Documentation Verification Report

Extension

📁 Source: Mathlib/CategoryTheory/Bicategory/Extension.lean

Statistics

MetricCount
DefinitionsLeftExtension, alongId, extension, homMk, instInhabitedId, mk, ofCompId, unit, whisker, whiskerHom, whiskerIdCancel, whiskerIso, whiskerOfCompIdIsoSelf, whiskering, LeftLift, alongId, homMk, instInhabitedId, mk, ofIdComp, unit, whisker, whiskerHom, whiskerIdCancel, whiskerIso, whiskerOfIdCompIsoSelf, whiskering, RightExtension, alongId, counit, extension, homMk, instInhabitedId, mk, RightLift, alongId, counit, homMk, instInhabitedId, mk, Extension
41
TheoremsofCompId_hom, ofCompId_left_as, ofCompId_right, w, w_assoc, whiskerHom_right, whiskerIdCancel_right, whiskerOfCompIdIsoSelf_hom_right, whiskerOfCompIdIsoSelf_inv_right, whisker_extension, whisker_unit, whiskering_map, whiskering_obj, ofIdComp_hom, ofIdComp_left_as, ofIdComp_right, w, w_assoc, whiskerHom_right, whiskerIdCancel_right, whiskerOfIdCompIsoSelf_hom_right, whiskerOfIdCompIsoSelf_inv_right, whisker_lift, whisker_unit, whiskering_map, whiskering_obj, w, w_assoc, w, w_assoc
30
Total71

CategoryTheory.Bicategory

Definitions

NameCategoryTheorems
LeftExtension 📖CompOp
10 mathmath: LeftExtension.whiskering_map, Lan.CommuteWith.lanCompIsoWhisker_hom_right, LeftExtension.IsKan.uniqueUpToIso_hom_right, Lan.CommuteWith.lanCompIsoWhisker_inv_right, instHasInitialLeftExtensionOfHasLeftKanExtension, LeftExtension.IsKan.uniqueUpToIso_inv_right, HasLeftKanExtension.hasInitial, LeftExtension.whiskerOfCompIdIsoSelf_hom_right, LeftExtension.whiskerOfCompIdIsoSelf_inv_right, LeftExtension.whiskering_obj
LeftLift 📖CompOp
10 mathmath: LeftLift.whiskering_map, HasLeftKanLift.hasInitial, LeftLift.whiskerOfIdCompIsoSelf_hom_right, LeftLift.IsKan.uniqueUpToIso_hom_right, instHasInitialLeftLiftOfHasLeftKanLift, LanLift.CommuteWith.lanLiftCompIsoWhisker_inv_right, LeftLift.IsKan.uniqueUpToIso_inv_right, LeftLift.whiskering_obj, LeftLift.whiskerOfIdCompIsoSelf_inv_right, LanLift.CommuteWith.lanLiftCompIsoWhisker_hom_right
RightExtension 📖CompOp
RightLift 📖CompOp

