Documentation Verification Report

IsKan

📁 Source: Mathlib/CategoryTheory/Bicategory/Kan/IsKan.lean

Statistics

MetricCount
DefinitionsIsAbsKan, desc, isKan, ofIsoAbsKan, IsKan, desc, mk, ofCompId, ofIsoKan, uniqueUpToIso, whiskerOfCommute, IsAbsKan, desc, isKan, ofIsoAbsKan, IsKan, desc, mk, ofIdComp, ofIsoKan, uniqueUpToIso, whiskerOfCommute, IsKan, IsKan
24
Theoremsfac, fac_assoc, hom_ext, uniqueUpToIso_hom_right, uniqueUpToIso_inv_right, fac, fac_assoc, hom_ext, uniqueUpToIso_hom_right, uniqueUpToIso_inv_right
10
Total34

CategoryTheory.Bicategory.LeftExtension

Definitions

NameCategoryTheorems
IsAbsKan 📖CompOp
IsKan 📖CompOp
1 mathmath: CategoryTheory.Bicategory.Lan.CommuteWith.commute

CategoryTheory.Bicategory.LeftExtension.IsAbsKan

Definitions

NameCategoryTheorems
desc 📖CompOp
isKan 📖CompOp
ofIsoAbsKan 📖CompOp

CategoryTheory.Bicategory.LeftExtension.IsKan

Definitions

NameCategoryTheorems
desc 📖CompOp
7 mathmath: CategoryTheory.Bicategory.Lan.CommuteWith.lanCompIso_inv, fac_assoc, uniqueUpToIso_hom_right, CategoryTheory.Bicategory.Lan.CommuteWith.lanCompIsoWhisker_inv_right, CategoryTheory.Bicategory.lanIsKan_desc, uniqueUpToIso_inv_right, fac
mk 📖CompOp
ofCompId 📖CompOp
ofIsoKan 📖CompOp
uniqueUpToIso 📖CompOp
2 mathmath: uniqueUpToIso_hom_right, uniqueUpToIso_inv_right
whiskerOfCommute 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
fac 📖mathematicalCategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.Bicategory.LeftExtension.extension
CategoryTheory.Bicategory.LeftExtension.unit
CategoryTheory.Bicategory.whiskerLeft
desc
CategoryTheory.StructuredArrow.IsUniversal.fac
fac_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.Bicategory.LeftExtension.extension
CategoryTheory.Bicategory.LeftExtension.unit
CategoryTheory.Bicategory.whiskerLeft
desc
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
fac
hom_ext 📖CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.Bicategory.LeftExtension.extension
CategoryTheory.Bicategory.LeftExtension.unit
CategoryTheory.Bicategory.whiskerLeft
CategoryTheory.StructuredArrow.IsUniversal.hom_ext
uniqueUpToIso_hom_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Bicategory.precomp
CategoryTheory.Iso.hom
CategoryTheory.Bicategory.LeftExtension
CategoryTheory.instCategoryStructuredArrow
uniqueUpToIso
desc
uniqueUpToIso_inv_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Bicategory.precomp
CategoryTheory.Iso.inv
CategoryTheory.Bicategory.LeftExtension
CategoryTheory.instCategoryStructuredArrow
uniqueUpToIso
desc

CategoryTheory.Bicategory.LeftLift

Definitions

NameCategoryTheorems
IsAbsKan 📖CompOp
IsKan 📖CompOp
1 mathmath: CategoryTheory.Bicategory.LanLift.CommuteWith.commute

CategoryTheory.Bicategory.LeftLift.IsAbsKan

Definitions

NameCategoryTheorems
desc 📖CompOp
isKan 📖CompOp
ofIsoAbsKan 📖CompOp

CategoryTheory.Bicategory.LeftLift.IsKan

Definitions

NameCategoryTheorems
desc 📖CompOp
7 mathmath: fac_assoc, fac, CategoryTheory.Bicategory.lanLiftIsKan_desc, uniqueUpToIso_hom_right, CategoryTheory.Bicategory.LanLift.CommuteWith.lanLiftCompIsoWhisker_inv_right, uniqueUpToIso_inv_right, CategoryTheory.Bicategory.LanLift.CommuteWith.lanLiftCompIso_inv
mk 📖CompOp
ofIdComp 📖CompOp
ofIsoKan 📖CompOp
uniqueUpToIso 📖CompOp
2 mathmath: uniqueUpToIso_hom_right, uniqueUpToIso_inv_right
whiskerOfCommute 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
fac 📖mathematicalCategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.Bicategory.LeftLift.lift
CategoryTheory.Bicategory.LeftLift.unit
CategoryTheory.Bicategory.whiskerRight
desc
CategoryTheory.StructuredArrow.IsUniversal.fac
fac_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.Bicategory.LeftLift.lift
CategoryTheory.Bicategory.LeftLift.unit
CategoryTheory.Bicategory.whiskerRight
desc
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
fac
hom_ext 📖CategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.Bicategory.LeftLift.lift
CategoryTheory.Bicategory.LeftLift.unit
CategoryTheory.Bicategory.whiskerRight
CategoryTheory.StructuredArrow.IsUniversal.hom_ext
uniqueUpToIso_hom_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Bicategory.postcomp
CategoryTheory.Iso.hom
CategoryTheory.Bicategory.LeftLift
CategoryTheory.instCategoryStructuredArrow
uniqueUpToIso
desc
uniqueUpToIso_inv_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Bicategory.postcomp
CategoryTheory.Iso.inv
CategoryTheory.Bicategory.LeftLift
CategoryTheory.instCategoryStructuredArrow
uniqueUpToIso
desc

CategoryTheory.Bicategory.RightExtension

Definitions

NameCategoryTheorems
IsKan 📖CompOp

CategoryTheory.Bicategory.RightLift

Definitions

NameCategoryTheorems
IsKan 📖CompOp

---

← Back to Index