Documentation Verification Report

LocallyDiscrete

📁 Source: Mathlib/CategoryTheory/Bicategory/LocallyDiscrete.lean

Statistics

MetricCount
DefinitionsIsLocallyDiscrete, LocallyDiscrete, as, categoryStruct, homSmallCategory, instDecidableEq, instInhabited, locallyDiscreteEquiv, locallyDiscreteBicategory, toLoc
10
TheoremsinstIsLocallyDiscreteLocallyDiscrete, instStrictOfIsLocallyDiscrete, toLoc, comp_as, eqToHom_toLoc, eq_of_hom, ext, ext_iff, id_as, locallyDiscreteEquiv_apply, locallyDiscreteEquiv_symm_apply_as, mk_as, subsingleton2Hom, strict, comp_toLoc, id_toLoc, toLoc_as
17
Total27

CategoryTheory

Definitions

NameCategoryTheorems
LocallyDiscrete 📖CompData
147 mathmath: Pseudofunctor.DescentData.isEquivalence_toDescentData_of_sieve_le, Pseudofunctor.DescentData.ofObj_hom, Pseudofunctor.DescentData.subtypeCompatibleHomEquiv_toCompatible_presheafHomObjHomEquiv, AlgebraicGeometry.Scheme.Modules.pseudofunctor_map_adj, GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_map₂, Pseudofunctor.DescentData.pullFunctorCompIso_inv_app_hom, Pseudofunctor.isEquivalence_toDescentData, Pseudofunctor.CoGrothendieck.categoryStruct_id_fiber, Pseudofunctor.CoGrothendieck.map_comp_eq, LocallyDiscrete.id_as, Pseudofunctor.DescentData.pullFunctor_map_hom, CommRingCat.moduleCatRestrictScalarsPseudofunctor_mapComp, Functor.toPseudoFunctor'_obj, Pseudofunctor.CoGrothendieck.instIsEquivalenceαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, LocallyDiscrete.comp_as, Pseudofunctor.DescentData.isoMk_inv_hom, Pseudofunctor.CoGrothendieck.map_map_base, Pseudofunctor.CoGrothendieck.map_map_fiber, Pseudofunctor.Grothendieck.map_id_eq, AlgebraicGeometry.Scheme.Modules.pseudofunctor_map_l, Pseudofunctor.DescentData.comp_hom, LocallyDiscrete.subsingleton2Hom, Pseudofunctor.Grothendieck.ext_iff, Functor.toOplaxFunctor'_obj, Pseudofunctor.isStackFor_ofArrows_iff, GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_comp_val_app, GrothendieckTopology.pseudofunctorOver_mapComp_inv_toNatTrans_app_val_app, Pseudofunctor.DescentData.iso_hom, Bicategory.instIsLocallyDiscreteLocallyDiscrete, Functor.toPseudoFunctor'_map, Pseudofunctor.presheafHom_obj, CommRingCat.moduleCatRestrictScalarsPseudofunctor_mapId, Pseudofunctor.DescentData.iso_inv, Pseudofunctor.CoGrothendieck.instFullαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, CommSq.toLoc, Pseudofunctor.DescentData.nonempty_fullyFaithful_toDescentData_iff_of_sieve_eq, GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_obj_val_obj, Pseudofunctor.Grothendieck.map_id_map, Functor.toOplaxFunctor_obj, Functor.toPseudoFunctor_mapComp, Pseudofunctor.DescentData.instIsIsoαCategoryObjLocallyDiscreteOppositeCatMkOpHom, Pseudofunctor.CoGrothendieck.ι_map_base, CommRingCat.moduleCatRestrictScalarsPseudofunctor_map, Pseudofunctor.isPrestackFor_ofArrows_iff, Pseudofunctor.CoGrothendieck.map_obj_fiber, Pseudofunctor.DescentData.Hom.comm_assoc, Functor.toPseudoFunctor_map, Pseudofunctor.Grothendieck.categoryStruct_id_fiber, Pseudofunctor.CoGrothendieck.Hom.congr, FreeBicategory.preinclusion_map₂, Quiver.Hom.comp_toLoc, LocallyDiscrete.locallyDiscreteEquiv_symm_apply_as, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapComp_hom_τl, Pseudofunctor.DescentData.ofObj_obj, GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_id_val_app, Pseudofunctor.CoGrothendieck.ext_iff, Pseudofunctor.DescentData.hom_comp_assoc, Pseudofunctor.Grothendieck.map_obj_fiber, Pseudofunctor.CoGrothendieck.ι_obj_fiber, Pseudofunctor.isStackFor_iff, CommRingCat.moduleCatExtendScalarsPseudofunctor_map, Pseudofunctor.bijective_toDescentData_map_iff, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapComp_hom_τr, Pseudofunctor.CoGrothendieck.