Documentation Verification Report

HasKan

πŸ“ Source: Mathlib/CategoryTheory/Bicategory/Kan/HasKan.lean

Statistics

MetricCount
DefinitionsHasAbsLeftKanExtension, HasAbsLeftKanLift, HasLeftKanExtension, HasLeftKanLift, CommuteWith, isKan, isKanWhisker, lanCompIso, lanCompIsoWhisker, CommuteWith, isKan, isKanWhisker, lanLiftCompIso, lanLiftCompIsoWhisker, lan, lanDesc, lanIsKan, lanLeftExtension, lanLift, lanLiftDesc, lanLiftIsKan, lanLiftLeftLift, lanLiftUnit, lanUnit, Β«term_⁺_Β», Β«term_β‚Š_Β»
26
Theoremscommute, toHasLeftKanExtension, commute, toHasLeftKanLift, hasInitial, hasInitial, commute, instHasLeftKanExtensionComp, lanCompIsoWhisker_hom_right, lanCompIsoWhisker_inv_right, lanCompIso_hom, lanCompIso_inv, of_isKan_whisker, of_lan_comp_iso, existsUnique, commute, instHasLeftKanLiftComp, lanLiftCompIsoWhisker_hom_right, lanLiftCompIsoWhisker_inv_right, lanLiftCompIso_hom, lanLiftCompIso_inv, of_isKan_whisker, of_lanLift_comp_iso, existsUnique, hasAbsLeftKanExtension, hasLeftKanExtension, hasAbsLeftKanLift, hasLeftKanLift, instCommuteWith, instCommuteWith_1, instHasInitialLeftExtensionOfHasLeftKanExtension, instHasInitialLeftLiftOfHasLeftKanLift, lanIsKan_desc, lanLeftExtension_extension, lanLeftExtension_unit, lanLiftIsKan_desc, lanLiftLeftLift_lift, lanLiftLeftLift_unit, lanLiftUnit_desc, lanLiftUnit_desc_assoc, lanUnit_desc, lanUnit_desc_assoc
42
Total68

