Documentation Verification Report

InducedBicategory

📁 Source: Mathlib/CategoryTheory/Bicategory/InducedBicategory.lean

Statistics

MetricCount
DefinitionsInducedBicategory, category, hom, Hom₂, hom, bicategory, categoryStruct, forget, hasCoeToSort, isoMk, mkHom, mkHom₂
12
Theoremscategory_comp_hom, category_id_hom, ext, ext_iff, ext, ext_iff, bicategory_Hom, bicategory_associator_hom_hom, bicategory_associator_inv_hom, bicategory_comp_hom, bicategory_homCategory_comp_hom, bicategory_homCategory_id_hom, bicategory_id_hom, bicategory_leftUnitor_hom_hom, bicategory_leftUnitor_inv_hom, bicategory_rightUnitor_hom_hom, bicategory_rightUnitor_inv_hom, bicategory_whiskerLeft_hom, bicategory_whiskerRight_hom, categoryStruct_comp_hom, categoryStruct_id_hom, eqToHom_hom, forget_map, forget_mapComp_hom, forget_mapComp_inv, forget_mapId_hom, forget_mapId_inv, forget_map₂, forget_obj, hom_ext, hom_ext_iff, hom₂_ext, hom₂_ext_iff, instStrict, isoMk_hom_hom, isoMk_inv_hom, mkHom_eqToHom
37
Total49

CategoryTheory.Bicategory

Definitions

NameCategoryTheorems
InducedBicategory 📖CompOp
29 mathmath: InducedBicategory.bicategory_whiskerLeft_hom, InducedBicategory.bicategory_associator_inv_hom, InducedBicategory.Hom.category_id_hom, InducedBicategory.categoryStruct_comp_hom, InducedBicategory.bicategory_leftUnitor_inv_hom, InducedBicategory.eqToHom_hom, InducedBicategory.bicategory_whiskerRight_hom, InducedBicategory.forget_map, InducedBicategory.bicategory_comp_hom, InducedBicategory.bicategory_Hom, InducedBicategory.instStrict, InducedBicategory.bicategory_rightUnitor_hom_hom, InducedBicategory.bicategory_rightUnitor_inv_hom, InducedBicategory.forget_mapId_inv, InducedBicategory.forget_mapComp_inv, InducedBicategory.forget_mapComp_hom, InducedBicategory.bicategory_homCategory_comp_hom, InducedBicategory.forget_obj, InducedBicategory.Hom.category_comp_hom, InducedBicategory.isoMk_inv_hom, InducedBicategory.forget_map₂, InducedBicategory.bicategory_id_hom, InducedBicategory.bicategory_homCategory_id_hom, InducedBicategory.bicategory_associator_hom_hom, InducedBicategory.isoMk_hom_hom, InducedBicategory.mkHom_eqToHom, InducedBicategory.forget_mapId_hom, InducedBicategory.categoryStruct_id_hom, InducedBicategory.bicategory_leftUnitor_hom_hom

CategoryTheory.Bicategory.InducedBicategory

Definitions

NameCategoryTheorems
Hom₂ 📖CompData
bicategory 📖CompOp
21 mathmath: bicategory_whiskerLeft_hom, bicategory_associator_inv_hom, bicategory_leftUnitor_inv_hom, bicategory_whiskerRight_hom, forget_map, bicategory_comp_hom, bicategory_Hom, instStrict, bicategory_rightUnitor_hom_hom, bicategory_rightUnitor_inv_hom, forget_mapId_inv, forget_mapComp_inv, forget_mapComp_hom, bicategory_homCategory_comp_hom, forget_obj, forget_map₂, bicategory_id_hom, bicategory_homCategory_id_hom, bicategory_associator_hom_hom, forget_mapId_hom, bicategory_leftUnitor_hom_hom
categoryStruct 📖CompOp
16 mathmath: bicategory_associator_inv_hom, Hom.category_id_hom, categoryStruct_comp_hom, bicategory_leftUnitor_inv_hom, eqToHom_hom, bicategory_rightUnitor_hom_hom, bicategory_rightUnitor_inv_hom, bicategory_homCategory_comp_hom, Hom.category_comp_hom, isoMk_inv_hom, bicategory_homCategory_id_hom, bicategory_associator_hom_hom, isoMk_hom_hom, mkHom_eqToHom, categoryStruct_id_hom, bicategory_leftUnitor_hom_hom
forget 📖CompOp
7 mathmath: forget_map, forget_mapId_inv, forget_mapComp_inv, forget_mapComp_hom, forget_obj, forget_map₂, forget_mapId_hom
hasCoeToSort 📖CompOp
isoMk 📖CompOp
2 mathmath: isoMk_inv_hom, isoMk_hom_hom
mkHom 📖CompOp
3 mathmath: bicategory_whiskerLeft_hom, bicategory_whiskerRight_hom, mkHom_eqToHom
mkHom₂ 📖CompOp
1 mathmath: mkHom_eqToHom