ι_map_fiber, Functor.toOplaxFunctor'_map, RingCat.moduleCatRestrictScalarsPseudofunctor_mapId, LocallyDiscrete.mkPseudofunctor_map, Pseudofunctor.DescentData.pullFunctorObj_obj, CommRingCat.moduleCatExtendScalarsPseudofunctor_obj, Functor.toOplaxFunctor_mapComp, LocallyDiscrete.mkPseudofunctor_mapId, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapId_hom_τr, RingCat.moduleCatRestrictScalarsPseudofunctor_map, AlgebraicGeometry.Scheme.Modules.pseudofunctor_obj_obj, Pseudofunctor.IsStack.essSurj_of_sieve, FreeBicategory.normalize_naturality, LocallyDiscrete.mkPseudofunctor_mapComp, Pseudofunctor.toDescentData_obj, GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_map_val_app, LocallyDiscrete.eqToHom_toLoc, Functor.toOplaxFunctor_map, Pseudofunctor.presheafHomObjHomEquiv_apply, Pseudofunctor.Grothendieck.Hom.ext_iff, LocallyDiscrete.locallyDiscreteEquiv_apply, Functor.toPseudoFunctor_mapId, Pseudofunctor.isPrestackFor_iff, Pseudofunctor.IsStackFor.isEquivalence, Pseudofunctor.CoGrothendieck.instEssSurjαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, RingCat.moduleCatRestrictScalarsPseudofunctor_obj, Pseudofunctor.Grothendieck.Hom.congr, Pseudofunctor.Grothendieck.map_comp_eq, GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_obj_val_map, Pseudofunctor.Grothendieck.map_map_fiber, Pseudofunctor.CoGrothendieck.ι_obj_base, Pseudofunctor.toDescentData_map_hom, RingCat.moduleCatRestrictScalarsPseudofunctor_mapComp, Pseudofunctor.DescentData.pullFunctorObjHom_eq_assoc, locallyDiscreteBicategory.strict, Pseudofunctor.IsStackFor.essSurj, GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_α, Functor.toPseudoFunctor'_mapId, CommRingCat.moduleCatExtendScalarsPseudofunctor_mapComp, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapComp_inv_τl, Functor.toPseudoFunctor'_mapComp, Pseudofunctor.DescentData.exists_equivalence_of_sieve_eq, LocallyDiscrete.mkPseudofunctor_obj, Pseudofunctor.DescentData.pullFunctorIdIso_inv_app_hom, Quiver.Hom.id_toLoc, Pseudofunctor.LocallyDiscreteOpToCat.map_eq_pullHom_assoc, Pseudofunctor.DescentData.isEquivalence_toDescentData_iff_of_sieve_eq, Pseudofunctor.CoGrothendieck.comp_const, Pseudofunctor.CoGrothendieck.map_id_eq, Pseudofunctor.CoGrothendieck.compIso_inv_app, Functor.toOplaxFunctor_mapId, Pseudofunctor.DescentData.pullFunctorIdIso_hom_app_hom, GrothendieckTopology.pseudofunctorOver_mapComp_hom_toNatTrans_app_val_app, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapId_hom_τl, Pseudofunctor.LocallyDiscreteOpToCat.map_eq_pullHom, Pseudofunctor.DescentData.id_hom, Pseudofunctor.DescentData.pullFunctorCompIso_hom_app_hom, Pseudofunctor.DescentData.isoMk_hom_hom, Pseudofunctor.DescentData.pullFunctorObjHom_eq, Pseudofunctor.DescentData.hom_self, Pseudofunctor.DescentData.comp_hom_assoc, Functor.toOplaxFunctor'_mapComp, Pseudofunctor.CoGrothendieck.categoryStruct_comp_fiber, CommRingCat.moduleCatExtendScalarsPseudofunctor_mapId, AlgebraicGeometry.Scheme.Modules.pseudofunctor_map_r, Pseudofunctor.CoGrothendieck.instFaithfulαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, FreeBicategory.preinclusion_obj, Pseudofunctor.CoGrothendieck.map_id_map, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapComp_inv_τr, Pseudofunctor.presheafHomObjHomEquiv_symm_apply, CommRingCat.moduleCatRestrictScalarsPseudofunctor_obj, GrothendieckTopology.pseudofunctorOver_mapId_inv_toNatTrans_app_val_app, GrothendieckTopology.pseudofunctorOver_mapId_hom_toNatTrans_app_val_app, Functor.toPseudoFunctor_obj, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapId_inv_τl, Pseudofunctor.Grothendieck.categoryStruct_comp_fiber, Pseudofunctor.CoGrothendieck.compIso_hom_app, Pseudofunctor.DescentData.hom_comp, Pseudofunctor.IsPrestackFor.nonempty_fullyFaithful, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapId_inv_τr, Pseudofunctor.CoGrothendieck.Hom.ext_iff, Pseudofunctor.Grothendieck.map_map_base, Functor.toOplaxFunctor'_mapId, Pseudofunctor.DescentData.Hom.comm
