assoc, Pith.whiskerLeft_iso_inv, CategoryTheory.Pseudofunctor.whiskerLeft_mapComp'_inv_comp_mapComp'₀₁₃_inv_assoc, CategoryTheory.LaxFunctor.mapβ‚‚_rightUnitor_assoc, CategoryTheory.Lax.StrongTrans.naturality_comp, whiskerLeftIso_hom, CategoryTheory.Lax.OplaxTrans.naturality_id_assoc, whisker_assoc_symm_assoc, conjugateEquiv_apply', CategoryTheory.OplaxFunctor.mapComp_assoc_right_assoc, conjugateEquiv_adjunction_id, CategoryTheory.Oplax.OplaxTrans.whiskerLeft_as_app, CategoryTheory.Lax.StrongTrans.naturality_naturality, pentagon_hom_inv_inv_inv_hom_assoc, CategoryTheory.Oplax.OplaxTrans.naturality_naturality, CategoryTheory.Pseudofunctor.mapComp'_comp_id_inv_assoc, CategoryTheory.Pseudofunctor.whiskerLeft_mapComp'_inv_comp_mapComp'_inv, CategoryTheory.Pseudofunctor.mapβ‚‚_right_unitor, rightUnitor_comp_inv, whiskerLeft_hom_inv_assoc, CategoryTheory.Pseudofunctor.StrongTrans.categoryStruct_comp_naturality_inv, CategoryTheory.Pseudofunctor.mapComp'_inv_whiskerRight_mapComp'₀₂₃_inv_assoc, CategoryTheory.Pseudofunctor.mapβ‚‚_whisker_left_app_assoc, lanUnit_desc, whiskerLeft_id, pentagon_hom_inv_inv_inv_inv_assoc, CategoryTheory.Lax.StrongTrans.vComp_naturality_inv, CategoryTheory.LaxFunctor.mapComp_assoc_right_assoc, CategoryTheory.Oplax.StrongTrans.vcomp_naturality_hom, CategoryTheory.Oplax.OplaxTrans.naturality_naturality_assoc, Adj.whiskerLeft_Ο„l, CategoryTheory.Pseudofunctor.mapβ‚‚_associator, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_hom_assoc, CategoryTheory.Oplax.OplaxTrans.Modification.whiskerRight_naturality_assoc, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_hom_assoc, CategoryTheory.OplaxFunctor.mapComp'_comp_whiskerLeft_mapComp', leftUnitor_naturality_assoc, whisker_assoc, CategoryTheory.Lax.OplaxTrans.naturality_id, CategoryTheory.LaxFunctor.mapComp_naturality_right, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_as_app, CategoryTheory.StrictPseudofunctorPreCore.mapβ‚‚_whisker_left, inv_whiskerLeft, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_inv_assoc, CategoryTheory.Oplax.StrongTrans.Modification.naturality, CategoryTheory.Pseudofunctor.mapComp_assoc_left_hom, whiskerLeft_rightUnitor_inv_assoc, CategoryTheory.Oplax.OplaxTrans.naturality_comp_assoc, whiskerLeft_hom_inv_whiskerRight, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_inv_comp_mapComp'₀₂₃_hom, CategoryTheory.Pseudofunctor.mapComp'_comp_id_hom, CategoryTheory.Lax.LaxTrans.vComp_naturality_comp, id_whiskerLeft, whiskerLeft_hom_inv_whiskerRight_assoc, CategoryTheory.Oplax.LaxTrans.naturality_id_assoc, CategoryTheory.Pseudofunctor.mapβ‚‚_whisker_left_app, leftUnitor_hom_congr, CategoryTheory.Oplax.StrongTrans.Modification.whiskerLeft_naturality_assoc, Comonad.comul_assoc_assoc, CategoryTheory.Pseudofunctor.StrongTrans.naturality_naturality_hom_assoc, lanUnit_desc_assoc, CategoryTheory.Pseudofunctor.whiskerLeft_mapId_inv_assoc, CategoryTheory.Oplax.LaxTrans.vComp_naturality_naturality, whiskerLeft_whiskerLeft_inv_hom_assoc, leftUnitor_naturality, CategoryTheory.LaxFunctor.mapComp_assoc_left, CategoryTheory.LaxFunctor.mapComp_naturality_right_app, CategoryTheory.LaxFunctor.mapComp_assoc_right, Adj.Bicategory.whiskerRight_Ο„r, CategoryTheory.Oplax.StrongTrans.naturality_naturality, pentagon_hom_hom_inv_inv_hom, CategoryTheory.Pseudofunctor.whiskerLeft_mapId_hom_assoc, CategoryTheory.Lax.OplaxTrans.naturality_comp_assoc, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_id, pentagon_inv_inv_hom_hom_inv_assoc, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_comp, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_naturality, CategoryTheory.Pseudofunctor.StrongTrans.naturality_naturality_assoc, CategoryTheory.Oplax.OplaxTrans.whiskerRight_naturality_comp_assoc, rightUnitor_comp_assoc, LeftExtension.IsKan.fac, Comonad.comul_counit, CategoryTheory.Cat.whiskerLeft_toNatTrans, CategoryTheory.OplaxFunctor.mapComp_naturality_right_app_assoc, Adjunction.homEquiv₁_symm_apply, CategoryTheory.Oplax.StrongTrans.Modification.whiskerRight_naturality_assoc, CategoryTheory.Oplax.OplaxTrans.Modification.whiskerLeft_naturality, conjugateEquiv_symm_apply', whiskerLeft_rightUnitor, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_assoc, pentagon_hom_inv_inv_inv_inv, CategoryTheory.OplaxFunctor.mapComp_naturality_right, conjugateEquiv_whiskerLeft, CategoryTheory.OplaxFunctor.mapComp'_comp_mapComp'_whiskerRight_assoc, comp_whiskerLeft_symm_assoc, LeftExtension.w, CategoryTheory.Lax.OplaxTrans.vComp_naturality_id, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_id, CategoryTheory.LaxFunctor.mapComp_assoc_left_assoc, CategoryTheory.Pseudofunctor.mapComp_assoc_left_hom_assoc, precomp_map, pentagon_hom_hom_inv_hom_hom, triangle_assoc_comp_left_inv, CategoryTheory.Pseudofunctor.StrongTrans.Modification.whiskerRight_naturality, CategoryTheory.Oplax.OplaxTrans.Modification.naturality, CategoryTheory.Pseudofunctor.mapComp_assoc_right_inv, CategoryTheory.Pseudofunctor.StrongTrans.naturality_naturality_inv, leftUnitor_inv_congr, CategoryTheory.OplaxFunctor.mapComp_naturality_right_app, CategoryTheory.OplaxFunctor.mapComp'_comp_whiskerLeft_mapComp'_assoc, pentagon_hom_inv_inv_inv_hom, associator_inv_naturality_middle_assoc, rightUnitor_comp_inv_assoc, CategoryTheory.Lax.OplaxTrans.naturality_naturality_assoc, CategoryTheory.Pseudofunctor.mapComp'_inv_whiskerRight_mapComp'₀₂₃_inv, CategoryTheory.Pseudofunctor.mapComp'_hom_comp_mapComp'_hom_whiskerRight, CategoryTheory.Cat.whiskerLeft_app, triangle_assoc, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_hom_comp_mapComp'_hom_whiskerRight, CategoryTheory.Oplax.StrongTrans.vcomp_naturality_inv, Bicategory.Opposite.bicategory_whiskerLeft_unop2, associator_naturality_middle_assoc, RightExtension.w, CategoryTheory.LaxFunctor.mapβ‚‚_rightUnitor_hom, Mathlib.Tactic.Bicategory.evalWhiskerLeft_id, mateEquiv_apply', CategoryTheory.LaxFunctor.mapβ‚‚_rightUnitor, triangle_assoc_comp_right_assoc, pentagon_inv_hom_hom_hom_inv_assoc, triangle_assoc_comp_left_inv_assoc, CategoryTheory.Pseudofunctor.StrongTrans.Modification.whiskerRight_naturality_assoc
whiskerLeftIso πŸ“–CompOp
22 mathmath: Mathlib.Tactic.Bicategory.evalWhiskerLeft_nil, Mathlib.Tactic.Bicategory.naturality_rightUnitor, CategoryTheory.BicategoricalCoherence.tensorRight_iso, CategoryTheory.Pseudofunctor.mapComp_id_right, CategoryTheory.Pseudofunctor.mapComp'_comp_id, CategoryTheory.Pseudofunctor.isoMapOfCommSq_horiz_id, Mathlib.Tactic.Bicategory.structuralIsoOfExpr_whiskerLeft, Mathlib.Tactic.Bicategory.naturality_associator, CategoryTheory.Pseudofunctor.whiskerLeftIso_mapId, Mathlib.Tactic.Bicategory.evalWhiskerLeft_of_cons, CategoryTheory.BicategoricalCoherence.tensorRight'_iso, CategoryTheory.Pseudofunctor.isoMapOfCommSq_vert_id, CategoryTheory.Oplax.StrongTrans.categoryStruct_comp_naturality, Mathlib.Tactic.Bicategory.naturality_leftUnitor, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_iso, whiskerLeftIso_inv, Mathlib.Tactic.Bicategory.naturality_id, CategoryTheory.Pseudofunctor.StrongTrans.naturality_naturality_iso, whiskerLeftIso_hom, CategoryTheory.Lax.StrongTrans.categoryStruct_comp_naturality, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_iso, CategoryTheory.BicategoricalCoherence.whiskerLeft_iso
whiskerRight πŸ“–CompOp
