Documentation Verification Report

Free

📁 Source: Mathlib/CategoryTheory/Bicategory/Free.lean

Statistics

MetricCount
DefinitionsFree, FreeBicategory, Hom₂, mk, bicategory, categoryStruct, homCategory, instInhabitedHomOfHom, liftHom, liftHom₂, of, quiver, instInhabitedFreeBicategory
13
Theoremscomp_def, id_def, liftHom_comp, liftHom_id, liftHom₂_congr, lift_mapComp, lift_mapId, lift_toPrelaxFunctor_toPrelaxFunctorStruct_map₂, lift_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map, lift_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj, mk_associator_hom, mk_associator_inv, mk_id, mk_left_unitor_hom, mk_left_unitor_inv, mk_right_unitor_hom, mk_right_unitor_inv, mk_vcomp, mk_whisker_left, mk_whisker_right, of_map, of_obj
22
Total35

CategoryTheory

Definitions

NameCategoryTheorems
Free 📖CompOp
8 mathmath: Free.embedding_obj, Free.lift_linear, Free.single_comp_single, Free.embedding_map, Free.lift_obj, Free.lift_additive, Free.lift_map_single, Free.lift_map
FreeBicategory 📖CompOp
25 mathmath: FreeBicategory.mk_whisker_right, FreeBicategory.lift_mapId, FreeBicategory.mk_left_unitor_inv, FreeBicategory.liftHom_id, FreeBicategory.mk_right_unitor_inv, FreeBicategory.mk_vcomp, FreeBicategory.mk_id, FreeBicategory.mk_left_unitor_hom, FreeBicategory.preinclusion_map₂, FreeBicategory.of_map, FreeBicategory.mk_whisker_left, FreeBicategory.id_def, FreeBicategory.normalize_naturality, FreeBicategory.mk_associator_hom, FreeBicategory.comp_def, FreeBicategory.mk_associator_inv, FreeBicategory.locally_thin, FreeBicategory.of_obj, FreeBicategory.lift_mapComp, FreeBicategory.lift_toPrelaxFunctor_toPrelaxFunctorStruct_map₂, FreeBicategory.preinclusion_obj, FreeBicategory.lift_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map, FreeBicategory.mk_right_unitor_hom, FreeBicategory.lift_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj, FreeBicategory.liftHom_comp
instInhabitedFreeBicategory 📖CompOp

CategoryTheory.FreeBicategory

Definitions

NameCategoryTheorems
Hom₂ 📖CompData
8 mathmath: mk_left_unitor_inv, mk_right_unitor_inv, mk_id, mk_left_unitor_hom, mk_associator_hom, mk_associator_inv, lift_toPrelaxFunctor_toPrelaxFunctorStruct_map₂, mk_right_unitor_hom
bicategory 📖CompOp
16 mathmath: mk_whisker_right, lift_mapId, mk_left_unitor_inv, mk_right_unitor_inv, mk_left_unitor_hom, preinclusion_map₂, mk_whisker_left, normalize_naturality, mk_associator_hom, mk_associator_inv, lift_mapComp, lift_toPrelaxFunctor_toPrelaxFunctorStruct_map₂, preinclusion_obj, lift_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map, mk_right_unitor_hom, lift_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj
categoryStruct 📖CompOp
12 mathmath: mk_left_unitor_inv, liftHom_id, mk_right_unitor_inv, mk_left_unitor_hom, mk_whisker_left, id_def, normalize_naturality, mk_associator_hom, comp_def, mk_associator_inv, mk_right_unitor_hom, liftHom_comp
homCategory 📖CompOp
5 mathmath: mk_vcomp, mk_id, preinclusion_map₂, normalize_naturality, locally_thin
instInhabitedHomOfHom 📖CompOp
liftHom 📖CompOp
6 mathmath: lift_mapId, liftHom_id, lift_mapComp, lift_toPrelaxFunctor_toPrelaxFunctorStruct_map₂, lift_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map, liftHom_comp
liftHom₂ 📖CompOp
2 mathmath: liftHom₂_congr, lift_toPrelaxFunctor_toPrelaxFunctorStruct_map₂
of 📖CompOp
2 mathmath: of_map, of_obj
quiver 📖CompOp
5 mathmath: mk_vcomp, mk_id, of_map, locally_thin, of_obj