CategoryTheory.Bicategory

Definitions

NameCategoryTheorems
HasAbsLeftKanExtension πŸ“–CompData
2 mathmath: isLeftAdjoint_TFAE, LeftExtension.IsAbsKan.hasAbsLeftKanExtension
HasAbsLeftKanLift πŸ“–CompData
2 mathmath: LeftLift.IsAbsKan.hasAbsLeftKanLift, isRightAdjoint_TFAE
HasLeftKanExtension πŸ“–CompData
4 mathmath: isLeftAdjoint_TFAE, LeftExtension.IsKan.hasLeftKanExtension, Lan.CommuteWith.instHasLeftKanExtensionComp, HasAbsLeftKanExtension.toHasLeftKanExtension
HasLeftKanLift πŸ“–CompData
4 mathmath: LanLift.CommuteWith.instHasLeftKanLiftComp, HasAbsLeftKanLift.toHasLeftKanLift, isRightAdjoint_TFAE, LeftLift.IsKan.hasLeftKanLift
lan πŸ“–CompOp
6 mathmath: Lan.existsUnique, Lan.CommuteWith.lanCompIso_inv, Lan.CommuteWith.lanCompIso_hom, lanUnit_desc, lanLeftExtension_extension, lanUnit_desc_assoc
lanDesc πŸ“–CompOp
5 mathmath: Lan.CommuteWith.lanCompIsoWhisker_hom_right, lanIsKan_desc, Lan.CommuteWith.lanCompIso_hom, lanUnit_desc, lanUnit_desc_assoc
lanIsKan πŸ“–CompOp
1 mathmath: lanIsKan_desc
lanLeftExtension πŸ“–CompOp
8 mathmath: Lan.CommuteWith.lanCompIso_inv, Lan.CommuteWith.lanCompIsoWhisker_hom_right, Lan.CommuteWith.lanCompIsoWhisker_inv_right, Lan.CommuteWith.commute, lanIsKan_desc, Lan.CommuteWith.lanCompIso_hom, lanLeftExtension_extension, lanLeftExtension_unit
lanLift πŸ“–CompOp
6 mathmath: LanLift.CommuteWith.lanLiftCompIso_hom, lanLiftUnit_desc_assoc, LanLift.existsUnique, lanLiftLeftLift_lift, lanLiftUnit_desc, LanLift.CommuteWith.lanLiftCompIso_inv
lanLiftDesc πŸ“–CompOp
5 mathmath: LanLift.CommuteWith.lanLiftCompIso_hom, lanLiftUnit_desc_assoc, lanLiftIsKan_desc, lanLiftUnit_desc, LanLift.CommuteWith.lanLiftCompIsoWhisker_hom_right
lanLiftIsKan πŸ“–CompOp
1 mathmath: lanLiftIsKan_desc
lanLiftLeftLift πŸ“–CompOp
8 mathmath: LanLift.CommuteWith.lanLiftCompIso_hom, lanLiftLeftLift_unit, lanLiftIsKan_desc, lanLiftLeftLift_lift, LanLift.CommuteWith.commute, LanLift.CommuteWith.lanLiftCompIsoWhisker_inv_right, LanLift.CommuteWith.lanLiftCompIso_inv, LanLift.CommuteWith.lanLiftCompIsoWhisker_hom_right
lanLiftUnit πŸ“–CompOp
4 mathmath: lanLiftUnit_desc_assoc, LanLift.existsUnique, lanLiftLeftLift_unit, lanLiftUnit_desc
lanUnit πŸ“–CompOp
4 mathmath: Lan.existsUnique, lanUnit_desc, lanUnit_desc_assoc, lanLeftExtension_unit
Β«term_⁺_Β» πŸ“–CompOpβ€”
Β«term_β‚Š_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
instCommuteWith πŸ“–mathematicalβ€”Lan.CommuteWith
HasAbsLeftKanExtension.toHasLeftKanExtension
β€”HasAbsLeftKanExtension.commute
instCommuteWith_1 πŸ“–mathematicalβ€”LanLift.CommuteWith
HasAbsLeftKanLift.toHasLeftKanLift
β€”HasAbsLeftKanLift.commute
instHasInitialLeftExtensionOfHasLeftKanExtension πŸ“–mathematicalβ€”CategoryTheory.Limits.HasInitial
LeftExtension
CategoryTheory.instCategoryStructuredArrow
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
homCategory
precomp
β€”HasLeftKanExtension.hasInitial
instHasInitialLeftLiftOfHasLeftKanLift πŸ“–mathematicalβ€”CategoryTheory.Limits.HasInitial
LeftLift
CategoryTheory.instCategoryStructuredArrow
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
homCategory
postcomp
β€”HasLeftKanLift.hasInitial
lanIsKan_desc πŸ“–mathematicalβ€”LeftExtension.IsKan.desc
lanLeftExtension
lanIsKan
lanDesc
β€”β€”
lanLeftExtension_extension πŸ“–mathematicalβ€”LeftExtension.extension
lanLeftExtension
lan
β€”β€”
lanLeftExtension_unit πŸ“–mathematicalβ€”LeftExtension.unit
lanLeftExtension
lanUnit
β€”β€”
lanLiftIsKan_desc πŸ“–mathematicalβ€”LeftLift.IsKan.desc
lanLiftLeftLift
lanLiftIsKan
lanLiftDesc
β€”β€”
lanLiftLeftLift_lift πŸ“–mathematicalβ€”LeftLift.lift
lanLiftLeftLift
lanLift
β€”β€”
lanLiftLeftLift_unit πŸ“–mathematicalβ€”LeftLift.unit
lanLiftLeftLift
lanLiftUnit
β€”β€”
lanLiftUnit_desc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
lanLift
LeftLift.lift
lanLiftUnit
whiskerRight
lanLiftDesc
LeftLift.unit
β€”LeftLift.IsKan.fac
lanLiftUnit_desc_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
lanLift
lanLiftUnit
LeftLift.lift
whiskerRight
lanLiftDesc
LeftLift.unit
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
lanLiftUnit_desc
lanUnit_desc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
lan
LeftExtension.extension
lanUnit
whiskerLeft
lanDesc
LeftExtension.unit
β€”LeftExtension.IsKan.fac
lanUnit_desc_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
toCategoryStruct
CategoryTheory.Category.toCategoryStruct
homCategory
lan
lanUnit
LeftExtension.extension
whiskerLeft
lanDesc
LeftExtension.unit
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
lanUnit_desc