Theorems

NameKindAssumesProvesValidatesDepends On
bicategory_Hom 📖mathematicalQuiver.Hom
CategoryTheory.Bicategory.InducedBicategory
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
bicategory
Hom
bicategory_associator_hom_hom 📖mathematicalHom₂.hom
CategoryTheory.CategoryStruct.comp
CategoryTheory.Bicategory.toCategoryStruct
Hom.hom
CategoryTheory.Iso.hom
Quiver.Hom
CategoryTheory.Bicategory.InducedBicategory
CategoryTheory.CategoryStruct.toQuiver
categoryStruct
Hom.category
CategoryTheory.Bicategory.associator
bicategory
CategoryTheory.Bicategory.homCategory
bicategory_associator_inv_hom 📖mathematicalHom₂.hom
CategoryTheory.CategoryStruct.comp
CategoryTheory.Bicategory.toCategoryStruct
Hom.hom
CategoryTheory.Iso.inv
Quiver.Hom
CategoryTheory.Bicategory.InducedBicategory
CategoryTheory.CategoryStruct.toQuiver
categoryStruct
Hom.category
CategoryTheory.Bicategory.associator
bicategory
CategoryTheory.Bicategory.homCategory
bicategory_comp_hom 📖mathematicalHom.hom
CategoryTheory.CategoryStruct.comp
CategoryTheory.Bicategory.InducedBicategory
CategoryTheory.Bicategory.toCategoryStruct
bicategory
bicategory_homCategory_comp_hom 📖mathematicalHom₂.hom
CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.Bicategory.InducedBicategory
CategoryTheory.CategoryStruct.toQuiver
categoryStruct
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
bicategory
CategoryTheory.Bicategory.toCategoryStruct
Hom.hom
bicategory_homCategory_id_hom 📖mathematicalHom₂.hom
CategoryTheory.CategoryStruct.id
Quiver.Hom
CategoryTheory.Bicategory.InducedBicategory
CategoryTheory.CategoryStruct.toQuiver
categoryStruct
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
bicategory
CategoryTheory.Bicategory.toCategoryStruct
Hom.hom
bicategory_id_hom 📖mathematicalHom.hom
CategoryTheory.CategoryStruct.id
CategoryTheory.Bicategory.InducedBicategory
CategoryTheory.Bicategory.toCategoryStruct
bicategory
bicategory_leftUnitor_hom_hom 📖mathematicalHom₂.hom
CategoryTheory.CategoryStruct.comp
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.CategoryStruct.id
Hom.hom
CategoryTheory.Iso.hom
Quiver.Hom
CategoryTheory.Bicategory.InducedBicategory
CategoryTheory.CategoryStruct.toQuiver
categoryStruct
Hom.category
CategoryTheory.Bicategory.leftUnitor
bicategory
CategoryTheory.Bicategory.homCategory
bicategory_leftUnitor_inv_hom 📖mathematicalHom₂.hom
CategoryTheory.CategoryStruct.comp
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.CategoryStruct.id
Hom.hom
CategoryTheory.Iso.inv
Quiver.Hom
CategoryTheory.Bicategory.InducedBicategory
CategoryTheory.CategoryStruct.toQuiver
categoryStruct
Hom.category
CategoryTheory.Bicategory.leftUnitor
bicategory
CategoryTheory.Bicategory.homCategory
bicategory_rightUnitor_hom_hom 📖mathematicalHom₂.hom
CategoryTheory.CategoryStruct.comp
CategoryTheory.Bicategory.toCategoryStruct
Hom.hom
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.hom
Quiver.Hom
CategoryTheory.Bicategory.InducedBicategory
CategoryTheory.CategoryStruct.toQuiver
categoryStruct
Hom.category
CategoryTheory.Bicategory.rightUnitor
bicategory
CategoryTheory.Bicategory.homCategory
