| Name | Category | Theorems |
EndMonoidal 📖 | CompOp | 8 mathmath: MonoidalSingleObj.endMonoidalStarFunctorEquivalence_counitIso, MonoidalSingleObj.endMonoidalStarFunctor_map, MonoidalSingleObj.endMonoidalStarFunctor_isEquivalence, MonoidalSingleObj.endMonoidalStarFunctor_obj, MonoidalSingleObj.endMonoidalStarFunctorEquivalence_unitIso, MonoidalSingleObj.endMonoidalStarFunctorEquivalence_inverse_map, MonoidalSingleObj.endMonoidalStarFunctorEquivalence_functor, MonoidalSingleObj.endMonoidalStarFunctorEquivalence_inverse_obj
|
instCategoryEndMonoidal 📖 | CompOp | 17 mathmath: Bicategory.Comonad.comul_assoc_flip, whiskerLeft_def, whiskerRight_def, Bicategory.Comonad.comul_assoc_flip_assoc, Bicategory.Comonad.counit_comul_assoc, rightUnitor_def, tensorHom_def, associator_def, Bicategory.Comonad.comul_assoc, Bicategory.Comonad.counit_def, tensorObj_def, Bicategory.Comonad.comul_counit_assoc, tensorUnit_def, Bicategory.Comonad.comul_assoc_assoc, Bicategory.Comonad.counit_comul, Bicategory.Comonad.comul_counit, leftUnitor_def
|
instInhabitedEndMonoidal 📖 | CompOp | — |
instMonoidalCategoryHom 📖 | CompOp | 9 mathmath: whiskerLeft_def, whiskerRight_def, rightUnitor_def, tensorHom_def, associator_def, Bicategory.Comonad.counit_def, tensorObj_def, tensorUnit_def, leftUnitor_def
|