Documentation Verification Report

EqToHom

📁 Source: Mathlib/CategoryTheory/Bicategory/EqToHom.lean

Statistics

MetricCount
DefinitionseqToHomTransIso
1
Theoremsassociator_eqToHom_hom, associator_eqToHom_hom_assoc, associator_eqToHom_inv, associator_eqToHom_inv_assoc, associator_hom_congr, associator_inv_congr, congr_whiskerLeft, eqToHomTransIso_refl_left, eqToHomTransIso_refl_refl, eqToHomTransIso_refl_right, leftUnitor_hom_congr, leftUnitor_inv_congr, rightUnitor_hom_congr, rightUnitor_inv_congr, whiskerRight_congr
15
Total16

CategoryTheory.Bicategory

Definitions

NameCategoryTheorems
eqToHomTransIso 📖CompOp
7 mathmath: eqToHomTransIso_refl_left, eqToHomTransIso_refl_refl, associator_eqToHom_hom_assoc, associator_eqToHom_inv, eqToHomTransIso_refl_right, associator_eqToHom_inv_assoc, associator_eqToHom_hom

Theorems

NameKindAssumesProvesValidatesDepends On
associator_eqToHom_hom 📖mathematicalCategoryTheory.Iso.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.comp
CategoryTheory.eqToHom
associator
CategoryTheory.Category.toCategoryStruct
whiskerRight
CategoryTheory.Iso.inv
eqToHomTransIso
whiskerLeft
unitors_equal
whiskerRight_id
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.comp_id
unitors_inv_equal
whiskerLeft_rightUnitor_inv
CategoryTheory.Iso.hom_inv_id_assoc
associator_eqToHom_hom_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
CategoryTheory.eqToHom
CategoryTheory.Iso.hom
associator
whiskerRight
CategoryTheory.Iso.inv
eqToHomTransIso
whiskerLeft
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
associator_eqToHom_hom
associator_eqToHom_inv 📖mathematicalCategoryTheory.Iso.inv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.comp
CategoryTheory.eqToHom
associator
CategoryTheory.Category.toCategoryStruct
whiskerLeft
eqToHomTransIso
CategoryTheory.Iso.hom
whiskerRight
unitors_equal
whiskerLeft_rightUnitor
unitors_inv_equal
whiskerRight_id
CategoryTheory.Iso.hom_inv_id_assoc
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.comp_id
associator_eqToHom_inv_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
CategoryTheory.eqToHom
CategoryTheory.Iso.inv
associator
whiskerLeft
eqToHomTransIso
CategoryTheory.Iso.hom
whiskerRight
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
associator_eqToHom_inv
associator_hom_congr 📖mathematicalCategoryTheory.Iso.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.comp
associator
CategoryTheory.Category.toCategoryStruct
CategoryTheory.eqToHom
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
associator_inv_congr 📖mathematicalCategoryTheory.Iso.inv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.comp
associator
CategoryTheory.Category.toCategoryStruct
CategoryTheory.eqToHom
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
congr_whiskerLeft 📖mathematicalwhiskerLeft
CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
CategoryTheory.eqToHom
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
eqToHomTransIso_refl_left 📖mathematicaleqToHomTransIso
CategoryTheory.Iso.symm
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.comp
CategoryTheory.CategoryStruct.id
CategoryTheory.eqToHom
leftUnitor
CategoryTheory.Iso.ext
unitors_inv_equal
eqToHomTransIso_refl_refl 📖mathematicaleqToHomTransIso
CategoryTheory.Iso.symm
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.comp
CategoryTheory.CategoryStruct.id
leftUnitor
eqToHomTransIso_refl_right 📖mathematicaleqToHomTransIso
CategoryTheory.Iso.symm
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.comp
CategoryTheory.eqToHom
CategoryTheory.CategoryStruct.id
rightUnitor
CategoryTheory.Iso.ext
unitors_inv_equal
leftUnitor_hom_congr 📖mathematicalCategoryTheory.Iso.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.comp
CategoryTheory.CategoryStruct.id
leftUnitor
CategoryTheory.Category.toCategoryStruct
whiskerLeft
CategoryTheory.eqToHom
whiskerLeft_id
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
leftUnitor_inv_congr 📖mathematicalCategoryTheory.Iso.inv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.comp
CategoryTheory.CategoryStruct.id
leftUnitor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.eqToHom
whiskerLeft
whiskerLeft_id
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
rightUnitor_hom_congr 📖mathematicalCategoryTheory.Iso.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.comp
CategoryTheory.CategoryStruct.id
rightUnitor
CategoryTheory.Category.toCategoryStruct
whiskerRight
CategoryTheory.eqToHom
whiskerRight_id
CategoryTheory.Category.id_comp
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.comp_id
rightUnitor_inv_congr 📖mathematicalCategoryTheory.Iso.inv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
homCategory
CategoryTheory.CategoryStruct.comp
CategoryTheory.CategoryStruct.id
rightUnitor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.eqToHom
whiskerRight
whiskerRight_id
CategoryTheory.Category.id_comp
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.comp_id
whiskerRight_congr 📖mathematicalwhiskerRight
CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
CategoryTheory.eqToHom
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp

---

← Back to Index