locallyDiscreteBicategory 📖CompOp
139 mathmath: Pseudofunctor.DescentData.isEquivalence_toDescentData_of_sieve_le, Pseudofunctor.DescentData.ofObj_hom, Pseudofunctor.DescentData.subtypeCompatibleHomEquiv_toCompatible_presheafHomObjHomEquiv, AlgebraicGeometry.Scheme.Modules.pseudofunctor_map_adj, GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_map₂, Pseudofunctor.DescentData.pullFunctorCompIso_inv_app_hom, Pseudofunctor.isEquivalence_toDescentData, Pseudofunctor.CoGrothendieck.categoryStruct_id_fiber, Pseudofunctor.CoGrothendieck.map_comp_eq, Pseudofunctor.DescentData.pullFunctor_map_hom, CommRingCat.moduleCatRestrictScalarsPseudofunctor_mapComp, Functor.toPseudoFunctor'_obj, Pseudofunctor.CoGrothendieck.instIsEquivalenceαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, Pseudofunctor.DescentData.isoMk_inv_hom, Pseudofunctor.CoGrothendieck.map_map_base, Pseudofunctor.CoGrothendieck.map_map_fiber, Pseudofunctor.Grothendieck.map_id_eq, AlgebraicGeometry.Scheme.Modules.pseudofunctor_map_l, Pseudofunctor.DescentData.comp_hom, Pseudofunctor.Grothendieck.ext_iff, Functor.toOplaxFunctor'_obj, Pseudofunctor.isStackFor_ofArrows_iff, GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_comp_val_app, GrothendieckTopology.pseudofunctorOver_mapComp_inv_toNatTrans_app_val_app, Pseudofunctor.DescentData.iso_hom, Bicategory.instIsLocallyDiscreteLocallyDiscrete, Functor.toPseudoFunctor'_map, Pseudofunctor.presheafHom_obj, CommRingCat.moduleCatRestrictScalarsPseudofunctor_mapId, Pseudofunctor.DescentData.iso_inv, Pseudofunctor.CoGrothendieck.instFullαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, CommSq.toLoc, Pseudofunctor.DescentData.nonempty_fullyFaithful_toDescentData_iff_of_sieve_eq, GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_obj_val_obj, Pseudofunctor.Grothendieck.map_id_map, Functor.toOplaxFunctor_obj, Functor.toPseudoFunctor_mapComp, Pseudofunctor.DescentData.instIsIsoαCategoryObjLocallyDiscreteOppositeCatMkOpHom, Pseudofunctor.CoGrothendieck.ι_map_base, CommRingCat.moduleCatRestrictScalarsPseudofunctor_map, Pseudofunctor.isPrestackFor_ofArrows_iff, Pseudofunctor.CoGrothendieck.map_obj_fiber, Pseudofunctor.DescentData.Hom.comm_assoc, Functor.toPseudoFunctor_map, Pseudofunctor.Grothendieck.categoryStruct_id_fiber, Pseudofunctor.CoGrothendieck.Hom.congr, FreeBicategory.preinclusion_map₂, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapComp_hom_τl, Pseudofunctor.DescentData.ofObj_obj, GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_id_val_app, Pseudofunctor.CoGrothendieck.ext_iff, Pseudofunctor.DescentData.hom_comp_assoc, Pseudofunctor.Grothendieck.map_obj_fiber, Pseudofunctor.CoGrothendieck.ι_obj_fiber, Pseudofunctor.isStackFor_iff, CommRingCat.moduleCatExtendScalarsPseudofunctor_map, Pseudofunctor.bijective_toDescentData_map_iff, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapComp_hom_τr, Pseudofunctor.CoGrothendieck.