| Name | Category | Theorems |
Hom2 📖 | CompData | — |
bicategory 📖 | CompOp | 21 mathmath: op2_associator, op2_associator_inv, op2_whiskerLeft, bicategory_associator_hom_unop2, bicategory_leftUnitor_hom_unop2, op2_whiskerRight, bicategory_leftUnitor_inv_unop2, op2_rightUnitor_inv, bicategory_whiskerRight_unop2, op2_rightUnitor, op2_rightUnitor_hom, op2_leftUnitor_hom, op2_leftUnitor_inv, op2_leftUnitor, bicategory_homCategory_id_unop2, bicategory_homCategory_comp_unop2, bicategory_associator_inv_unop2, op2_associator_hom, bicategory_rightUnitor_hom_unop2, bicategory_whiskerLeft_unop2, bicategory_rightUnitor_inv_unop2
|
homCategory 📖 | CompOp | 26 mathmath: CategoryTheory.Iso.unop2_inv, bicategory_associator_hom_unop2, unop2_id_bop, unopFunctor_map, bicategory_leftUnitor_hom_unop2, CategoryTheory.Iso.op2_hom_unop2, bicategory_leftUnitor_inv_unop2, CategoryTheory.Iso.unop2_op_inv, opFunctor_obj, homCategory_comp_unop2, unopFunctor_obj, CategoryTheory.Iso.unop2_hom, op2_comp, op2_id, CategoryTheory.Iso.unop2_op_hom, CategoryTheory.Iso.op2_unop_inv_unop2, CategoryTheory.Iso.op2_unop_hom_unop2, unop2_comp, CategoryTheory.Iso.op2_inv_unop2, unop2_id, bicategory_associator_inv_unop2, opFunctor_map, homCategory_id_unop2, op2_id_unbop, bicategory_rightUnitor_hom_unop2, bicategory_rightUnitor_inv_unop2
|
op2 📖 | CompOp | 14 mathmath: op2_unop2, op2_associator_inv, op2_whiskerLeft, op2_whiskerRight, op2_rightUnitor_inv, op2_rightUnitor_hom, op2_comp, op2_leftUnitor_hom, op2_id, op2_leftUnitor_inv, unop2_op2, opFunctor_map, op2_id_unbop, op2_associator_hom
|
opFunctor 📖 | CompOp | 10 mathmath: bicategory_leftUnitor_hom_unop2, CategoryTheory.Iso.op2_hom_unop2, bicategory_leftUnitor_inv_unop2, opFunctor_obj, CategoryTheory.Iso.op2_unop_inv_unop2, CategoryTheory.Iso.op2_unop_hom_unop2, CategoryTheory.Iso.op2_inv_unop2, opFunctor_map, bicategory_rightUnitor_hom_unop2, bicategory_rightUnitor_inv_unop2
|
unopFunctor 📖 | CompOp | 2 mathmath: unopFunctor_map, unopFunctor_obj
|