362 mathmath: CategoryTheory.Pseudofunctor.mapComp_assoc_right_hom, CategoryTheory.LaxFunctor.mapComp'_whiskerRight_comp_mapComp', CategoryTheory.FreeBicategory.mk_whisker_right, CategoryTheory.Pseudofunctor.mapβ‚‚_associator_assoc, CategoryTheory.LaxFunctor.mapβ‚‚_associator_assoc, CategoryTheory.LaxFunctor.whiskerLeft_mapComp'_comp_mapComp'_assoc, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_naturality_assoc, Comonad.comul_assoc_flip, Mathlib.Tactic.Bicategory.evalWhiskerRight_id, CategoryTheory.Cat.whiskerRight_toNatTrans, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_inv_comp_mapComp'₀₂₃_hom_assoc, conjugateEquiv_whiskerRight, CategoryTheory.Oplax.OplaxTrans.Modification.whiskerRight_naturality, CategoryTheory.Lax.StrongTrans.vComp_naturality_hom, whiskerRight_comp_assoc, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_hom_comp_mapComp'_hom_whiskerRight_assoc, CategoryTheory.Pseudofunctor.mapComp'_id_comp_hom, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_naturality, CategoryTheory.OplaxFunctor.mapβ‚‚_associator, inv_hom_whiskerRight_whiskerRight_assoc, inv_hom_whiskerRight_assoc, whisker_exchange, inv_hom_whiskerRight, CategoryTheory.LaxFunctor.mapβ‚‚_leftUnitor_assoc, pentagon_inv, Bicategory.Opposite.op2_whiskerLeft, Adjunction.homEquivβ‚‚_symm_apply, CategoryTheory.Pseudofunctor.mapβ‚‚_left_unitor_assoc, CategoryTheory.Oplax.LaxTrans.vComp_naturality_id, CategoryTheory.Oplax.OplaxTrans.OplaxFunctor.bicategory_whiskerRight_as_app, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_naturality_assoc, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_naturality_assoc, RightLift.w_assoc, CategoryTheory.Pseudofunctor.mapComp'_hom_comp_whiskerLeft_mapComp'_hom, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_hom_assoc, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_id, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_comp_assoc, CategoryTheory.StrictlyUnitaryLaxFunctorCore.mapβ‚‚_associator, CategoryTheory.Pseudofunctor.StrongTrans.categoryStruct_comp_naturality_hom, CategoryTheory.Oplax.LaxTrans.naturality_naturality_assoc, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_hom_comp_whiskerLeft_mapComp'_hom, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_id_assoc, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_id_assoc, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_inv, pentagon_hom_hom_inv_hom_hom_assoc, LeftLift.w_assoc, whiskerRightIso_hom, pentagon_inv_hom_hom_hom_hom, rightUnitor_inv_naturality, Adjunction.homEquiv₁_apply, Pith.whiskerRight_iso_inv, rightUnitor_inv_congr, CategoryTheory.Pseudofunctor.mapβ‚‚_left_unitor, associator_inv_naturality_middle, CategoryTheory.Pseudofunctor.StrongTrans.Modification.whiskerLeft_naturality_assoc, hom_inv_whiskerRight_whiskerRight_assoc, triangle_assoc_comp_left, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_hom, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_inv, CategoryTheory.Oplax.StrongTrans.Modification.whiskerLeft_naturality, CategoryTheory.LaxFunctor.mapComp_naturality_left_app_assoc, prod_whiskerRight_fst, whiskerRight_comp_symm, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_inv, associator_eqToHom_hom_assoc, whiskerRight_id, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_naturality, CategoryTheory.Oplax.LaxTrans.naturality_comp_assoc, CategoryTheory.Oplax.OplaxTrans.whiskerLeft_naturality_id, CategoryTheory.Oplax.OplaxTrans.whiskerLeft_naturality_naturality, lanLiftUnit_desc_assoc, Adj.Bicategory.whiskerRight_Ο„l, leftUnitor_comp_inv, CategoryTheory.StrictlyUnitaryPseudofunctorCore.mapβ‚‚_whisker_right, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id, inv_hom_whiskerRight_whiskerRight, LeftLift.IsKan.fac_assoc, pentagon_inv_hom_hom_hom_inv, CategoryTheory.Lax.OplaxTrans.naturality_comp, leftUnitor_inv_whiskerRight_assoc, whiskerRight_comp_symm_assoc, CategoryTheory.Oplax.StrongTrans.Modification.whiskerRight_naturality, CategoryTheory.Oplax.OplaxTrans.whiskerLeft_naturality_naturality_assoc, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_hom, CategoryTheory.Pseudofunctor.StrongTrans.naturality_naturality, LeftExtension.whiskering_map, comp_whiskerRight, CategoryTheory.Oplax.OplaxTrans.whiskerRight_naturality_naturality, Bicategory.Opposite.op2_whiskerRight, inv_whiskerRight, mateEquiv_symm_apply', CategoryTheory.Oplax.LaxTrans.naturality_naturality, CategoryTheory.Oplax.StrongTrans.naturality_comp, CategoryTheory.OplaxFunctor.mapβ‚‚_leftUnitor_assoc, Adjunction.homEquivβ‚‚_apply, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_hom_assoc, CategoryTheory.Oplax.StrongTrans.naturality_id_assoc, CategoryTheory.Oplax.LaxTrans.naturality_id, CategoryTheory.whiskerRight_def, CategoryTheory.Oplax.OplaxTrans.naturality_comp, CategoryTheory.Lax.LaxTrans.naturality_comp, InducedBicategory.bicategory_whiskerRight_hom, CategoryTheory.Oplax.OplaxTrans.whiskerRight_naturality_naturality_assoc, CategoryTheory.Lax.OplaxTrans.vComp_naturality_comp, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_hom_comp_whiskerLeft_mapComp'_hom_assoc, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_inv_assoc, associator_inv_naturality_left, CategoryTheory.Pseudofunctor.mapComp'_inv_whiskerRight_comp_mapComp'_inv, CategoryTheory.Oplax.OplaxTrans.Modification.whiskerLeft_naturality_assoc, whiskerRightIso_inv, precomposing_map_app, CategoryTheory.Oplax.OplaxTrans.whiskerRight_naturality_id, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_comp, CategoryTheory.Oplax.StrongTrans.Modification.naturality_assoc, CategoryTheory.Lax.LaxTrans.vComp_naturality_naturality, prod_whiskerRight_snd, Comonad.comul_assoc_flip_assoc, Adj.Bicategory.whiskerLeft_Ο„r, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp, CategoryTheory.Oplax.OplaxTrans.whiskerLeft_naturality_comp_assoc, leftUnitor_inv_whiskerRight, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_naturality_assoc, CategoryTheory.StrictlyUnitaryPseudofunctorCore.mapβ‚‚_associator, associator_eqToHom_inv, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_hom, LanLift.existsUnique, CategoryTheory.Oplax.OplaxTrans.categoryStruct_comp_naturality, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_naturality, CategoryTheory.Pseudofunctor.StrongTrans.Modification.naturality, pentagon_inv_inv_hom_hom_inv, CategoryTheory.Pseudofunctor.mapComp_assoc_right_hom_assoc, CategoryTheory.Oplax.OplaxTrans.whiskerLeft_naturality_id_assoc, Comonad.counit_comul_assoc, CategoryTheory.OplaxFunctor.mapComp_assoc_left, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_comp_assoc, CategoryTheory.Lax.LaxTrans.naturality_comp_assoc, pentagon_assoc, CategoryTheory.Oplax.LaxTrans.naturality_comp, CategoryTheory.Pseudofunctor.mapComp_id_left_inv_assoc, pentagon_inv_inv_hom_inv_inv, whiskerRight_iff, Adj.whiskerRight_Ο„r, CategoryTheory.Lax.LaxTrans.naturality_id_assoc, CategoryTheory.OplaxFunctor.mapComp'_comp_mapComp'_whiskerRight, CategoryTheory.OplaxFunctor.mapβ‚‚_associator_assoc, CategoryTheory.LaxFunctor.mapComp'_whiskerRight_comp_mapComp'_assoc, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_inv_assoc, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_id, CategoryTheory.OplaxFunctor.mapComp_naturality_left_app, CategoryTheory.Pseudofunctor.StrongTrans.Modification.whiskerLeft_naturality, Pith.whiskerRight_iso_hom, comp_whiskerRight_assoc, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_inv, hom_inv_whiskerRight_whiskerRight, CategoryTheory.Lax.LaxTrans.naturality_id, CategoryTheory.Lax.StrongTrans.naturality_comp_assoc, associator_naturality_left_assoc, triangle_assoc_comp_right_inv_assoc, hom_inv_whiskerRight, CategoryTheory.Lax.OplaxTrans.naturality_naturality, CategoryTheory.LaxFunctor.whiskerLeft_mapComp'_comp_mapComp', triangle_assoc_comp_right_inv, associator_naturality_middle, CategoryTheory.Oplax.LaxTrans.vComp_naturality_comp, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_comp_assoc, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_comp, CategoryTheory.Oplax.StrongTrans.naturality_naturality_assoc, Bicategory.Opposite.bicategory_whiskerRight_unop2, leftUnitor_whiskerRight, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_comp_assoc, CategoryTheory.Oplax.StrongTrans.naturality_id, CategoryTheory.Pseudofunctor.mapComp'_id_comp_inv_assoc, associator_eqToHom_inv_assoc, CategoryTheory.Pseudofunctor.mapComp_id_left_hom_assoc, CategoryTheory.Pseudofunctor.mapComp_assoc_right_inv_assoc, whiskerLeft_inv_hom_whiskerRight_assoc, whisker_exchange_assoc, pentagon, rightUnitor_naturality_assoc, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_inv_assoc, CategoryTheory.Lax.OplaxTrans.vComp_naturality_naturality, CategoryTheory.Pseudofunctor.StrongTrans.naturality_naturality_hom, CategoryTheory.Lax.LaxTrans.vComp_naturality_id, CategoryTheory.Oplax.OplaxTrans.Modification.naturality_assoc, whiskerRight_congr, CategoryTheory.Pseudofunctor.mapComp_assoc_left_inv_assoc, CategoryTheory.Oplax.OplaxTrans.naturality_id_assoc, CategoryTheory.OplaxFunctor.mapβ‚‚_leftUnitor, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_id_assoc, pentagon_hom_hom_inv_inv_hom_assoc, CategoryTheory.Lax.LaxTrans.naturality_naturality, CategoryTheory.Oplax.OplaxTrans.whiskerLeft_naturality_comp, Adj.whiskerLeft_Ο„r, pentagon_inv_inv_hom_inv_inv_assoc, Comonad.comul_assoc, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_hom, CategoryTheory.OplaxFunctor.mapComp_naturality_left, CategoryTheory.Lax.StrongTrans.naturality_id, CategoryTheory.Pseudofunctor.mapComp_assoc_left_inv, CategoryTheory.Pseudofunctor.whiskerLeft_mapComp'_inv_comp_mapComp'₀₁₃_inv, CategoryTheory.Pseudofunctor.mapComp_id_left_inv, CategoryTheory.LaxFunctor.mapβ‚‚_associator, associator_inv_naturality_left_assoc, CategoryTheory.Oplax.StrongTrans.naturality_comp_assoc, CategoryTheory.OplaxFunctor.mapComp_assoc_right, CategoryTheory.OplaxFunctor.mapComp_assoc_left_assoc, pentagon_inv_assoc, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_assoc, CategoryTheory.Oplax.OplaxTrans.whiskerRight_naturality_id_assoc, whiskerRight_comp, CategoryTheory.Pseudofunctor.mapComp'_id_comp_inv, pentagon_inv_hom_hom_hom_hom_assoc, whiskerLeft_inv_hom_whiskerRight, whisker_assoc_assoc, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_inv_comp_mapComp'₀₁₃_hom, associator_eqToHom_hom, whisker_assoc_symm, CategoryTheory.Lax.StrongTrans.naturality_naturality_assoc, CategoryTheory.Oplax.OplaxTrans.whiskerRight_naturality_comp, LeftLift.IsKan.fac, CategoryTheory.StrictlyUnitaryLaxFunctorCore.mapComp_naturality_left, Adj.whiskerRight_Ο„l, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_comp, hom_inv_whiskerRight_assoc, triangle, CategoryTheory.LaxFunctor.mapβ‚‚_leftUnitor_hom_assoc, CategoryTheory.StrictPseudofunctorPreCore.mapβ‚‚_whisker_right, id_whiskerRight, CategoryTheory.Pseudofunctor.mapComp'_inv_comp_mapComp'_hom, CategoryTheory.Lax.StrongTrans.naturality_id_assoc, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_id_assoc, CategoryTheory.Oplax.OplaxTrans.naturality_id, whiskerRight_id_symm, triangle_assoc_comp_right, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_inv_comp_mapComp'₀₁₃_hom_assoc, CategoryTheory.Pseudofunctor.mapβ‚‚_whisker_right_app_assoc, CategoryTheory.Pseudofunctor.StrongTrans.Modification.naturality_assoc, CategoryTheory.Lax.LaxTrans.naturality_naturality_assoc, rightUnitor_naturality, CategoryTheory.Pseudofunctor.whiskerLeft_mapComp'_inv_comp_mapComp'₀₁₃_inv_assoc, CategoryTheory.Lax.StrongTrans.naturality_comp, CategoryTheory.Lax.OplaxTrans.naturality_id_assoc, CategoryTheory.Pseudofunctor.mapβ‚‚_whisker_right, whiskerRight_id_assoc, whisker_assoc_symm_assoc, conjugateEquiv_apply', CategoryTheory.OplaxFunctor.mapComp_assoc_right_assoc, CategoryTheory.LaxFunctor.mapβ‚‚_leftUnitor, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_as_app, CategoryTheory.Lax.StrongTrans.naturality_naturality, pentagon_hom_inv_inv_inv_hom_assoc, CategoryTheory.Oplax.OplaxTrans.naturality_naturality, CategoryTheory.Pseudofunctor.whiskerLeft_mapComp'_inv_comp_mapComp'_inv, CategoryTheory.Pseudofunctor.StrongTrans.categoryStruct_comp_naturality_inv, CategoryTheory.Pseudofunctor.mapComp'_inv_whiskerRight_mapComp'₀₂₃_inv_assoc, Mathlib.Tactic.Bicategory.evalWhiskerRight_nil, CategoryTheory.OplaxFunctor.mapComp_naturality_left_assoc, pentagon_hom_inv_inv_inv_inv_assoc, CategoryTheory.Lax.StrongTrans.vComp_naturality_inv, CategoryTheory.LaxFunctor.mapComp_assoc_right_assoc, CategoryTheory.Oplax.StrongTrans.vcomp_naturality_hom, CategoryTheory.Oplax.OplaxTrans.naturality_naturality_assoc, CategoryTheory.Pseudofunctor.mapβ‚‚_associator, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_hom_assoc, CategoryTheory.Oplax.OplaxTrans.Modification.whiskerRight_naturality_assoc, eqToHom_whiskerRight, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_hom_assoc, CategoryTheory.OplaxFunctor.mapComp'_comp_whiskerLeft_mapComp', lanLiftUnit_desc, whisker_assoc, CategoryTheory.Lax.OplaxTrans.naturality_id, LeftExtension.whisker_unit, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_inv_assoc, CategoryTheory.Oplax.StrongTrans.Modification.naturality, CategoryTheory.Pseudofunctor.mapComp_assoc_left_hom, CategoryTheory.Pseudofunctor.whiskerRight_mapId_hom, CategoryTheory.Oplax.OplaxTrans.naturality_comp_assoc, whiskerLeft_hom_inv_whiskerRight, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_inv_comp_mapComp'₀₂₃_hom, CategoryTheory.Lax.LaxTrans.vComp_naturality_comp, whiskerLeft_hom_inv_whiskerRight_assoc, CategoryTheory.Pseudofunctor.mapComp_id_left_hom, CategoryTheory.Oplax.LaxTrans.naturality_id_assoc, CategoryTheory.Oplax.StrongTrans.Modification.whiskerLeft_naturality_assoc, whiskerRight_isIso, rightUnitor_inv_naturality_assoc, Comonad.comul_assoc_assoc, CategoryTheory.Pseudofunctor.whiskerRight_mapId_inv_assoc, CategoryTheory.Pseudofunctor.StrongTrans.naturality_naturality_hom_assoc, CategoryTheory.Oplax.LaxTrans.vComp_naturality_naturality, associator_naturality_left, CategoryTheory.LaxFunctor.mapComp_assoc_left, Comonad.counit_comul, CategoryTheory.Pseudofunctor.mapComp'_id_comp_hom_assoc, CategoryTheory.LaxFunctor.mapComp_assoc_right, LeftExtension.whiskerHom_right, CategoryTheory.Oplax.StrongTrans.naturality_naturality, pentagon_hom_hom_inv_inv_hom, CategoryTheory.Pseudofunctor.whiskerRight_mapId_hom_assoc, CategoryTheory.Lax.OplaxTrans.naturality_comp_assoc, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_id, CategoryTheory.LaxFunctor.mapComp_naturality_left_app, pentagon_inv_inv_hom_hom_inv_assoc, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_comp, CategoryTheory.OplaxFunctor.mapComp_id_left_assoc, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_naturality, CategoryTheory.Pseudofunctor.StrongTrans.naturality_naturality_assoc, CategoryTheory.Oplax.OplaxTrans.whiskerRight_naturality_comp_assoc, Mathlib.Tactic.Bicategory.evalWhiskerRightAux_of, Adjunction.homEquiv₁_symm_apply, CategoryTheory.Oplax.StrongTrans.Modification.whiskerRight_naturality_assoc, CategoryTheory.Pseudofunctor.mapβ‚‚_whisker_right_app, CategoryTheory.Oplax.OplaxTrans.Modification.whiskerLeft_naturality, conjugateEquiv_symm_apply', CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_assoc, pentagon_hom_inv_inv_inv_inv, CategoryTheory.OplaxFunctor.mapComp_naturality_left_app_assoc, CategoryTheory.Cat.whiskerRight_app, conjugateEquiv_whiskerLeft, CategoryTheory.OplaxFunctor.mapComp'_comp_mapComp'_whiskerRight_assoc, Mathlib.Tactic.Bicategory.structuralIsoOfExpr_whiskerRight, leftUnitor_comp, CategoryTheory.Lax.OplaxTrans.vComp_naturality_id, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_id, CategoryTheory.LaxFunctor.mapComp_naturality_left, CategoryTheory.LaxFunctor.mapComp_assoc_left_assoc, CategoryTheory.Pseudofunctor.mapβ‚‚_whisker_right_assoc, CategoryTheory.Pseudofunctor.mapComp_assoc_left_hom_assoc, pentagon_hom_hom_inv_hom_hom, triangle_assoc_comp_left_inv, CategoryTheory.Pseudofunctor.StrongTrans.Modification.whiskerRight_naturality, CategoryTheory.Oplax.OplaxTrans.Modification.naturality, CategoryTheory.Pseudofunctor.mapComp_assoc_right_inv, CategoryTheory.Pseudofunctor.StrongTrans.naturality_naturality_inv, leftUnitor_comp_inv_assoc, leftUnitor_whiskerRight_assoc, rightUnitor_hom_congr, CategoryTheory.OplaxFunctor.mapComp'_comp_whiskerLeft_mapComp'_assoc, pentagon_hom_inv_inv_inv_hom, associator_inv_naturality_middle_assoc, CategoryTheory.Lax.OplaxTrans.naturality_naturality_assoc, CategoryTheory.Pseudofunctor.mapComp'_inv_whiskerRight_mapComp'₀₂₃_inv, CategoryTheory.Pseudofunctor.mapComp'_hom_comp_mapComp'_hom_whiskerRight, RightLift.w, triangle_assoc, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_hom_comp_mapComp'_hom_whiskerRight, CategoryTheory.Oplax.StrongTrans.vcomp_naturality_inv, Bicategory.Opposite.bicategory_whiskerLeft_unop2, CategoryTheory.Pseudofunctor.whiskerRight_mapId_inv, CategoryTheory.Oplax.OplaxTrans.whiskerRight_as_app, associator_naturality_middle_assoc, CategoryTheory.LaxFunctor.mapβ‚‚_leftUnitor_hom, mateEquiv_apply', CategoryTheory.OplaxFunctor.mapComp_id_left, postcomp_map, triangle_assoc_comp_right_assoc, pentagon_inv_hom_hom_hom_inv_assoc, leftUnitor_comp_assoc, LeftLift.w, CategoryTheory.LaxFunctor.mapComp_naturality_left_assoc, triangle_assoc_comp_left_inv_assoc, CategoryTheory.Pseudofunctor.StrongTrans.Modification.whiskerRight_naturality_assoc
whiskerRightIso πŸ“–CompOp
15 mathmath: whiskerRightIso_hom, CategoryTheory.Pseudofunctor.mapComp_id_left, Mathlib.Tactic.Bicategory.naturality_whiskerRight, CategoryTheory.Pseudofunctor.isoMapOfCommSq_horiz_id, whiskerRightIso_inv, CategoryTheory.Pseudofunctor.isoMapOfCommSq_vert_id, CategoryTheory.Oplax.StrongTrans.categoryStruct_comp_naturality, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_iso, CategoryTheory.Pseudofunctor.StrongTrans.naturality_naturality_iso, CategoryTheory.BicategoricalCoherence.whiskerRight_iso, CategoryTheory.Pseudofunctor.mapComp'_id_comp, CategoryTheory.Lax.StrongTrans.categoryStruct_comp_naturality, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_iso, Mathlib.Tactic.Bicategory.structuralIsoOfExpr_whiskerRight, CategoryTheory.Pseudofunctor.whiskerRightIso_mapId
Β«term_β–·_Β» πŸ“–CompOpβ€”
Β«term_◁_Β» πŸ“–CompOpβ€”
Β«termΞ»_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
associatorNatIsoLeft_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
homCategory
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
postcomposing
CategoryTheory.CategoryStruct.comp
CategoryTheory.Iso.hom
associatorNatIsoLeft
associator
β€”β€”
associatorNatIsoLeft_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
homCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
postcomposing
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.comp
CategoryTheory.Iso.inv
associatorNatIsoLeft
associator
β€”β€”
associatorNatIsoMiddle_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
homCategory
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
precomposing
postcomposing
CategoryTheory.Iso.hom
associatorNatIsoMiddle
CategoryTheory.CategoryStruct.comp
associator
β€”β€”
associatorNatIsoMiddle_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
homCategory
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
postcomposing
precomposing
CategoryTheory.Iso.inv
associatorNatIsoMiddle
CategoryTheory.CategoryStruct.comp
associator
β€”β€”
associatorNatIsoRight_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
homCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
precomposing
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.comp
CategoryTheory.Iso.hom
associatorNatIsoRight
associator
β€”β€”
associatorNatIsoRight_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
homCategory
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
precomposing
CategoryTheory.CategoryStruct.comp
CategoryTheory.Iso.inv
associatorNatIsoRight
associator
β€”β€”
associator_inv_naturality_left πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
whiskerRight
CategoryTheory.Iso.inv
associator
β€”whiskerRight_comp
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.comp_id
associator_inv_naturality_left_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
whiskerRight
CategoryTheory.Iso.inv
associator
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
associator_inv_naturality_left
associator_inv_naturality_middle πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
whiskerLeft
whiskerRight
CategoryTheory.Iso.inv
associator
β€”whisker_assoc
CategoryTheory.Iso.inv_hom_id_assoc
associator_inv_naturality_middle_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
whiskerLeft
whiskerRight
CategoryTheory.Iso.inv
associator
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
associator_inv_naturality_middle
associator_inv_naturality_right πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
whiskerLeft
CategoryTheory.Iso.inv
associator
β€”comp_whiskerLeft
CategoryTheory.Iso.inv_hom_id_assoc
associator_inv_naturality_right_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
whiskerLeft
CategoryTheory.Iso.inv
associator
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
associator_inv_naturality_right
associator_naturality_left πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
whiskerRight
CategoryTheory.Iso.hom
associator
β€”whiskerRight_comp
CategoryTheory.Iso.hom_inv_id_assoc
associator_naturality_left_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
whiskerRight
CategoryTheory.Iso.hom
associator
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
associator_naturality_left
associator_naturality_middle πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
whiskerRight
whiskerLeft
CategoryTheory.Iso.hom
associator
β€”whisker_assoc
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
associator_naturality_middle_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
whiskerRight
whiskerLeft
CategoryTheory.Iso.hom
associator
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
associator_naturality_middle
associator_naturality_right πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
whiskerLeft
CategoryTheory.Iso.hom
associator
β€”comp_whiskerLeft
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
associator_naturality_right_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
whiskerLeft
CategoryTheory.Iso.hom
