Documentation Verification Report

CatCommSq

πŸ“ Source: Mathlib/CategoryTheory/CatCommSq.lean

Statistics

MetricCount
DefinitionsCatCommSq, hComp, hComp', hId, hInv, hInvEquiv, iso, vComp, vComp', vId, vInv, vInvEquiv
12
Theoremsext, ext_iff, hComp_iso_hom_app, hComp_iso_inv_app, hId_iso_hom_app, hId_iso_inv_app, hInv_hInv, hInv_iso_hom_app, hInv_iso_inv_app, iso_hom_naturality, iso_hom_naturality_assoc, iso_inv_naturality, iso_inv_naturality_assoc, vComp_iso_hom_app, vComp_iso_inv_app, vId_iso_hom_app, vId_iso_inv_app, vInv_iso_hom_app, vInv_iso_inv_app, vInv_vInv
20
Total32

CategoryTheory

Definitions

NameCategoryTheorems
CatCommSq πŸ“–CompData
2 mathmath: Limits.CatCospanTransform.id_squareLeft, Limits.CatCospanTransform.id_squareRight

CategoryTheory.CatCommSq

Definitions

NameCategoryTheorems
hComp πŸ“–CompOp
2 mathmath: hComp_iso_hom_app, hComp_iso_inv_app
hComp' πŸ“–CompOpβ€”
hId πŸ“–CompOp
2 mathmath: hId_iso_hom_app, hId_iso_inv_app
hInv πŸ“–CompOp
3 mathmath: hInv_iso_inv_app, hInv_hInv, hInv_iso_hom_app
hInvEquiv πŸ“–CompOpβ€”
iso πŸ“–CompOp
65 mathmath: CategoryTheory.Limits.CategoricalPullback.catCommSq_iso_hom_app, CategoryTheory.Adjunction.Localization.Ξ΅_app, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.precomposeObjTransformObjSquare_iso_hom_app_snd_app, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.transform_obj_map_snd_app, hInv_iso_inv_app, CategoryTheory.LocalizerMorphism.rightDerivedFunctorComparison_fac_app_assoc, hId_iso_hom_app, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.asSquare_iso, CategoryTheory.Limits.CatCospanTransformMorphism.right_coherence_assoc, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.transformObjPrecomposeObjSquare_iso_inv_app_snd_app, hComp_iso_hom_app, iso_inv_naturality, CategoryTheory.Adjunction.localization_unit_app, CategoryTheory.Limits.CatCospanTransformMorphism.left_coherence_app_assoc, vId_iso_hom_app, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.precomposeObjTransformObjSquare_iso_hom_app_fst_app, hId_iso_inv_app, CategoryTheory.Limits.CategoricalPullback.functorEquiv_functor_map_fst_app, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.transform_map_app_fst_app, CategoryTheory.LocalizerMorphism.rightDerivedFunctorComparison_fac, vInv_iso_hom_app, CategoryTheory.Limits.CategoricalPullback.functorEquiv_functor_map_snd_app, iso_hom_naturality, CategoryTheory.LocalizerMorphism.rightDerivedFunctorComparison_fac_app, vComp_iso_hom_app, iso_inv_naturality_assoc, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.transformObjPrecomposeObjSquare_iso_hom_id, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.precomposeObjTransformObjSquare_iso_inv_app_snd_app, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.precomposeObjTransformObjSquare_iso_hom_comp, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.transform_map_app_snd_app, CategoryTheory.Limits.CatCospanTransformMorphism.left_coherence, CategoryTheory.Limits.CatCospanTransformMorphism.left_coherence_app, CategoryTheory.Limits.CategoricalPullback.toCatCommSqOver_map_fst_app, vInv_iso_inv_app, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.precomposeObjTransformObjSquare_iso_hom_naturalityβ‚‚, CategoryTheory.LocalizerMorphism.guitartExact_of_isRightDerivabilityStructure, CategoryTheory.Limits.CatCospanTransformMorphism.right_coherence_app_assoc, hComp_iso_inv_app, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.precomposeObjTransformObjSquare_iso_inv_app_fst_app, CategoryTheory.Adjunction.localization_counit_app, CategoryTheory.LocalizerMorphism.IsRightDerivabilityStructure.guitartExact', CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.precomposeObjTransformObjSquare_iso_hom_id, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.transformObjPrecomposeObjSquare_iso_hom_app_snd_app, CategoryTheory.Limits.CatCospanTransformMorphism.right_coherence_app, vComp_iso_inv_app, CategoryTheory.Limits.CategoricalPullback.catCommSq_iso_inv_app, CategoryTheory.Limits.CatCospanTransformMorphism.left_coherence_assoc, CategoryTheory.LocalizerMorphism.guitartExact_of_isLeftDerivabilityStructure, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.transformObjPrecomposeObjSquare_iso_hom_naturalityβ‚‚, iso_hom_naturality_assoc, ext_iff, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