CategoryTheory.Bicategory.HasAbsLeftKanExtension

Theorems

NameKindAssumesProvesValidatesDepends On
commute πŸ“–mathematicalβ€”CategoryTheory.Bicategory.Lan.CommuteWith
toHasLeftKanExtension
β€”β€”
toHasLeftKanExtension πŸ“–mathematicalβ€”CategoryTheory.Bicategory.HasLeftKanExtensionβ€”β€”

CategoryTheory.Bicategory.HasAbsLeftKanLift

Theorems

NameKindAssumesProvesValidatesDepends On
commute πŸ“–mathematicalβ€”CategoryTheory.Bicategory.LanLift.CommuteWith
toHasLeftKanLift
β€”β€”
toHasLeftKanLift πŸ“–mathematicalβ€”CategoryTheory.Bicategory.HasLeftKanLiftβ€”β€”

CategoryTheory.Bicategory.HasLeftKanExtension

Theorems

NameKindAssumesProvesValidatesDepends On
hasInitial πŸ“–mathematicalβ€”CategoryTheory.Limits.HasInitial
CategoryTheory.Bicategory.LeftExtension
CategoryTheory.instCategoryStructuredArrow
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.Bicategory.precomp
β€”β€”

CategoryTheory.Bicategory.HasLeftKanLift

Theorems

NameKindAssumesProvesValidatesDepends On
hasInitial πŸ“–mathematicalβ€”CategoryTheory.Limits.HasInitial
CategoryTheory.Bicategory.LeftLift
CategoryTheory.instCategoryStructuredArrow
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.Bicategory.postcomp
β€”β€”

CategoryTheory.Bicategory.Lan

Definitions

NameCategoryTheorems
CommuteWith πŸ“–CompData
6 mathmath: CommuteWith.of_isKan_whisker, CategoryTheory.Bicategory.isLeftAdjoint_TFAE, CategoryTheory.Bicategory.HasAbsLeftKanExtension.commute, CategoryTheory.Bicategory.instCommuteWith, CategoryTheory.Bicategory.LeftExtension.instCommuteWithOfIsLeftAdjoint, CommuteWith.of_lan_comp_iso

Theorems

NameKindAssumesProvesValidatesDepends On
existsUnique πŸ“–mathematicalβ€”ExistsUnique
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.Bicategory.lan
CategoryTheory.Bicategory.LeftExtension.extension
CategoryTheory.CategoryStruct.comp
CategoryTheory.Bicategory.lanUnit
CategoryTheory.Bicategory.whiskerLeft
CategoryTheory.Bicategory.LeftExtension.unit
β€”CategoryTheory.StructuredArrow.IsUniversal.existsUnique

CategoryTheory.Bicategory.Lan.CommuteWith

Definitions

NameCategoryTheorems
isKan πŸ“–CompOp
2 mathmath: lanCompIso_inv, lanCompIsoWhisker_inv_right
isKanWhisker πŸ“–CompOpβ€”
lanCompIso πŸ“–CompOp
2 mathmath: lanCompIso_inv, lanCompIso_hom
lanCompIsoWhisker πŸ“–CompOp
2 mathmath: lanCompIsoWhisker_hom_right, lanCompIsoWhisker_inv_right