associator
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
associator_naturality_right
comp_whiskerLeft πŸ“–mathematicalβ€”whiskerLeft
CategoryTheory.CategoryStruct.comp
toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
homCategory
CategoryTheory.Iso.hom
associator
CategoryTheory.Iso.inv
β€”β€”
comp_whiskerLeft_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
whiskerLeft
CategoryTheory.Iso.hom
associator
CategoryTheory.Iso.inv
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comp_whiskerLeft
comp_whiskerLeft_symm πŸ“–mathematicalβ€”whiskerLeft
CategoryTheory.CategoryStruct.comp
toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
homCategory
CategoryTheory.Iso.inv
associator
CategoryTheory.Iso.hom
β€”comp_whiskerLeft
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
CategoryTheory.Iso.inv_hom_id_assoc
comp_whiskerLeft_symm_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
whiskerLeft
CategoryTheory.Iso.inv
associator
CategoryTheory.Iso.hom
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comp_whiskerLeft_symm
comp_whiskerRight πŸ“–mathematicalβ€”whiskerRight
CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
β€”β€”
comp_whiskerRight_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
whiskerRight
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comp_whiskerRight
hom_inv_whiskerRight πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
whiskerRight
CategoryTheory.Iso.hom
CategoryTheory.Iso.inv
CategoryTheory.CategoryStruct.id
β€”comp_whiskerRight
CategoryTheory.Iso.hom_inv_id
id_whiskerRight
hom_inv_whiskerRight_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
whiskerRight
CategoryTheory.Iso.hom
CategoryTheory.Iso.inv
β€”CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
hom_inv_whiskerRight
hom_inv_whiskerRight_whiskerRight πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
whiskerRight
CategoryTheory.Iso.hom
CategoryTheory.Iso.inv
CategoryTheory.CategoryStruct.id
β€”CategoryTheory.Iso.hom_inv_id
id_whiskerRight
hom_inv_whiskerRight_whiskerRight_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
whiskerRight
CategoryTheory.Iso.hom
CategoryTheory.Iso.inv
β€”CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
hom_inv_whiskerRight_whiskerRight
id_whiskerLeft πŸ“–mathematicalβ€”whiskerLeft
CategoryTheory.CategoryStruct.id
toCategoryStruct
CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
homCategory
CategoryTheory.Iso.hom
leftUnitor
CategoryTheory.Iso.inv
β€”β€”
id_whiskerLeft_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.id
whiskerLeft
CategoryTheory.Iso.hom
leftUnitor
CategoryTheory.Iso.inv
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
id_whiskerLeft
id_whiskerLeft_symm πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.inv
leftUnitor
whiskerLeft
CategoryTheory.Iso.hom
β€”id_whiskerLeft
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
CategoryTheory.Iso.inv_hom_id_assoc
id_whiskerRight πŸ“–mathematicalβ€”whiskerRight
CategoryTheory.CategoryStruct.id
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.comp
β€”β€”
inv_hom_whiskerRight πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
whiskerRight
CategoryTheory.Iso.inv
CategoryTheory.Iso.hom
CategoryTheory.CategoryStruct.id
β€”comp_whiskerRight
CategoryTheory.Iso.inv_hom_id
id_whiskerRight
inv_hom_whiskerRight_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
whiskerRight
CategoryTheory.Iso.inv
CategoryTheory.Iso.hom
β€”CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
inv_hom_whiskerRight
inv_hom_whiskerRight_whiskerRight πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
whiskerRight
CategoryTheory.Iso.inv
CategoryTheory.Iso.hom
CategoryTheory.CategoryStruct.id
β€”CategoryTheory.Iso.inv_hom_id
id_whiskerRight
inv_hom_whiskerRight_whiskerRight_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
whiskerRight
CategoryTheory.Iso.inv
CategoryTheory.Iso.hom
β€”CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
inv_hom_whiskerRight_whiskerRight
inv_whiskerLeft πŸ“–mathematicalβ€”CategoryTheory.inv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.comp
whiskerLeft
whiskerLeft_isIso
β€”CategoryTheory.IsIso.inv_eq_of_hom_inv_id
whiskerLeft_isIso
CategoryTheory.IsIso.hom_inv_id
whiskerLeft_id
inv_whiskerRight πŸ“–mathematicalβ€”CategoryTheory.inv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.comp
whiskerRight
whiskerRight_isIso
β€”CategoryTheory.IsIso.inv_eq_of_hom_inv_id
whiskerRight_isIso
CategoryTheory.IsIso.hom_inv_id
id_whiskerRight
leftUnitorNatIso_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
homCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
precomposing
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor.id
CategoryTheory.Iso.hom
leftUnitorNatIso
CategoryTheory.CategoryStruct.comp
leftUnitor
β€”β€”
leftUnitorNatIso_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
homCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
precomposing
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.inv
leftUnitorNatIso
CategoryTheory.CategoryStruct.comp
leftUnitor
β€”β€”
leftUnitor_comp πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.comp
CategoryTheory.CategoryStruct.id
leftUnitor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.inv
associator
whiskerRight
β€”leftUnitor_whiskerRight
CategoryTheory.Iso.inv_hom_id_assoc
leftUnitor_comp_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.hom
leftUnitor
CategoryTheory.Iso.inv
associator
whiskerRight
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
leftUnitor_comp
leftUnitor_comp_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.comp
CategoryTheory.CategoryStruct.id
leftUnitor
CategoryTheory.Category.toCategoryStruct
whiskerRight
CategoryTheory.Iso.hom
associator
β€”leftUnitor_inv_whiskerRight
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
leftUnitor_comp_inv_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.inv
leftUnitor
whiskerRight
CategoryTheory.Iso.hom
associator
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
leftUnitor_comp_inv
leftUnitor_inv_naturality πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.inv
leftUnitor
whiskerLeft
β€”id_whiskerLeft
CategoryTheory.Iso.inv_hom_id_assoc
leftUnitor_inv_naturality_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.inv
leftUnitor
whiskerLeft
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
leftUnitor_inv_naturality
leftUnitor_inv_whiskerRight πŸ“–mathematicalβ€”whiskerRight
CategoryTheory.CategoryStruct.comp
toCategoryStruct
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.inv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
homCategory
leftUnitor
CategoryTheory.Category.toCategoryStruct
associator
β€”CategoryTheory.eq_of_inv_eq_inv
whiskerRight_isIso
CategoryTheory.Iso.isIso_inv
CategoryTheory.IsIso.comp_isIso
inv_whiskerRight
CategoryTheory.IsIso.Iso.inv_inv
leftUnitor_whiskerRight
CategoryTheory.IsIso.inv_comp
leftUnitor_inv_whiskerRight_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.id
whiskerRight
CategoryTheory.Iso.inv
leftUnitor
associator
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
leftUnitor_inv_whiskerRight
leftUnitor_naturality πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.id
whiskerLeft
CategoryTheory.Iso.hom
leftUnitor
β€”id_whiskerLeft
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
leftUnitor_naturality_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.id
whiskerLeft