CategoryTheory.Bicategory.LeftExtension

Definitions

NameCategoryTheorems
alongId 📖CompOp
extension 📖CompOp
15 mathmath: w_assoc, CategoryTheory.Bicategory.Lan.existsUnique, ofCompId_right, whiskerIdCancel_right, IsKan.fac_assoc, ofCompId_hom, CategoryTheory.Bicategory.lanUnit_desc, whisker_unit, whiskerOfCompIdIsoSelf_hom_right, CategoryTheory.Bicategory.lanLeftExtension_extension, whisker_extension, CategoryTheory.Bicategory.lanUnit_desc_assoc, whiskerOfCompIdIsoSelf_inv_right, IsKan.fac, w
homMk 📖CompOp
1 mathmath: whiskering_map
instInhabitedId 📖CompOp
mk 📖CompOp
ofCompId 📖CompOp
6 mathmath: ofCompId_right, ofCompId_left_as, whiskerIdCancel_right, ofCompId_hom, whiskerOfCompIdIsoSelf_hom_right, whiskerOfCompIdIsoSelf_inv_right
unit 📖CompOp
10 mathmath: w_assoc, CategoryTheory.Bicategory.Lan.existsUnique, IsKan.fac_assoc, ofCompId_hom, CategoryTheory.Bicategory.lanUnit_desc, whisker_unit, CategoryTheory.Bicategory.lanUnit_desc_assoc, IsKan.fac, CategoryTheory.Bicategory.lanLeftExtension_unit, w
whisker 📖CompOp
13 mathmath: whiskering_map, CategoryTheory.Bicategory.Lan.CommuteWith.lanCompIso_inv, CategoryTheory.Bicategory.Lan.CommuteWith.lanCompIsoWhisker_hom_right, whiskerIdCancel_right, CategoryTheory.Bicategory.Lan.CommuteWith.lanCompIsoWhisker_inv_right, CategoryTheory.Bicategory.Lan.CommuteWith.commute, CategoryTheory.Bicategory.Lan.CommuteWith.lanCompIso_hom, whisker_unit, whiskerOfCompIdIsoSelf_hom_right, whisker_extension, whiskerHom_right, whiskerOfCompIdIsoSelf_inv_right, whiskering_obj
whiskerHom 📖CompOp
1 mathmath: whiskerHom_right
whiskerIdCancel 📖CompOp
1 mathmath: whiskerIdCancel_right
whiskerIso 📖CompOp
whiskerOfCompIdIsoSelf 📖CompOp
2 mathmath: whiskerOfCompIdIsoSelf_hom_right, whiskerOfCompIdIsoSelf_inv_right
whiskering 📖CompOp
2 mathmath: whiskering_map, whiskering_obj

Theorems

NameKindAssumesProvesValidatesDepends On
ofCompId_hom 📖mathematicalCategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Bicategory.precomp
ofCompId
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.id
extension
CategoryTheory.Iso.inv
CategoryTheory.Bicategory.rightUnitor
unit
ofCompId_left_as 📖mathematicalCategoryTheory.Discrete.as
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Bicategory.precomp
ofCompId
ofCompId_right 📖mathematicalCategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Bicategory.precomp
ofCompId
extension
CategoryTheory.CategoryStruct.comp
CategoryTheory.CategoryStruct.id
w 📖mathematicalCategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
extension
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Bicategory.precomp
unit
CategoryTheory.Bicategory.whiskerLeft
CategoryTheory.CommaMorphism.right
CategoryTheory.StructuredArrow.w
w_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
extension
unit
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Bicategory.precomp
CategoryTheory.Bicategory.whiskerLeft
CategoryTheory.CommaMorphism.right
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
w
whiskerHom_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.CategoryStruct.comp
CategoryTheory.Bicategory.precomp
whisker
whiskerHom
CategoryTheory.Bicategory.whiskerRight
CategoryTheory.Comma.right
whiskerIdCancel_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Bicategory.precomp
ofCompId
whiskerIdCancel
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
extension
CategoryTheory.CategoryStruct.id
whisker
CategoryTheory.Iso.hom
CategoryTheory.Bicategory.rightUnitor
whiskerOfCompIdIsoSelf_hom_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Bicategory.precomp
ofCompId
whisker
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.hom
CategoryTheory.Bicategory.LeftExtension
CategoryTheory.instCategoryStructuredArrow
whiskerOfCompIdIsoSelf
CategoryTheory.CategoryStruct.comp
extension
CategoryTheory.Comma.right
CategoryTheory.Bicategory.rightUnitor
whiskerOfCompIdIsoSelf_inv_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Bicategory.precomp
ofCompId
whisker
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.inv
CategoryTheory.Bicategory.LeftExtension
CategoryTheory.instCategoryStructuredArrow
whiskerOfCompIdIsoSelf
CategoryTheory.CategoryStruct.comp
extension
CategoryTheory.Comma.right
CategoryTheory.Bicategory.rightUnitor
whisker_extension 📖mathematicalextension
CategoryTheory.CategoryStruct.comp
CategoryTheory.Bicategory.toCategoryStruct
whisker
whisker_unit 📖mathematicalunit
CategoryTheory.CategoryStruct.comp
CategoryTheory.Bicategory.toCategoryStruct
whisker
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
extension
CategoryTheory.Bicategory.whiskerRight
CategoryTheory.Iso.hom
CategoryTheory.Bicategory.associator
whiskering_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Bicategory.LeftExtension
CategoryTheory.instCategoryStructuredArrow
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.Bicategory.precomp
CategoryTheory.CategoryStruct.comp
whiskering
homMk
whisker
CategoryTheory.Bicategory.whiskerRight
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.CommaMorphism.right
whiskering_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Bicategory.LeftExtension
CategoryTheory.instCategoryStructuredArrow
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.Bicategory.precomp
CategoryTheory.CategoryStruct.comp
whiskering
whisker