bicategory_rightUnitor_inv_hom 📖mathematicalHom₂.hom
CategoryTheory.CategoryStruct.comp
CategoryTheory.Bicategory.toCategoryStruct
Hom.hom
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.inv
Quiver.Hom
CategoryTheory.Bicategory.InducedBicategory
CategoryTheory.CategoryStruct.toQuiver
categoryStruct
Hom.category
CategoryTheory.Bicategory.rightUnitor
bicategory
CategoryTheory.Bicategory.homCategory
bicategory_whiskerLeft_hom 📖mathematicalHom₂.hom
mkHom
CategoryTheory.CategoryStruct.comp
CategoryTheory.Bicategory.toCategoryStruct
Hom.hom
CategoryTheory.Bicategory.whiskerLeft
CategoryTheory.Bicategory.InducedBicategory
bicategory
bicategory_whiskerRight_hom 📖mathematicalHom₂.hom
mkHom
CategoryTheory.CategoryStruct.comp
CategoryTheory.Bicategory.toCategoryStruct
Hom.hom
CategoryTheory.Bicategory.whiskerRight
CategoryTheory.Bicategory.InducedBicategory
bicategory
categoryStruct_comp_hom 📖mathematicalHom.hom
CategoryTheory.CategoryStruct.comp
CategoryTheory.Bicategory.InducedBicategory
categoryStruct
CategoryTheory.Bicategory.toCategoryStruct
categoryStruct_id_hom 📖mathematicalHom.hom
CategoryTheory.CategoryStruct.id
CategoryTheory.Bicategory.InducedBicategory
categoryStruct
CategoryTheory.Bicategory.toCategoryStruct
eqToHom_hom 📖mathematicalHom₂.hom
CategoryTheory.eqToHom
Quiver.Hom
CategoryTheory.Bicategory.InducedBicategory
CategoryTheory.CategoryStruct.toQuiver
categoryStruct
CategoryTheory.Category.toCategoryStruct
Hom.category
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Bicategory.homCategory
Hom.hom
forget_map 📖mathematicalPrefunctor.map
CategoryTheory.Bicategory.InducedBicategory
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
CategoryTheory.StrictlyUnitaryPseudofunctor.toPseudofunctor
CategoryTheory.StrictPseudofunctor.toStrictlyUnitaryPseudofunctor
forget
Hom.hom
forget_mapComp_hom 📖mathematicalCategoryTheory.Iso.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
Prefunctor.obj
CategoryTheory.Bicategory.InducedBicategory
bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.StrictPseudofunctorPreCore.toPrelaxFunctor
CategoryTheory.StrictPseudofunctorCore.toStrictPseudofunctorPreCore
Hom.hom
Hom₂.hom
Prefunctor.map
CategoryTheory.CategoryStruct.comp
CategoryTheory.Pseudofunctor.mapComp
CategoryTheory.StrictlyUnitaryPseudofunctor.toPseudofunctor
CategoryTheory.StrictPseudofunctor.toStrictlyUnitaryPseudofunctor
forget
CategoryTheory.CategoryStruct.id
forget_mapComp_inv 📖mathematicalCategoryTheory.Iso.inv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
Prefunctor.obj
CategoryTheory.Bicategory.InducedBicategory
bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.StrictPseudofunctorPreCore.toPrelaxFunctor
CategoryTheory.StrictPseudofunctorCore.toStrictPseudofunctorPreCore
Hom.hom
Hom₂.hom
Prefunctor.map
CategoryTheory.CategoryStruct.comp
CategoryTheory.Pseudofunctor.mapComp
CategoryTheory.StrictlyUnitaryPseudofunctor.toPseudofunctor
CategoryTheory.StrictPseudofunctor.toStrictlyUnitaryPseudofunctor
forget
CategoryTheory.CategoryStruct.id
forget_mapId_hom 📖mathematicalCategoryTheory.Iso.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