ι_map_fiber, Functor.toOplaxFunctor'_map, RingCat.moduleCatRestrictScalarsPseudofunctor_mapId, LocallyDiscrete.mkPseudofunctor_map, Pseudofunctor.DescentData.pullFunctorObj_obj, CommRingCat.moduleCatExtendScalarsPseudofunctor_obj, Functor.toOplaxFunctor_mapComp, LocallyDiscrete.mkPseudofunctor_mapId, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapId_hom_τr, RingCat.moduleCatRestrictScalarsPseudofunctor_map, AlgebraicGeometry.Scheme.Modules.pseudofunctor_obj_obj, Pseudofunctor.IsStack.essSurj_of_sieve, FreeBicategory.normalize_naturality, LocallyDiscrete.mkPseudofunctor_mapComp, Pseudofunctor.toDescentData_obj, GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_map_val_app, Functor.toOplaxFunctor_map, Pseudofunctor.presheafHomObjHomEquiv_apply, Pseudofunctor.Grothendieck.Hom.ext_iff, Functor.toPseudoFunctor_mapId, Pseudofunctor.isPrestackFor_iff, Pseudofunctor.IsStackFor.isEquivalence, Pseudofunctor.CoGrothendieck.instEssSurjαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, RingCat.moduleCatRestrictScalarsPseudofunctor_obj, Pseudofunctor.Grothendieck.Hom.congr, Pseudofunctor.Grothendieck.map_comp_eq, GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_obj_val_map, Pseudofunctor.Grothendieck.map_map_fiber, Pseudofunctor.CoGrothendieck.ι_obj_base, Pseudofunctor.toDescentData_map_hom, RingCat.moduleCatRestrictScalarsPseudofunctor_mapComp, Pseudofunctor.DescentData.pullFunctorObjHom_eq_assoc, locallyDiscreteBicategory.strict, Pseudofunctor.IsStackFor.essSurj, GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_α, Functor.toPseudoFunctor'_mapId, CommRingCat.moduleCatExtendScalarsPseudofunctor_mapComp, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapComp_inv_τl, Functor.toPseudoFunctor'_mapComp, Pseudofunctor.DescentData.exists_equivalence_of_sieve_eq, LocallyDiscrete.mkPseudofunctor_obj, Pseudofunctor.DescentData.pullFunctorIdIso_inv_app_hom, Pseudofunctor.LocallyDiscreteOpToCat.map_eq_pullHom_assoc, Pseudofunctor.DescentData.isEquivalence_toDescentData_iff_of_sieve_eq, Pseudofunctor.CoGrothendieck.comp_const, Pseudofunctor.CoGrothendieck.map_id_eq, Pseudofunctor.CoGrothendieck.compIso_inv_app, Functor.toOplaxFunctor_mapId, Pseudofunctor.DescentData.pullFunctorIdIso_hom_app_hom, GrothendieckTopology.pseudofunctorOver_mapComp_hom_toNatTrans_app_val_app, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapId_hom_τl, Pseudofunctor.LocallyDiscreteOpToCat.map_eq_pullHom, Pseudofunctor.DescentData.id_hom, Pseudofunctor.DescentData.pullFunctorCompIso_hom_app_hom, Pseudofunctor.DescentData.isoMk_hom_hom, Pseudofunctor.DescentData.pullFunctorObjHom_eq, Pseudofunctor.DescentData.hom_self, Pseudofunctor.DescentData.comp_hom_assoc, Functor.toOplaxFunctor'_mapComp, Pseudofunctor.CoGrothendieck.categoryStruct_comp_fiber, CommRingCat.moduleCatExtendScalarsPseudofunctor_mapId, AlgebraicGeometry.Scheme.Modules.pseudofunctor_map_r, Pseudofunctor.CoGrothendieck.instFaithfulαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, FreeBicategory.preinclusion_obj, Pseudofunctor.CoGrothendieck.map_id_map, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapComp_inv_τr, Pseudofunctor.presheafHomObjHomEquiv_symm_apply, CommRingCat.moduleCatRestrictScalarsPseudofunctor_obj, GrothendieckTopology.pseudofunctorOver_mapId_inv_toNatTrans_app_val_app, GrothendieckTopology.pseudofunctorOver_mapId_hom_toNatTrans_app_val_app, Functor.toPseudoFunctor_obj, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapId_inv_τl, Pseudofunctor.Grothendieck.categoryStruct_comp_fiber, Pseudofunctor.CoGrothendieck.compIso_hom_app, Pseudofunctor.DescentData.hom_comp, Pseudofunctor.IsPrestackFor.nonempty_fullyFaithful, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapId_inv_τr, Pseudofunctor.CoGrothendieck.Hom.ext_iff, Pseudofunctor.Grothendieck.map_map_base, Functor.toOplaxFunctor'_mapId, Pseudofunctor.DescentData.Hom.comm