CategoryTheory.Bicategory.LeftLift

Definitions

NameCategoryTheorems
alongId 📖CompOp
homMk 📖CompOp
1 mathmath: whiskering_map
instInhabitedId 📖CompOp
mk 📖CompOp
ofIdComp 📖CompOp
6 mathmath: ofIdComp_right, ofIdComp_hom, whiskerOfIdCompIsoSelf_hom_right, whiskerIdCancel_right, ofIdComp_left_as, whiskerOfIdCompIsoSelf_inv_right
unit 📖CompOp
10 mathmath: w_assoc, CategoryTheory.Bicategory.lanLiftUnit_desc_assoc, IsKan.fac_assoc, CategoryTheory.Bicategory.LanLift.existsUnique, CategoryTheory.Bicategory.lanLiftLeftLift_unit, whisker_unit, IsKan.fac, ofIdComp_hom, CategoryTheory.Bicategory.lanLiftUnit_desc, w
whisker 📖CompOp
13 mathmath: whiskering_map, CategoryTheory.Bicategory.LanLift.CommuteWith.lanLiftCompIso_hom, whisker_unit, whiskerHom_right, whisker_lift, whiskerOfIdCompIsoSelf_hom_right, whiskerIdCancel_right, CategoryTheory.Bicategory.LanLift.CommuteWith.commute, CategoryTheory.Bicategory.LanLift.CommuteWith.lanLiftCompIsoWhisker_inv_right, whiskering_obj, whiskerOfIdCompIsoSelf_inv_right, CategoryTheory.Bicategory.LanLift.CommuteWith.lanLiftCompIso_inv, CategoryTheory.Bicategory.LanLift.CommuteWith.lanLiftCompIsoWhisker_hom_right
whiskerHom 📖CompOp
1 mathmath: whiskerHom_right
whiskerIdCancel 📖CompOp
1 mathmath: whiskerIdCancel_right
whiskerIso 📖CompOp
whiskerOfIdCompIsoSelf 📖CompOp
2 mathmath: whiskerOfIdCompIsoSelf_hom_right, whiskerOfIdCompIsoSelf_inv_right
whiskering 📖CompOp
2 mathmath: whiskering_map, whiskering_obj