Prefunctor.obj
CategoryTheory.Bicategory.InducedBicategory
bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.StrictPseudofunctorPreCore.toPrelaxFunctor
CategoryTheory.StrictPseudofunctorCore.toStrictPseudofunctorPreCore
Hom.hom
Hom₂.hom
Prefunctor.map
CategoryTheory.CategoryStruct.id
CategoryTheory.Pseudofunctor.mapId
CategoryTheory.StrictlyUnitaryPseudofunctor.toPseudofunctor
CategoryTheory.StrictPseudofunctor.toStrictlyUnitaryPseudofunctor
forget
forget_mapId_inv 📖mathematicalCategoryTheory.Iso.inv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
Prefunctor.obj
CategoryTheory.Bicategory.InducedBicategory
bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.StrictPseudofunctorPreCore.toPrelaxFunctor
CategoryTheory.StrictPseudofunctorCore.toStrictPseudofunctorPreCore
Hom.hom
Hom₂.hom
Prefunctor.map
CategoryTheory.CategoryStruct.id
CategoryTheory.Pseudofunctor.mapId
CategoryTheory.StrictlyUnitaryPseudofunctor.toPseudofunctor
CategoryTheory.StrictPseudofunctor.toStrictlyUnitaryPseudofunctor
forget
forget_map₂ 📖mathematicalCategoryTheory.PrelaxFunctorStruct.map₂
CategoryTheory.Bicategory.InducedBicategory
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
bicategory
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
CategoryTheory.StrictlyUnitaryPseudofunctor.toPseudofunctor
CategoryTheory.StrictPseudofunctor.toStrictlyUnitaryPseudofunctor
forget
Hom₂.hom
forget_obj 📖mathematicalPrefunctor.obj
CategoryTheory.Bicategory.InducedBicategory
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
CategoryTheory.Pseudofunctor.toPrelaxFunctor
CategoryTheory.StrictlyUnitaryPseudofunctor.toPseudofunctor
CategoryTheory.StrictPseudofunctor.toStrictlyUnitaryPseudofunctor
forget
hom_ext 📖Hom.homHom.ext
hom_ext_iff 📖mathematicalHom.homhom_ext
hom₂_ext 📖Hom₂.homHom₂.ext
hom₂_ext_iff 📖mathematicalHom₂.homhom₂_ext
instStrict 📖mathematicalCategoryTheory.Bicategory.Strict
CategoryTheory.Bicategory.InducedBicategory
bicategory
hom_ext
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
CategoryTheory.Category.assoc
CategoryTheory.Iso.ext
hom₂_ext
CategoryTheory.Bicategory.Strict.id_comp
CategoryTheory.Bicategory.Strict.leftUnitor_eqToIso
eqToHom_hom
CategoryTheory.Bicategory.Strict.comp_id
CategoryTheory.Bicategory.Strict.rightUnitor_eqToIso
CategoryTheory.Bicategory.Strict.assoc
CategoryTheory.Bicategory.Strict.associator_eqToIso
isoMk_hom_hom 📖mathematicalHom₂.hom
CategoryTheory.Iso.hom
Quiver.Hom
CategoryTheory.Bicategory.InducedBicategory
CategoryTheory.CategoryStruct.toQuiver
categoryStruct
Hom.category
isoMk
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Bicategory.homCategory
Hom.hom
isoMk_inv_hom 📖mathematicalHom₂.hom
CategoryTheory.Iso.inv
Quiver.Hom
CategoryTheory.Bicategory.InducedBicategory
CategoryTheory.CategoryStruct.toQuiver
categoryStruct
Hom.category
isoMk
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Bicategory.homCategory
Hom.hom
mkHom_eqToHom 📖mathematicalmkHom₂
CategoryTheory.eqToHom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.Bicategory.InducedBicategory
categoryStruct
Hom.category
mkHom
hom₂_ext