Theorems

NameKindAssumesProvesValidatesDepends On
comp_def 📖mathematicalHom.comp
CategoryTheory.CategoryStruct.comp
CategoryTheory.FreeBicategory
categoryStruct
id_def 📖mathematicalHom.id
CategoryTheory.CategoryStruct.id
CategoryTheory.FreeBicategory
categoryStruct
liftHom_comp 📖mathematicalliftHom
CategoryTheory.CategoryStruct.comp
CategoryTheory.FreeBicategory
categoryStruct
Prefunctor.obj
CategoryTheory.CategoryStruct.toQuiver
liftHom_id 📖mathematicalliftHom
CategoryTheory.CategoryStruct.id
CategoryTheory.FreeBicategory
categoryStruct
Prefunctor.obj
CategoryTheory.CategoryStruct.toQuiver
liftHom₂_congr 📖mathematicalRelliftHom₂CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
CategoryTheory.Category.assoc
CategoryTheory.Bicategory.whiskerLeft_id
CategoryTheory.Bicategory.whiskerLeft_comp
CategoryTheory.Bicategory.id_whiskerLeft
CategoryTheory.Bicategory.comp_whiskerLeft
CategoryTheory.Bicategory.id_whiskerRight
CategoryTheory.Bicategory.comp_whiskerRight
CategoryTheory.Bicategory.whiskerRight_id
CategoryTheory.Bicategory.whiskerRight_comp
CategoryTheory.Bicategory.whisker_assoc
CategoryTheory.Bicategory.whisker_exchange
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Bicategory.pentagon
CategoryTheory.Bicategory.triangle
lift_mapComp 📖mathematicalCategoryTheory.Pseudofunctor.mapComp
CategoryTheory.FreeBicategory
bicategory
lift
CategoryTheory.Iso.refl
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
Prefunctor.obj
CategoryTheory.Bicategory.homCategory
liftHom
CategoryTheory.CategoryStruct.comp
lift_mapId 📖mathematicalCategoryTheory.Pseudofunctor.mapId
CategoryTheory.FreeBicategory
bicategory
lift
CategoryTheory.Iso.refl
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
Prefunctor.obj
CategoryTheory.Bicategory.homCategory
liftHom
CategoryTheory.CategoryStruct.id
lift_toPrelaxFunctor_toPrelaxFunctorStruct_map₂ 📖mathematicalCategoryTheory.PrelaxFunctorStruct.map₂
CategoryTheory.FreeBicategory
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
bicategory
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
lift
Hom₂
Rel
Prefunctor.obj
liftHom
liftHom₂
liftHom₂_congr
lift_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map 📖mathematicalPrefunctor.map
CategoryTheory.FreeBicategory
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
lift
liftHom
lift_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj 📖mathematicalPrefunctor.obj
CategoryTheory.FreeBicategory
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
lift
mk_associator_hom 📖mathematicalHom₂
CategoryTheory.CategoryStruct.comp
CategoryTheory.FreeBicategory
categoryStruct
Rel
CategoryTheory.Bicategory.toCategoryStruct
bicategory
Hom₂.associator
CategoryTheory.Iso.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.homCategory
CategoryTheory.Bicategory.associator
mk_associator_inv 📖mathematicalHom₂
CategoryTheory.CategoryStruct.comp
CategoryTheory.FreeBicategory
categoryStruct
Rel
CategoryTheory.Bicategory.toCategoryStruct
bicategory
Hom₂.associator_inv
CategoryTheory.Iso.inv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.homCategory
CategoryTheory.Bicategory.associator
mk_id 📖mathematicalHom₂
Rel
Hom₂.id
CategoryTheory.CategoryStruct.id
Quiver.Hom
CategoryTheory.FreeBicategory
quiver
CategoryTheory.Category.toCategoryStruct
homCategory
mk_left_unitor_hom 📖mathematicalHom₂
CategoryTheory.CategoryStruct.comp
CategoryTheory.FreeBicategory
categoryStruct
CategoryTheory.CategoryStruct.id
Rel
CategoryTheory.Bicategory.toCategoryStruct
bicategory
Hom₂.left_unitor
CategoryTheory.Iso.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.homCategory
CategoryTheory.Bicategory.leftUnitor
mk_left_unitor_inv 📖mathematicalHom₂
CategoryTheory.CategoryStruct.comp
CategoryTheory.FreeBicategory
categoryStruct
CategoryTheory.CategoryStruct.id
Rel
CategoryTheory.Bicategory.toCategoryStruct
bicategory
Hom₂.left_unitor_inv
CategoryTheory.Iso.inv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.homCategory
CategoryTheory.Bicategory.leftUnitor
mk_right_unitor_hom 📖mathematicalHom₂
CategoryTheory.CategoryStruct.comp
CategoryTheory.FreeBicategory
categoryStruct
CategoryTheory.CategoryStruct.id
Rel
CategoryTheory.Bicategory.toCategoryStruct
bicategory
Hom₂.right_unitor
CategoryTheory.Iso.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.homCategory
CategoryTheory.Bicategory.rightUnitor
mk_right_unitor_inv 📖mathematicalHom₂
CategoryTheory.CategoryStruct.comp
CategoryTheory.FreeBicategory
categoryStruct
CategoryTheory.CategoryStruct.id
Rel
CategoryTheory.Bicategory.toCategoryStruct
bicategory
Hom₂.right_unitor_inv
CategoryTheory.Iso.inv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.homCategory
CategoryTheory.Bicategory.rightUnitor
mk_vcomp 📖mathematicalHom₂.vcomp
CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.FreeBicategory
quiver
CategoryTheory.Category.toCategoryStruct
homCategory
mk_whisker_left 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.FreeBicategory
categoryStruct
Hom₂.whisker_left
CategoryTheory.Bicategory.whiskerLeft
bicategory
mk_whisker_right 📖mathematicalHom.comp
Hom₂.whisker_right
CategoryTheory.Bicategory.whiskerRight
CategoryTheory.FreeBicategory
bicategory
of_map 📖mathematicalPrefunctor.map
CategoryTheory.FreeBicategory
quiver
of
Hom.of
of_obj 📖mathematicalPrefunctor.obj
CategoryTheory.FreeBicategory
quiver
of

CategoryTheory.FreeBicategory.Hom₂

Definitions

NameCategoryTheorems
mk 📖CompOp

---

← Back to Index