CategoryTheory.Iso.hom
leftUnitor
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
leftUnitor_naturality
leftUnitor_whiskerRight πŸ“–mathematicalβ€”whiskerRight
CategoryTheory.CategoryStruct.comp
toCategoryStruct
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
homCategory
leftUnitor
CategoryTheory.Category.toCategoryStruct
associator
β€”whiskerLeft_iff
whiskerLeft_comp
CategoryTheory.cancel_epi
CategoryTheory.IsIso.epi_of_iso
CategoryTheory.Iso.isIso_hom
whiskerRight_isIso
pentagon_assoc
triangle
associator_naturality_middle
comp_whiskerRight_assoc
associator_naturality_left
leftUnitor_whiskerRight_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.id
whiskerRight
CategoryTheory.Iso.hom
leftUnitor
associator
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
leftUnitor_whiskerRight
pentagon πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
whiskerRight
CategoryTheory.Iso.hom
associator
whiskerLeft
β€”β€”
pentagon_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
whiskerRight
CategoryTheory.Iso.hom
associator
whiskerLeft
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pentagon
pentagon_hom_hom_inv_hom_hom πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
CategoryTheory.Iso.hom
associator
whiskerLeft
CategoryTheory.Iso.inv
whiskerRight
β€”CategoryTheory.eq_of_inv_eq_inv
CategoryTheory.IsIso.comp_isIso
CategoryTheory.Iso.isIso_hom
whiskerLeft_isIso
CategoryTheory.Iso.isIso_inv
whiskerRight_isIso
CategoryTheory.IsIso.inv_comp
inv_whiskerLeft
CategoryTheory.IsIso.Iso.inv_inv
CategoryTheory.IsIso.Iso.inv_hom
CategoryTheory.Category.assoc
pentagon_hom_inv_inv_inv_inv
inv_whiskerRight
pentagon_hom_hom_inv_hom_hom_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
CategoryTheory.Iso.hom
associator
whiskerLeft
CategoryTheory.Iso.inv
whiskerRight
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pentagon_hom_hom_inv_hom_hom
pentagon_hom_hom_inv_inv_hom πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
CategoryTheory.Iso.hom
associator
whiskerLeft
CategoryTheory.Iso.inv
whiskerRight
β€”CategoryTheory.eq_of_inv_eq_inv
CategoryTheory.IsIso.comp_isIso
CategoryTheory.Iso.isIso_hom
whiskerLeft_isIso
CategoryTheory.Iso.isIso_inv
whiskerRight_isIso
CategoryTheory.IsIso.inv_comp
CategoryTheory.IsIso.Iso.inv_inv
inv_whiskerLeft
CategoryTheory.IsIso.Iso.inv_hom
CategoryTheory.Category.assoc
pentagon_hom_inv_inv_inv_hom
inv_whiskerRight
pentagon_hom_hom_inv_inv_hom_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
CategoryTheory.Iso.hom
associator
whiskerLeft
CategoryTheory.Iso.inv
whiskerRight
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pentagon_hom_hom_inv_inv_hom
pentagon_hom_inv_inv_inv_hom πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
CategoryTheory.Iso.hom
associator
whiskerLeft
CategoryTheory.Iso.inv
whiskerRight
β€”CategoryTheory.cancel_epi
CategoryTheory.IsIso.epi_of_iso
CategoryTheory.Iso.isIso_inv
CategoryTheory.cancel_mono
CategoryTheory.IsIso.mono_of_iso
whiskerRight_isIso
CategoryTheory.Iso.inv_hom_id_assoc
CategoryTheory.Category.assoc
pentagon_inv
hom_inv_whiskerRight
CategoryTheory.Category.comp_id
pentagon_hom_inv_inv_inv_hom_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
CategoryTheory.Iso.hom
associator
whiskerLeft
CategoryTheory.Iso.inv
whiskerRight
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pentagon_hom_inv_inv_inv_hom
pentagon_hom_inv_inv_inv_inv πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
whiskerLeft
CategoryTheory.Iso.hom
associator
CategoryTheory.Iso.inv
whiskerRight
β€”CategoryTheory.cancel_epi
CategoryTheory.IsIso.epi_of_iso
whiskerLeft_isIso
CategoryTheory.Iso.isIso_inv
whiskerLeft_inv_hom_assoc
pentagon_inv
pentagon_hom_inv_inv_inv_inv_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
whiskerLeft
CategoryTheory.Iso.hom
associator
CategoryTheory.Iso.inv
whiskerRight
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pentagon_hom_inv_inv_inv_inv
pentagon_inv πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
whiskerLeft
CategoryTheory.Iso.inv
associator
whiskerRight
β€”CategoryTheory.eq_of_inv_eq_inv
CategoryTheory.IsIso.comp_isIso
whiskerLeft_isIso
CategoryTheory.Iso.isIso_inv
whiskerRight_isIso
CategoryTheory.IsIso.inv_comp
inv_whiskerRight
CategoryTheory.IsIso.Iso.inv_inv
inv_whiskerLeft
CategoryTheory.Category.assoc
pentagon
pentagon_inv_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
whiskerLeft
CategoryTheory.Iso.inv
associator
whiskerRight
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pentagon_inv
pentagon_inv_hom_hom_hom_hom πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
whiskerRight
CategoryTheory.Iso.inv
associator
CategoryTheory.Iso.hom
whiskerLeft
β€”CategoryTheory.cancel_epi
CategoryTheory.IsIso.epi_of_iso
whiskerRight_isIso
CategoryTheory.Iso.isIso_hom
hom_inv_whiskerRight_assoc
pentagon
pentagon_inv_hom_hom_hom_hom_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
whiskerRight
CategoryTheory.Iso.inv
associator
CategoryTheory.Iso.hom
whiskerLeft
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pentagon_inv_hom_hom_hom_hom
pentagon_inv_hom_hom_hom_inv πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
CategoryTheory.Iso.inv
associator
whiskerRight
CategoryTheory.Iso.hom
whiskerLeft
β€”CategoryTheory.eq_of_inv_eq_inv
CategoryTheory.IsIso.comp_isIso
CategoryTheory.Iso.isIso_inv
whiskerRight_isIso
CategoryTheory.Iso.isIso_hom
whiskerLeft_isIso
CategoryTheory.IsIso.inv_comp
CategoryTheory.IsIso.Iso.inv_hom
inv_whiskerRight
CategoryTheory.IsIso.Iso.inv_inv
CategoryTheory.Category.assoc
pentagon_inv_inv_hom_hom_inv
inv_whiskerLeft
pentagon_inv_hom_hom_hom_inv_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
CategoryTheory.Iso.inv
associator
whiskerRight
CategoryTheory.Iso.hom
whiskerLeft
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pentagon_inv_hom_hom_hom_inv
pentagon_inv_inv_hom_hom_inv πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
CategoryTheory.Iso.inv
associator
whiskerRight
CategoryTheory.Iso.hom
whiskerLeft
β€”CategoryTheory.cancel_epi
CategoryTheory.IsIso.epi_of_iso
whiskerLeft_isIso
CategoryTheory.Iso.isIso_inv
CategoryTheory.cancel_mono
CategoryTheory.IsIso.mono_of_iso
pentagon_inv_assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
whiskerLeft_inv_hom_assoc
pentagon_inv_inv_hom_hom_inv_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
CategoryTheory.Iso.inv
associator
whiskerRight
CategoryTheory.Iso.hom
whiskerLeft
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pentagon_inv_inv_hom_hom_inv
pentagon_inv_inv_hom_inv_inv πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
CategoryTheory.Iso.inv
associator
whiskerRight
CategoryTheory.Iso.hom
whiskerLeft
β€”CategoryTheory.eq_of_inv_eq_inv
CategoryTheory.IsIso.comp_isIso
CategoryTheory.Iso.isIso_inv
whiskerRight_isIso
CategoryTheory.Iso.isIso_hom
whiskerLeft_isIso
CategoryTheory.IsIso.inv_comp
inv_whiskerRight
CategoryTheory.IsIso.Iso.inv_hom
CategoryTheory.IsIso.Iso.inv_inv
CategoryTheory.Category.assoc
pentagon_inv_hom_hom_hom_hom
inv_whiskerLeft
pentagon_inv_inv_hom_inv_inv_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
CategoryTheory.Iso.inv
associator
whiskerRight
CategoryTheory.Iso.hom
whiskerLeft
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pentagon_inv_inv_hom_inv_inv
postcomp_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
homCategory
postcomp
whiskerRight
β€”β€”