CategoryTheory.Bicategory

Definitions

NameCategoryTheorems
IsLocallyDiscrete 📖MathDef
1 mathmath: instIsLocallyDiscreteLocallyDiscrete

Theorems

NameKindAssumesProvesValidatesDepends On
instIsLocallyDiscreteLocallyDiscrete 📖mathematicalIsLocallyDiscrete
CategoryTheory.LocallyDiscrete
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Discrete.isDiscrete
instStrictOfIsLocallyDiscrete 📖mathematicalIsLocallyDiscreteStrictCategoryTheory.obj_ext_of_isDiscrete
CategoryTheory.Iso.ext
CategoryTheory.IsDiscrete.subsingleton

CategoryTheory.CommSq

Theorems

NameKindAssumesProvesValidatesDepends On
toLoc 📖mathematicalCategoryTheory.CommSqCategoryTheory.LocallyDiscrete
CategoryTheory.StrictBicategory.category
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.locallyDiscreteBicategory.strict
Quiver.Hom.toLoc
CategoryTheory.Category.toCategoryStruct
CategoryTheory.locallyDiscreteBicategory.strict
w

CategoryTheory.LocallyDiscrete

Definitions

NameCategoryTheorems
as 📖CompOp
63 mathmath: AlgebraicGeometry.Scheme.Modules.pseudofunctor_map_adj, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_map₂, mk_as, id_as, CommRingCat.moduleCatRestrictScalarsPseudofunctor_mapComp, CategoryTheory.Functor.toPseudoFunctor'_obj, comp_as, AlgebraicGeometry.Scheme.Modules.pseudofunctor_map_l, CategoryTheory.Functor.toOplaxFunctor'_obj, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_comp_val_app, CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapComp_inv_toNatTrans_app_val_app, CategoryTheory.Functor.toPseudoFunctor'_map, CommRingCat.moduleCatRestrictScalarsPseudofunctor_mapId, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_obj_val_obj, CategoryTheory.Functor.toOplaxFunctor_obj, CategoryTheory.Functor.toPseudoFunctor_mapComp, CommRingCat.moduleCatRestrictScalarsPseudofunctor_map, CategoryTheory.Functor.toPseudoFunctor_map, locallyDiscreteEquiv_symm_apply_as, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapComp_hom_τl, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_id_val_app, CommRingCat.moduleCatExtendScalarsPseudofunctor_map, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapComp_hom_τr, CategoryTheory.Functor.toOplaxFunctor'_map, ext_iff, RingCat.moduleCatRestrictScalarsPseudofunctor_mapId, mkPseudofunctor_map, CommRingCat.moduleCatExtendScalarsPseudofunctor_obj, CategoryTheory.Functor.toOplaxFunctor_mapComp, mkPseudofunctor_mapId, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapId_hom_τr, RingCat.moduleCatRestrictScalarsPseudofunctor_map, AlgebraicGeometry.Scheme.Modules.pseudofunctor_obj_obj, CategoryTheory.FreeBicategory.normalize_naturality, mkPseudofunctor_mapComp, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_map_val_app, CategoryTheory.Functor.toOplaxFunctor_map, locallyDiscreteEquiv_apply, CategoryTheory.Functor.toPseudoFunctor_mapId, RingCat.moduleCatRestrictScalarsPseudofunctor_obj, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_obj_val_map, RingCat.moduleCatRestrictScalarsPseudofunctor_mapComp, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_α, CategoryTheory.Functor.toPseudoFunctor'_mapId, CommRingCat.moduleCatExtendScalarsPseudofunctor_mapComp, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapComp_inv_τl, CategoryTheory.Functor.toPseudoFunctor'_mapComp, mkPseudofunctor_obj, CategoryTheory.Functor.toOplaxFunctor_mapId, CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapComp_hom_toNatTrans_app_val_app, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapId_hom_τl, CategoryTheory.Functor.toOplaxFunctor'_mapComp, CommRingCat.moduleCatExtendScalarsPseudofunctor_mapId, AlgebraicGeometry.Scheme.Modules.pseudofunctor_map_r, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapComp_inv_τr, Quiver.Hom.toLoc_as, CommRingCat.moduleCatRestrictScalarsPseudofunctor_obj, CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapId_inv_toNatTrans_app_val_app, CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapId_hom_toNatTrans_app_val_app, CategoryTheory.Functor.toPseudoFunctor_obj, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapId_inv_τl, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapId_inv_τr, CategoryTheory.Functor.toOplaxFunctor'_mapId
categoryStruct 📖CompOp
10 mathmath: id_as, comp_as, subsingleton2Hom, Quiver.Hom.comp_toLoc, eqToHom_toLoc, CategoryTheory.Pseudofunctor.presheafHomObjHomEquiv_apply, Quiver.Hom.id_toLoc, CategoryTheory.Pseudofunctor.CoGrothendieck.categoryStruct_comp_fiber, CategoryTheory.Pseudofunctor.presheafHomObjHomEquiv_symm_apply, CategoryTheory.Pseudofunctor.Grothendieck.categoryStruct_comp_fiber
homSmallCategory 📖CompOp
1 mathmath: subsingleton2Hom
instDecidableEq 📖CompOp
instInhabited 📖CompOp
locallyDiscreteEquiv 📖CompOp
2 mathmath: locallyDiscreteEquiv_symm_apply_as, locallyDiscreteEquiv_apply

Theorems

NameKindAssumesProvesValidatesDepends On
comp_as 📖mathematicalCategoryTheory.Discrete.as
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
as
CategoryTheory.CategoryStruct.comp
CategoryTheory.LocallyDiscrete
categoryStruct
eqToHom_toLoc 📖mathematicalQuiver.Hom.toLoc
CategoryTheory.Category.toCategoryStruct
CategoryTheory.eqToHom
CategoryTheory.LocallyDiscrete
categoryStruct
eq_of_hom 📖CategoryTheory.Discrete.ext
ext 📖as
ext_iff 📖mathematicalasext
id_as 📖mathematicalCategoryTheory.Discrete.as
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
as
CategoryTheory.CategoryStruct.id
CategoryTheory.LocallyDiscrete
categoryStruct
locallyDiscreteEquiv_apply 📖mathematicalDFunLike.coe
Equiv
CategoryTheory.LocallyDiscrete
EquivLike.toFunLike
Equiv.instEquivLike
locallyDiscreteEquiv
as
locallyDiscreteEquiv_symm_apply_as 📖mathematicalas
DFunLike.coe
Equiv
CategoryTheory.LocallyDiscrete
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
locallyDiscreteEquiv
mk_as 📖mathematicalas
subsingleton2Hom 📖mathematicalQuiver.Hom
CategoryTheory.LocallyDiscrete
CategoryTheory.CategoryStruct.toQuiver
categoryStruct
CategoryTheory.Category.toCategoryStruct
homSmallCategory
CategoryTheory.Discrete.instSubsingletonDiscreteHom