Theorems

NameKindAssumesProvesValidatesDepends On
commute πŸ“–mathematicalβ€”CategoryTheory.Bicategory.LeftExtension.IsKan
CategoryTheory.CategoryStruct.comp
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Bicategory.LeftExtension.whisker
CategoryTheory.Bicategory.lanLeftExtension
β€”β€”
instHasLeftKanExtensionComp πŸ“–mathematicalβ€”CategoryTheory.Bicategory.HasLeftKanExtension
CategoryTheory.CategoryStruct.comp
CategoryTheory.Bicategory.toCategoryStruct
β€”CategoryTheory.Bicategory.LeftExtension.IsKan.hasLeftKanExtension
lanCompIsoWhisker_hom_right πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.CategoryStruct.comp
CategoryTheory.Bicategory.precomp
CategoryTheory.Bicategory.lanLeftExtension
instHasLeftKanExtensionComp
CategoryTheory.Bicategory.LeftExtension.whisker
CategoryTheory.Iso.hom
CategoryTheory.Bicategory.LeftExtension
CategoryTheory.instCategoryStructuredArrow
lanCompIsoWhisker
CategoryTheory.Bicategory.lanDesc
β€”instHasLeftKanExtensionComp
lanCompIsoWhisker_inv_right πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.CategoryStruct.comp
CategoryTheory.Bicategory.precomp
CategoryTheory.Bicategory.LeftExtension.whisker
CategoryTheory.Bicategory.lanLeftExtension
instHasLeftKanExtensionComp
CategoryTheory.Iso.inv
CategoryTheory.Bicategory.LeftExtension
CategoryTheory.instCategoryStructuredArrow
lanCompIsoWhisker
CategoryTheory.Bicategory.LeftExtension.IsKan.desc
isKan
β€”instHasLeftKanExtensionComp
lanCompIso_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.Bicategory.lan
CategoryTheory.CategoryStruct.comp
instHasLeftKanExtensionComp
lanCompIso
CategoryTheory.Bicategory.lanDesc
CategoryTheory.Bicategory.LeftExtension.whisker
CategoryTheory.Bicategory.lanLeftExtension
β€”instHasLeftKanExtensionComp
lanCompIso_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.Bicategory.lan
CategoryTheory.CategoryStruct.comp
instHasLeftKanExtensionComp
lanCompIso
CategoryTheory.Bicategory.LeftExtension.IsKan.desc
CategoryTheory.Bicategory.LeftExtension.whisker
CategoryTheory.Bicategory.lanLeftExtension
isKan
β€”instHasLeftKanExtensionComp
of_isKan_whisker πŸ“–mathematicalβ€”CategoryTheory.Bicategory.Lan.CommuteWithβ€”β€”
of_lan_comp_iso πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.Bicategory.lan
CategoryTheory.Bicategory.lanUnit
CategoryTheory.Bicategory.whiskerLeft
CategoryTheory.Iso.hom
CategoryTheory.Bicategory.whiskerRight
CategoryTheory.Bicategory.associator
CategoryTheory.Bicategory.Lan.CommuteWithβ€”β€”

CategoryTheory.Bicategory.LanLift

Definitions

NameCategoryTheorems
CommuteWith πŸ“–CompData
5 mathmath: CategoryTheory.Bicategory.HasAbsLeftKanLift.commute, CommuteWith.of_lanLift_comp_iso, CategoryTheory.Bicategory.instCommuteWith_1, CategoryTheory.Bicategory.isRightAdjoint_TFAE, CommuteWith.of_isKan_whisker

Theorems

NameKindAssumesProvesValidatesDepends On
existsUnique πŸ“–mathematicalβ€”ExistsUnique
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.Bicategory.lanLift
CategoryTheory.Bicategory.LeftLift.lift
CategoryTheory.CategoryStruct.comp
CategoryTheory.Bicategory.lanLiftUnit
CategoryTheory.Bicategory.whiskerRight
CategoryTheory.Bicategory.LeftLift.unit
β€”CategoryTheory.StructuredArrow.IsUniversal.existsUnique

CategoryTheory.Bicategory.LanLift.CommuteWith

Definitions

NameCategoryTheorems
isKan πŸ“–CompOp
2 mathmath: lanLiftCompIsoWhisker_inv_right, lanLiftCompIso_inv
isKanWhisker πŸ“–CompOpβ€”
lanLiftCompIso πŸ“–CompOp
2 mathmath: lanLiftCompIso_hom, lanLiftCompIso_inv
lanLiftCompIsoWhisker πŸ“–CompOp
2 mathmath: lanLiftCompIsoWhisker_inv_right, lanLiftCompIsoWhisker_hom_right