postcomp_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
homCategory
postcomp
CategoryTheory.CategoryStruct.comp
β€”β€”
postcomposing_map_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
homCategory
postcomp
CategoryTheory.Functor.map
CategoryTheory.Functor
CategoryTheory.Functor.category
postcomposing
whiskerLeft
β€”β€”
postcomposing_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
homCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
postcomposing
postcomp
β€”β€”
precomp_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
homCategory
precomp
whiskerLeft
β€”β€”
precomp_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
homCategory
precomp
CategoryTheory.CategoryStruct.comp
β€”β€”
precomposing_map_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
homCategory
precomp
CategoryTheory.Functor.map
CategoryTheory.Functor
CategoryTheory.Functor.category
precomposing
whiskerRight
β€”β€”
precomposing_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
homCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
precomposing
precomp
β€”β€”
rightUnitorNatIso_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
homCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
postcomposing
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor.id
CategoryTheory.Iso.hom
rightUnitorNatIso
CategoryTheory.CategoryStruct.comp
rightUnitor
β€”β€”
rightUnitorNatIso_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
homCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
postcomposing
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.inv
rightUnitorNatIso
CategoryTheory.CategoryStruct.comp
rightUnitor
β€”β€”
rightUnitor_comp πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.comp
CategoryTheory.CategoryStruct.id
rightUnitor
CategoryTheory.Category.toCategoryStruct
associator
whiskerLeft
β€”whiskerLeft_rightUnitor
CategoryTheory.Iso.hom_inv_id_assoc
rightUnitor_comp_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.hom
rightUnitor
associator
whiskerLeft
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
rightUnitor_comp
rightUnitor_comp_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.comp
CategoryTheory.CategoryStruct.id
rightUnitor
CategoryTheory.Category.toCategoryStruct
whiskerLeft
associator
β€”whiskerLeft_rightUnitor_inv
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.comp_id
rightUnitor_comp_inv_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.inv
rightUnitor
whiskerLeft
associator
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
rightUnitor_comp_inv
rightUnitor_inv_naturality πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.inv
rightUnitor
whiskerRight
β€”whiskerRight_id
CategoryTheory.Iso.inv_hom_id_assoc
rightUnitor_inv_naturality_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.inv
rightUnitor
whiskerRight
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
rightUnitor_inv_naturality
rightUnitor_naturality πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.id
whiskerRight
CategoryTheory.Iso.hom
rightUnitor
β€”whiskerRight_id
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
rightUnitor_naturality_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.id
whiskerRight
CategoryTheory.Iso.hom
rightUnitor
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
rightUnitor_naturality
triangle πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.hom
associator
whiskerLeft
leftUnitor
whiskerRight
rightUnitor
β€”β€”
triangle_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.hom
associator
whiskerLeft
leftUnitor
whiskerRight
rightUnitor
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
triangle
triangle_assoc_comp_left πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.hom
associator
whiskerLeft
leftUnitor
whiskerRight
rightUnitor
β€”triangle
triangle_assoc_comp_left_inv πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.id
whiskerLeft
CategoryTheory.Iso.inv
leftUnitor
associator
whiskerRight
rightUnitor
β€”CategoryTheory.cancel_mono
CategoryTheory.IsIso.mono_of_iso
whiskerRight_isIso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Category.assoc
triangle_assoc_comp_right
whiskerLeft_inv_hom
inv_hom_whiskerRight
triangle_assoc_comp_left_inv_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.id
whiskerLeft
CategoryTheory.Iso.inv
leftUnitor
associator
whiskerRight
rightUnitor
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
triangle_assoc_comp_left_inv
triangle_assoc_comp_right πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.inv
associator
whiskerRight
CategoryTheory.Iso.hom
rightUnitor
whiskerLeft
leftUnitor
β€”triangle
CategoryTheory.Iso.inv_hom_id_assoc
triangle_assoc_comp_right_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.inv
associator
whiskerRight
CategoryTheory.Iso.hom
rightUnitor
whiskerLeft
leftUnitor
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
triangle_assoc_comp_right
triangle_assoc_comp_right_inv πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.id
whiskerRight
CategoryTheory.Iso.inv
rightUnitor
CategoryTheory.Iso.hom
associator
whiskerLeft
leftUnitor
β€”CategoryTheory.cancel_mono
CategoryTheory.IsIso.mono_of_iso
whiskerLeft_isIso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Category.assoc
triangle
inv_hom_whiskerRight
whiskerLeft_inv_hom
triangle_assoc_comp_right_inv_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.id
whiskerRight
CategoryTheory.Iso.inv
rightUnitor
CategoryTheory.Iso.hom
associator
whiskerLeft
leftUnitor
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
triangle_assoc_comp_right_inv
unitors_equal πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.comp
CategoryTheory.CategoryStruct.id
leftUnitor
rightUnitor
β€”whiskerLeft_iff
CategoryTheory.cancel_epi
CategoryTheory.IsIso.epi_of_iso
CategoryTheory.Iso.isIso_hom
CategoryTheory.cancel_mono
CategoryTheory.IsIso.mono_of_iso
triangle
rightUnitor_comp
rightUnitor_naturality
unitors_inv_equal πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.comp
CategoryTheory.CategoryStruct.id
leftUnitor
rightUnitor
β€”unitors_equal
whiskerLeftIso_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.comp
whiskerLeftIso
whiskerLeft
β€”β€”
whiskerLeftIso_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.comp
whiskerLeftIso
whiskerLeft
β€”β€”
whiskerLeft_comp πŸ“–mathematicalβ€”whiskerLeft
CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
β€”β€”
whiskerLeft_comp_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
whiskerLeft
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
whiskerLeft_comp
whiskerLeft_hom_inv πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
whiskerLeft
CategoryTheory.Iso.hom
CategoryTheory.Iso.inv
CategoryTheory.CategoryStruct.id
β€”whiskerLeft_comp
CategoryTheory.Iso.hom_inv_id
whiskerLeft_id
whiskerLeft_hom_inv_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
whiskerLeft
CategoryTheory.Iso.hom
CategoryTheory.Iso.inv
β€”CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
whiskerLeft_hom_inv
whiskerLeft_hom_inv_whiskerRight πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
whiskerLeft
whiskerRight
CategoryTheory.Iso.hom
CategoryTheory.Iso.inv
CategoryTheory.CategoryStruct.id
β€”hom_inv_whiskerRight
whiskerLeft_id
whiskerLeft_hom_inv_whiskerRight_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
whiskerLeft
whiskerRight
CategoryTheory.Iso.hom
CategoryTheory.Iso.inv
β€”CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