CategoryTheory.locallyDiscreteBicategory

Theorems

NameKindAssumesProvesValidatesDepends On
strict 📖mathematicalCategoryTheory.Bicategory.Strict
CategoryTheory.LocallyDiscrete
CategoryTheory.locallyDiscreteBicategory
CategoryTheory.Discrete.ext
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
CategoryTheory.Category.assoc

Quiver.Hom

Definitions

NameCategoryTheorems
toLoc 📖CompOp
40 mathmath: CategoryTheory.Pseudofunctor.DescentData.ofObj_hom, CategoryTheory.Pseudofunctor.DescentData.pullFunctorCompIso_inv_app_hom, CategoryTheory.Pseudofunctor.DescentData.pullFunctor_map_hom, CategoryTheory.Pseudofunctor.CoGrothendieck.map_map_fiber, CategoryTheory.Pseudofunctor.DescentData.iso_hom, CategoryTheory.Pseudofunctor.presheafHom_obj, CategoryTheory.Pseudofunctor.DescentData.iso_inv, CategoryTheory.CommSq.toLoc, CategoryTheory.Functor.toPseudoFunctor_mapComp, CategoryTheory.Pseudofunctor.DescentData.instIsIsoαCategoryObjLocallyDiscreteOppositeCatMkOpHom, CategoryTheory.Pseudofunctor.DescentData.Hom.comm_assoc, CategoryTheory.Functor.toPseudoFunctor_map, CategoryTheory.Pseudofunctor.CoGrothendieck.Hom.congr, comp_toLoc, CategoryTheory.Pseudofunctor.DescentData.ofObj_obj, CategoryTheory.Pseudofunctor.DescentData.hom_comp_assoc, CategoryTheory.Pseudofunctor.CoGrothendieck.ι_map_fiber, CategoryTheory.Pseudofunctor.DescentData.pullFunctorObj_obj, CategoryTheory.Functor.toOplaxFunctor_mapComp, CategoryTheory.LocallyDiscrete.eqToHom_toLoc, CategoryTheory.Functor.toOplaxFunctor_map, CategoryTheory.Pseudofunctor.Grothendieck.Hom.ext_iff, CategoryTheory.Functor.toPseudoFunctor_mapId, CategoryTheory.Pseudofunctor.Grothendieck.Hom.congr, CategoryTheory.Pseudofunctor.Grothendieck.map_map_fiber, CategoryTheory.Pseudofunctor.toDescentData_map_hom, CategoryTheory.Pseudofunctor.DescentData.pullFunctorObjHom_eq_assoc, id_toLoc, CategoryTheory.Pseudofunctor.LocallyDiscreteOpToCat.map_eq_pullHom_assoc, CategoryTheory.Functor.toOplaxFunctor_mapId, CategoryTheory.Pseudofunctor.LocallyDiscreteOpToCat.map_eq_pullHom, CategoryTheory.Pseudofunctor.DescentData.pullFunctorCompIso_hom_app_hom, CategoryTheory.Pseudofunctor.DescentData.pullFunctorObjHom_eq, CategoryTheory.Pseudofunctor.DescentData.hom_self, CategoryTheory.Pseudofunctor.CoGrothendieck.categoryStruct_comp_fiber, toLoc_as, CategoryTheory.Pseudofunctor.Grothendieck.categoryStruct_comp_fiber, CategoryTheory.Pseudofunctor.DescentData.hom_comp, CategoryTheory.Pseudofunctor.CoGrothendieck.Hom.ext_iff, CategoryTheory.Pseudofunctor.DescentData.Hom.comm

Theorems

NameKindAssumesProvesValidatesDepends On
comp_toLoc 📖mathematicaltoLoc
CategoryTheory.CategoryStruct.comp
CategoryTheory.LocallyDiscrete
CategoryTheory.LocallyDiscrete.categoryStruct
id_toLoc 📖mathematicaltoLoc
CategoryTheory.CategoryStruct.id
CategoryTheory.LocallyDiscrete
CategoryTheory.LocallyDiscrete.categoryStruct
toLoc_as 📖mathematicalCategoryTheory.Discrete.as
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.LocallyDiscrete.as
toLoc

---

← Back to Index