Theorems

NameKindAssumesProvesValidatesDepends On
ofIdComp_hom 📖mathematicalCategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Bicategory.postcomp
ofIdComp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.id
lift
CategoryTheory.Iso.inv
CategoryTheory.Bicategory.leftUnitor
unit
ofIdComp_left_as 📖mathematicalCategoryTheory.Discrete.as
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Bicategory.postcomp
ofIdComp
ofIdComp_right 📖mathematicalCategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Bicategory.postcomp
ofIdComp
lift
CategoryTheory.CategoryStruct.comp
CategoryTheory.CategoryStruct.id
w 📖mathematicalCategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
lift
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Bicategory.postcomp
unit
CategoryTheory.Bicategory.whiskerRight
CategoryTheory.CommaMorphism.right
CategoryTheory.StructuredArrow.w
w_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
lift
unit
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Bicategory.postcomp
CategoryTheory.Bicategory.whiskerRight
CategoryTheory.CommaMorphism.right
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
w
whiskerHom_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.CategoryStruct.comp
CategoryTheory.Bicategory.postcomp
whisker
whiskerHom
CategoryTheory.Bicategory.whiskerLeft
lift
whiskerIdCancel_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Bicategory.postcomp
ofIdComp
whiskerIdCancel
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
lift
CategoryTheory.CategoryStruct.id
whisker
CategoryTheory.Iso.hom
CategoryTheory.Bicategory.leftUnitor
whiskerOfIdCompIsoSelf_hom_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Bicategory.postcomp
ofIdComp
whisker
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.hom
CategoryTheory.Bicategory.LeftLift
CategoryTheory.instCategoryStructuredArrow
whiskerOfIdCompIsoSelf
CategoryTheory.CategoryStruct.comp
lift
CategoryTheory.Comma.right
CategoryTheory.Bicategory.leftUnitor
whiskerOfIdCompIsoSelf_inv_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Bicategory.postcomp
ofIdComp
whisker
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.inv
CategoryTheory.Bicategory.LeftLift
CategoryTheory.instCategoryStructuredArrow
whiskerOfIdCompIsoSelf
CategoryTheory.CategoryStruct.comp
lift
CategoryTheory.Comma.right
CategoryTheory.Bicategory.leftUnitor
whisker_lift 📖mathematicallift
CategoryTheory.CategoryStruct.comp
CategoryTheory.Bicategory.toCategoryStruct
whisker
whisker_unit 📖mathematicalunit
CategoryTheory.CategoryStruct.comp
CategoryTheory.Bicategory.toCategoryStruct
whisker
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
lift
CategoryTheory.Bicategory.whiskerLeft
CategoryTheory.Iso.inv
CategoryTheory.Bicategory.associator
whiskering_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Bicategory.LeftLift
CategoryTheory.instCategoryStructuredArrow
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.Bicategory.postcomp
CategoryTheory.CategoryStruct.comp
whiskering
homMk
whisker
CategoryTheory.Bicategory.whiskerLeft
lift
CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
whiskering_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Bicategory.LeftLift
CategoryTheory.instCategoryStructuredArrow
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.Bicategory.postcomp
CategoryTheory.CategoryStruct.comp
whiskering
whisker

CategoryTheory.Bicategory.RightExtension

Definitions

NameCategoryTheorems
alongId 📖CompOp
counit 📖CompOp
2 mathmath: w_assoc, w
extension 📖CompOp
homMk 📖CompOp
instInhabitedId 📖CompOp
mk 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
w 📖mathematicalCategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Bicategory.precomp
CategoryTheory.Functor.fromPUnit
CategoryTheory.Bicategory.whiskerLeft
CategoryTheory.CommaMorphism.left
counit
CategoryTheory.CostructuredArrow.w
w_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Bicategory.precomp
CategoryTheory.Functor.fromPUnit
CategoryTheory.Bicategory.whiskerLeft
CategoryTheory.CommaMorphism.left
counit
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
w

CategoryTheory.Bicategory.RightLift

Definitions

NameCategoryTheorems
alongId 📖CompOp
counit 📖CompOp
2 mathmath: w_assoc, w
homMk 📖CompOp
instInhabitedId 📖CompOp
mk 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
w 📖mathematicalCategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Bicategory.postcomp
CategoryTheory.Functor.fromPUnit
CategoryTheory.Bicategory.whiskerRight
CategoryTheory.CommaMorphism.left
counit
CategoryTheory.CostructuredArrow.w
w_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Bicategory.postcomp
CategoryTheory.Functor.fromPUnit
CategoryTheory.Bicategory.whiskerRight
CategoryTheory.CommaMorphism.left
counit
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
w

CategoryTheory.Functor.WellOrderInductionData

Definitions

NameCategoryTheorems
Extension 📖CompData
2 mathmath: Extension.instSubsingletonOfWellFoundedLT, Extension.instNonempty

---

← Back to Index