Theorems

NameKindAssumesProvesValidatesDepends On
commute πŸ“–mathematicalβ€”CategoryTheory.Bicategory.LeftLift.IsKan
CategoryTheory.CategoryStruct.comp
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Bicategory.LeftLift.whisker
CategoryTheory.Bicategory.lanLiftLeftLift
β€”β€”
instHasLeftKanLiftComp πŸ“–mathematicalβ€”CategoryTheory.Bicategory.HasLeftKanLift
CategoryTheory.CategoryStruct.comp
CategoryTheory.Bicategory.toCategoryStruct
β€”CategoryTheory.Bicategory.LeftLift.IsKan.hasLeftKanLift
lanLiftCompIsoWhisker_hom_right πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.CategoryStruct.comp
CategoryTheory.Bicategory.postcomp
CategoryTheory.Bicategory.lanLiftLeftLift
instHasLeftKanLiftComp
CategoryTheory.Bicategory.LeftLift.whisker
CategoryTheory.Iso.hom
CategoryTheory.Bicategory.LeftLift
CategoryTheory.instCategoryStructuredArrow
lanLiftCompIsoWhisker
CategoryTheory.Bicategory.lanLiftDesc
β€”instHasLeftKanLiftComp
lanLiftCompIsoWhisker_inv_right πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.CategoryStruct.comp
CategoryTheory.Bicategory.postcomp
CategoryTheory.Bicategory.LeftLift.whisker
CategoryTheory.Bicategory.lanLiftLeftLift
instHasLeftKanLiftComp
CategoryTheory.Iso.inv
CategoryTheory.Bicategory.LeftLift
CategoryTheory.instCategoryStructuredArrow
lanLiftCompIsoWhisker
CategoryTheory.Bicategory.LeftLift.IsKan.desc
isKan
β€”instHasLeftKanLiftComp
lanLiftCompIso_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.Bicategory.lanLift
CategoryTheory.CategoryStruct.comp
instHasLeftKanLiftComp
lanLiftCompIso
CategoryTheory.Bicategory.lanLiftDesc
CategoryTheory.Bicategory.LeftLift.whisker
CategoryTheory.Bicategory.lanLiftLeftLift
β€”instHasLeftKanLiftComp
lanLiftCompIso_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.Bicategory.lanLift
CategoryTheory.CategoryStruct.comp
instHasLeftKanLiftComp
lanLiftCompIso
CategoryTheory.Bicategory.LeftLift.IsKan.desc
CategoryTheory.Bicategory.LeftLift.whisker
CategoryTheory.Bicategory.lanLiftLeftLift
isKan
β€”instHasLeftKanLiftComp
of_isKan_whisker πŸ“–mathematicalβ€”CategoryTheory.Bicategory.LanLift.CommuteWithβ€”β€”
of_lanLift_comp_iso πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.Bicategory.lanLift
CategoryTheory.Bicategory.lanLiftUnit
CategoryTheory.Bicategory.whiskerRight
CategoryTheory.Iso.hom
CategoryTheory.Bicategory.whiskerLeft
CategoryTheory.Iso.inv
CategoryTheory.Bicategory.associator
CategoryTheory.Bicategory.LanLift.CommuteWithβ€”β€”

CategoryTheory.Bicategory.LeftExtension.IsAbsKan

Theorems

NameKindAssumesProvesValidatesDepends On
hasAbsLeftKanExtension πŸ“–mathematicalβ€”CategoryTheory.Bicategory.HasAbsLeftKanExtensionβ€”CategoryTheory.Bicategory.LeftExtension.IsKan.hasLeftKanExtension

CategoryTheory.Bicategory.LeftExtension.IsKan

Theorems

NameKindAssumesProvesValidatesDepends On
hasLeftKanExtension πŸ“–mathematicalβ€”CategoryTheory.Bicategory.HasLeftKanExtensionβ€”CategoryTheory.Limits.IsInitial.hasInitial

CategoryTheory.Bicategory.LeftLift.IsAbsKan

Theorems

NameKindAssumesProvesValidatesDepends On
hasAbsLeftKanLift πŸ“–mathematicalβ€”CategoryTheory.Bicategory.HasAbsLeftKanLiftβ€”CategoryTheory.Bicategory.LeftLift.IsKan.hasLeftKanLift

CategoryTheory.Bicategory.LeftLift.IsKan

Theorems

NameKindAssumesProvesValidatesDepends On
hasLeftKanLift πŸ“–mathematicalβ€”CategoryTheory.Bicategory.HasLeftKanLiftβ€”CategoryTheory.Limits.IsInitial.hasInitial

---

← Back to Index