Documentation Verification Report

Basic

📁 Source: Mathlib/CategoryTheory/Bicategory/Monad/Basic.lean

Statistics

MetricCount
DefinitionsComonad, comul, counit, instId, ofOplaxFromUnit, toOplax, ComonadBicat, hom, inst, instComonadHom, mkOfComonad, obj, toOplax, termΔ, termε, «termΔ[_]», «termε[_]»
17
Theoremscomul_assoc, comul_assoc_assoc, comul_assoc_flip, comul_assoc_flip_assoc, comul_counit, comul_counit_assoc, counit_comul, counit_comul_assoc, counit_def, mkOfComonad_comul, mkOfComonad_counit, mkOfComonad_hom
12
Total29

CategoryTheory.Bicategory

Definitions

NameCategoryTheorems
Comonad 📖CompOp
termΔ 📖CompOp
termε 📖CompOp
«termΔ[_]» 📖CompOp
«termε[_]» 📖CompOp

CategoryTheory.Bicategory.Comonad

Definitions

NameCategoryTheorems
comul 📖CompOp
9 mathmath: comul_assoc_flip, comul_assoc_flip_assoc, counit_comul_assoc, comul_assoc, comul_counit_assoc, CategoryTheory.Bicategory.OplaxTrans.ComonadBicat.mkOfComonad_comul, comul_assoc_assoc, counit_comul, comul_counit
counit 📖CompOp
5 mathmath: counit_comul_assoc, comul_counit_assoc, counit_comul, comul_counit, CategoryTheory.Bicategory.OplaxTrans.ComonadBicat.mkOfComonad_counit
instId 📖CompOp
1 mathmath: counit_def
ofOplaxFromUnit 📖CompOp
toOplax 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
comul_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryEndMonoidal
comul
CategoryTheory.Bicategory.whiskerLeft
CategoryTheory.Bicategory.whiskerRight
CategoryTheory.Iso.hom
CategoryTheory.Bicategory.homCategory
CategoryTheory.Bicategory.associator
CategoryTheory.ComonObj.comul_assoc
comul_assoc_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryEndMonoidal
comul
CategoryTheory.Bicategory.whiskerLeft
CategoryTheory.Bicategory.whiskerRight
CategoryTheory.Iso.hom
CategoryTheory.Bicategory.homCategory
CategoryTheory.Bicategory.associator
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comul_assoc
comul_assoc_flip 📖mathematicalCategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryEndMonoidal
comul
CategoryTheory.Bicategory.whiskerRight
CategoryTheory.Bicategory.whiskerLeft
CategoryTheory.Iso.inv
CategoryTheory.Bicategory.homCategory
CategoryTheory.Bicategory.associator
CategoryTheory.ComonObj.comul_assoc_flip
comul_assoc_flip_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryEndMonoidal
comul
CategoryTheory.Bicategory.whiskerRight
CategoryTheory.Bicategory.whiskerLeft
CategoryTheory.Iso.inv
CategoryTheory.Bicategory.homCategory
CategoryTheory.Bicategory.associator
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comul_assoc_flip
comul_counit 📖mathematicalCategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryEndMonoidal
CategoryTheory.CategoryStruct.id
comul
CategoryTheory.Bicategory.whiskerLeft
counit
CategoryTheory.Iso.inv
CategoryTheory.Bicategory.homCategory
CategoryTheory.Bicategory.rightUnitor
CategoryTheory.ComonObj.comul_counit
comul_counit_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryEndMonoidal
comul
CategoryTheory.CategoryStruct.id
CategoryTheory.Bicategory.whiskerLeft
counit
CategoryTheory.Iso.inv
CategoryTheory.Bicategory.homCategory
CategoryTheory.Bicategory.rightUnitor
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comul_counit
counit_comul 📖mathematicalCategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryEndMonoidal
CategoryTheory.CategoryStruct.id
comul
CategoryTheory.Bicategory.whiskerRight
counit
CategoryTheory.Iso.inv
CategoryTheory.Bicategory.homCategory
CategoryTheory.Bicategory.leftUnitor
CategoryTheory.ComonObj.counit_comul
counit_comul_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryEndMonoidal
comul
CategoryTheory.CategoryStruct.id
CategoryTheory.Bicategory.whiskerRight
counit
CategoryTheory.Iso.inv
CategoryTheory.Bicategory.homCategory
CategoryTheory.Bicategory.leftUnitor
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
counit_comul
counit_def 📖mathematicalCategoryTheory.ComonObj.counit
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.instCategoryEndMonoidal
CategoryTheory.instMonoidalCategoryHom
CategoryTheory.CategoryStruct.id
instId
CategoryTheory.Category.toCategoryStruct

CategoryTheory.Bicategory.OplaxTrans

Definitions

NameCategoryTheorems
ComonadBicat 📖CompOp

CategoryTheory.Bicategory.OplaxTrans.ComonadBicat

Definitions

NameCategoryTheorems
hom 📖CompOp
3 mathmath: mkOfComonad_hom, mkOfComonad_comul, mkOfComonad_counit
inst 📖CompOp
instComonadHom 📖CompOp
2 mathmath: mkOfComonad_comul, mkOfComonad_counit
mkOfComonad 📖CompOp
3 mathmath: mkOfComonad_hom, mkOfComonad_comul, mkOfComonad_counit
obj 📖CompOp
2 mathmath: mkOfComonad_comul, mkOfComonad_counit
toOplax 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
mkOfComonad_comul 📖mathematicalCategoryTheory.Bicategory.Comonad.comul
obj
mkOfComonad
hom
instComonadHom
CategoryTheory.Category.id_comp
mkOfComonad_counit 📖mathematicalCategoryTheory.Bicategory.Comonad.counit
obj
mkOfComonad
hom
instComonadHom
mkOfComonad_hom 📖mathematicalhom
mkOfComonad

---

← Back to Index