whiskerLeft_hom_inv_whiskerRight
whiskerLeft_id πŸ“–mathematicalβ€”whiskerLeft
CategoryTheory.CategoryStruct.id
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.comp
β€”β€”
whiskerLeft_iff πŸ“–mathematicalβ€”whiskerLeft
CategoryTheory.CategoryStruct.id
toCategoryStruct
β€”id_whiskerLeft
whiskerLeft_inv_hom πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
whiskerLeft
CategoryTheory.Iso.inv
CategoryTheory.Iso.hom
CategoryTheory.CategoryStruct.id
β€”whiskerLeft_comp
CategoryTheory.Iso.inv_hom_id
whiskerLeft_id
whiskerLeft_inv_hom_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
whiskerLeft
CategoryTheory.Iso.inv
CategoryTheory.Iso.hom
β€”CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
whiskerLeft_inv_hom
whiskerLeft_inv_hom_whiskerRight πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
whiskerLeft
whiskerRight
CategoryTheory.Iso.inv
CategoryTheory.Iso.hom
CategoryTheory.CategoryStruct.id
β€”inv_hom_whiskerRight
whiskerLeft_id
whiskerLeft_inv_hom_whiskerRight_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
whiskerLeft
whiskerRight
CategoryTheory.Iso.inv
CategoryTheory.Iso.hom
β€”CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
whiskerLeft_inv_hom_whiskerRight
whiskerLeft_isIso πŸ“–mathematicalβ€”CategoryTheory.IsIso
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.comp
whiskerLeft
β€”CategoryTheory.Iso.isIso_hom
whiskerLeft_rightUnitor πŸ“–mathematicalβ€”whiskerLeft
CategoryTheory.CategoryStruct.comp
toCategoryStruct
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
homCategory
rightUnitor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.inv
associator
β€”whiskerRight_iff
comp_whiskerRight
CategoryTheory.cancel_epi
CategoryTheory.IsIso.epi_of_iso
CategoryTheory.Iso.isIso_inv
whiskerLeft_isIso
pentagon_inv_assoc
triangle_assoc_comp_right
associator_inv_naturality_middle
whiskerLeft_comp_assoc
associator_inv_naturality_right
whiskerLeft_rightUnitor_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.id
whiskerLeft
CategoryTheory.Iso.hom
rightUnitor
CategoryTheory.Iso.inv
associator
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
whiskerLeft_rightUnitor
whiskerLeft_rightUnitor_inv πŸ“–mathematicalβ€”whiskerLeft
CategoryTheory.CategoryStruct.comp
toCategoryStruct
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.inv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
homCategory
rightUnitor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
associator
β€”CategoryTheory.eq_of_inv_eq_inv
whiskerLeft_isIso
CategoryTheory.Iso.isIso_inv
CategoryTheory.IsIso.comp_isIso
CategoryTheory.Iso.isIso_hom
inv_whiskerLeft
CategoryTheory.IsIso.Iso.inv_inv
whiskerLeft_rightUnitor
CategoryTheory.IsIso.inv_comp
CategoryTheory.IsIso.Iso.inv_hom
whiskerLeft_rightUnitor_inv_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.id
whiskerLeft
CategoryTheory.Iso.inv
rightUnitor
CategoryTheory.Iso.hom
associator
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
whiskerLeft_rightUnitor_inv
whiskerLeft_whiskerLeft_hom_inv πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
whiskerLeft
CategoryTheory.Iso.hom
CategoryTheory.Iso.inv
CategoryTheory.CategoryStruct.id
β€”CategoryTheory.Iso.hom_inv_id
whiskerLeft_id
whiskerLeft_whiskerLeft_hom_inv_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
whiskerLeft
CategoryTheory.Iso.hom
CategoryTheory.Iso.inv
β€”CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
whiskerLeft_whiskerLeft_hom_inv
whiskerLeft_whiskerLeft_inv_hom πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
whiskerLeft
CategoryTheory.Iso.inv
CategoryTheory.Iso.hom
CategoryTheory.CategoryStruct.id
β€”CategoryTheory.Iso.inv_hom_id
whiskerLeft_id
whiskerLeft_whiskerLeft_inv_hom_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
whiskerLeft
CategoryTheory.Iso.inv
CategoryTheory.Iso.hom
β€”CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
whiskerLeft_whiskerLeft_inv_hom
whiskerRightIso_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.comp
whiskerRightIso
whiskerRight
β€”β€”
whiskerRightIso_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.comp
whiskerRightIso
whiskerRight
β€”β€”
whiskerRight_comp πŸ“–mathematicalβ€”whiskerRight
CategoryTheory.CategoryStruct.comp
toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
homCategory
CategoryTheory.Iso.inv
associator
CategoryTheory.Iso.hom
β€”β€”
whiskerRight_comp_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
whiskerRight
CategoryTheory.Iso.inv
associator
CategoryTheory.Iso.hom
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
whiskerRight_comp
whiskerRight_comp_symm πŸ“–mathematicalβ€”whiskerRight
CategoryTheory.CategoryStruct.comp
toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
homCategory
CategoryTheory.Iso.hom
associator
CategoryTheory.Iso.inv
β€”whiskerRight_comp
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.comp_id
CategoryTheory.Iso.hom_inv_id_assoc
whiskerRight_comp_symm_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
whiskerRight
CategoryTheory.Iso.hom
associator
CategoryTheory.Iso.inv
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
whiskerRight_comp_symm
whiskerRight_id πŸ“–mathematicalβ€”whiskerRight
CategoryTheory.CategoryStruct.id
toCategoryStruct
CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
homCategory
CategoryTheory.Iso.hom
rightUnitor
CategoryTheory.Iso.inv
β€”β€”
whiskerRight_id_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.id
whiskerRight
CategoryTheory.Iso.hom
rightUnitor
CategoryTheory.Iso.inv
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
whiskerRight_id
whiskerRight_id_symm πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.inv
rightUnitor
whiskerRight
CategoryTheory.Iso.hom
β€”whiskerRight_id
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
CategoryTheory.Iso.inv_hom_id_assoc
whiskerRight_iff πŸ“–mathematicalβ€”whiskerRight
CategoryTheory.CategoryStruct.id
toCategoryStruct
β€”whiskerRight_id
whiskerRight_isIso πŸ“–mathematicalβ€”CategoryTheory.IsIso
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.comp
whiskerRight
β€”CategoryTheory.Iso.isIso_hom
whisker_assoc πŸ“–mathematicalβ€”whiskerRight
CategoryTheory.CategoryStruct.comp
toCategoryStruct
whiskerLeft
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
homCategory
CategoryTheory.Iso.hom
associator
CategoryTheory.Iso.inv
β€”β€”
whisker_assoc_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
whiskerRight
whiskerLeft
CategoryTheory.Iso.hom
associator
CategoryTheory.Iso.inv
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
whisker_assoc
whisker_assoc_symm πŸ“–mathematicalβ€”whiskerLeft
CategoryTheory.CategoryStruct.comp
toCategoryStruct
whiskerRight
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
homCategory
CategoryTheory.Iso.inv
associator
CategoryTheory.Iso.hom
β€”whisker_assoc
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
CategoryTheory.Iso.inv_hom_id_assoc
whisker_assoc_symm_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
whiskerLeft
whiskerRight
CategoryTheory.Iso.inv
associator
CategoryTheory.Iso.hom
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
whisker_assoc_symm
whisker_exchange πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
whiskerLeft
whiskerRight
β€”β€”
whisker_exchange_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
whiskerLeft
whiskerRight
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
whisker_exchange

---

← Back to Index