CategoryTheory.Bicategory.InducedBicategory.Hom

Definitions

NameCategoryTheorems
category 📖CompOp
12 mathmath: CategoryTheory.Bicategory.InducedBicategory.bicategory_associator_inv_hom, category_id_hom, CategoryTheory.Bicategory.InducedBicategory.bicategory_leftUnitor_inv_hom, CategoryTheory.Bicategory.InducedBicategory.eqToHom_hom, CategoryTheory.Bicategory.InducedBicategory.bicategory_rightUnitor_hom_hom, CategoryTheory.Bicategory.InducedBicategory.bicategory_rightUnitor_inv_hom, category_comp_hom, CategoryTheory.Bicategory.InducedBicategory.isoMk_inv_hom, CategoryTheory.Bicategory.InducedBicategory.bicategory_associator_hom_hom, CategoryTheory.Bicategory.InducedBicategory.isoMk_hom_hom, CategoryTheory.Bicategory.InducedBicategory.mkHom_eqToHom, CategoryTheory.Bicategory.InducedBicategory.bicategory_leftUnitor_hom_hom
hom 📖CompOp
26 mathmath: CategoryTheory.Bicategory.InducedBicategory.bicategory_whiskerLeft_hom, CategoryTheory.Bicategory.InducedBicategory.bicategory_associator_inv_hom, category_id_hom, CategoryTheory.Bicategory.InducedBicategory.categoryStruct_comp_hom, CategoryTheory.Bicategory.InducedBicategory.bicategory_leftUnitor_inv_hom, CategoryTheory.Bicategory.InducedBicategory.eqToHom_hom, CategoryTheory.Bicategory.InducedBicategory.bicategory_whiskerRight_hom, CategoryTheory.Bicategory.InducedBicategory.forget_map, CategoryTheory.Bicategory.InducedBicategory.bicategory_comp_hom, CategoryTheory.Bicategory.InducedBicategory.bicategory_rightUnitor_hom_hom, CategoryTheory.Bicategory.InducedBicategory.bicategory_rightUnitor_inv_hom, CategoryTheory.Bicategory.InducedBicategory.forget_mapId_inv, CategoryTheory.Bicategory.InducedBicategory.forget_mapComp_inv, CategoryTheory.Bicategory.InducedBicategory.forget_mapComp_hom, CategoryTheory.Bicategory.InducedBicategory.hom_ext_iff, CategoryTheory.Bicategory.InducedBicategory.bicategory_homCategory_comp_hom, category_comp_hom, CategoryTheory.Bicategory.InducedBicategory.isoMk_inv_hom, CategoryTheory.Bicategory.InducedBicategory.bicategory_id_hom, CategoryTheory.Bicategory.InducedBicategory.bicategory_homCategory_id_hom, CategoryTheory.Bicategory.InducedBicategory.bicategory_associator_hom_hom, ext_iff, CategoryTheory.Bicategory.InducedBicategory.isoMk_hom_hom, CategoryTheory.Bicategory.InducedBicategory.forget_mapId_hom, CategoryTheory.Bicategory.InducedBicategory.categoryStruct_id_hom, CategoryTheory.Bicategory.InducedBicategory.bicategory_leftUnitor_hom_hom

Theorems

NameKindAssumesProvesValidatesDepends On
category_comp_hom 📖mathematicalCategoryTheory.Bicategory.InducedBicategory.Hom₂.hom
CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.Bicategory.InducedBicategory
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.InducedBicategory.categoryStruct
CategoryTheory.Category.toCategoryStruct
category
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Bicategory.homCategory
hom
category_id_hom 📖mathematicalCategoryTheory.Bicategory.InducedBicategory.Hom₂.hom
CategoryTheory.CategoryStruct.id
Quiver.Hom
CategoryTheory.Bicategory.InducedBicategory
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.InducedBicategory.categoryStruct
CategoryTheory.Category.toCategoryStruct
category
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Bicategory.homCategory
hom
ext 📖hom
ext_iff 📖mathematicalhomext

CategoryTheory.Bicategory.InducedBicategory.Hom₂

Definitions

NameCategoryTheorems
hom 📖CompOp
22 mathmath: CategoryTheory.Bicategory.InducedBicategory.bicategory_whiskerLeft_hom, CategoryTheory.Bicategory.InducedBicategory.bicategory_associator_inv_hom, CategoryTheory.Bicategory.InducedBicategory.Hom.category_id_hom, CategoryTheory.Bicategory.InducedBicategory.bicategory_leftUnitor_inv_hom, CategoryTheory.Bicategory.InducedBicategory.eqToHom_hom, CategoryTheory.Bicategory.InducedBicategory.bicategory_whiskerRight_hom, CategoryTheory.Bicategory.InducedBicategory.hom₂_ext_iff, CategoryTheory.Bicategory.InducedBicategory.bicategory_rightUnitor_hom_hom, CategoryTheory.Bicategory.InducedBicategory.bicategory_rightUnitor_inv_hom, CategoryTheory.Bicategory.InducedBicategory.forget_mapId_inv, CategoryTheory.Bicategory.InducedBicategory.forget_mapComp_inv, CategoryTheory.Bicategory.InducedBicategory.forget_mapComp_hom, CategoryTheory.Bicategory.InducedBicategory.bicategory_homCategory_comp_hom, CategoryTheory.Bicategory.InducedBicategory.Hom.category_comp_hom, CategoryTheory.Bicategory.InducedBicategory.isoMk_inv_hom, CategoryTheory.Bicategory.InducedBicategory.forget_map₂, CategoryTheory.Bicategory.InducedBicategory.bicategory_homCategory_id_hom, CategoryTheory.Bicategory.InducedBicategory.bicategory_associator_hom_hom, CategoryTheory.Bicategory.InducedBicategory.isoMk_hom_hom, CategoryTheory.Bicategory.InducedBicategory.forget_mapId_hom, ext_iff, CategoryTheory.Bicategory.InducedBicategory.bicategory_leftUnitor_hom_hom

Theorems

NameKindAssumesProvesValidatesDepends On
ext 📖hom
ext_iff 📖mathematicalhomext

---

← Back to Index