.transformPrecomposeObjSquare_iso_hom_comp, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.transform_obj_obj_iso_inv_app, CategoryTheory.LocalizerMorphism.instCommShiftLocalizationHomFunctorIsoFunctorQLocalizedFunctor, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.transformObjPrecomposeObjSquare_iso_hom_app_fst_app, hInv_iso_hom_app, CategoryTheory.LocalizerMorphism.rightDerivedFunctorComparison_fac_assoc, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.transform_obj_map_fst_app, vId_iso_inv_app, CategoryTheory.Limits.CategoricalPullback.toCatCommSqOver_map_snd_app, CategoryTheory.Limits.CatCospanTransformMorphism.right_coherence, CategoryTheory.Adjunction.Localization.Ξ·_app, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.transformObjPrecomposeObjSquare_iso_inv_app_fst_app, CategoryTheory.LocalizerMorphism.IsLeftDerivabilityStructure.guitartExact', CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.transform_obj_obj_iso_hom_app
vComp πŸ“–CompOp
2 mathmath: vComp_iso_hom_app, vComp_iso_inv_app
vComp' πŸ“–CompOp
2 mathmath: CategoryTheory.Limits.CatCospanTransform.comp_squareRight, CategoryTheory.Limits.CatCospanTransform.comp_squareLeft
vId πŸ“–CompOp
4 mathmath: vId_iso_hom_app, CategoryTheory.Limits.CatCospanTransform.id_squareLeft, CategoryTheory.Limits.CatCospanTransform.id_squareRight, vId_iso_inv_app
vInv πŸ“–CompOp
3 mathmath: vInv_iso_hom_app, vInv_iso_inv_app, vInv_vInv
vInvEquiv πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
ext πŸ“–β€”isoβ€”β€”β€”
ext_iff πŸ“–mathematicalβ€”isoβ€”ext
hComp_iso_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
iso
hComp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
β€”CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
hComp_iso_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
iso
hComp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
β€”CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
hId_iso_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
iso
hId
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
β€”CategoryTheory.Category.comp_id
hId_iso_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
iso
hId
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
β€”CategoryTheory.Category.comp_id
hInv_hInv πŸ“–mathematicalβ€”hInv
CategoryTheory.Equivalence.symm
β€”ext
CategoryTheory.Iso.ext
CategoryTheory.NatTrans.ext'
CategoryTheory.cancel_mono
CategoryTheory.IsIso.mono_of_iso
CategoryTheory.Functor.map_isIso
CategoryTheory.NatIso.hom_app_isIso
CategoryTheory.Functor.comp_map
CategoryTheory.NatTrans.naturality
hInv_iso_hom_app
hInv_iso_inv_app
CategoryTheory.Equivalence.counitInv_app_functor
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id_app
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
CategoryTheory.Functor.map_comp
CategoryTheory.Equivalence.fun_inv_map
CategoryTheory.Equivalence.counitInv_functor_comp
CategoryTheory.Iso.inv_hom_id_app_assoc
hInv_iso_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.inverse
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
iso
hInv
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Equivalence.functor
CategoryTheory.Functor.id
CategoryTheory.Equivalence.unitIso
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
CategoryTheory.Equivalence.counitIso
β€”CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.Category.assoc
hInv_iso_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.inverse
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
iso
hInv
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Equivalence.functor
CategoryTheory.Functor.map
CategoryTheory.Functor.id
CategoryTheory.Equivalence.counitIso
CategoryTheory.Iso.hom
CategoryTheory.Equivalence.unitIso
β€”CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
iso_hom_naturality πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
iso
β€”CategoryTheory.NatTrans.naturality
iso_hom_naturality_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
iso
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
iso_hom_naturality
iso_inv_naturality πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
iso
β€”CategoryTheory.NatTrans.naturality
iso_inv_naturality_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
iso
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
iso_inv_naturality
vComp_iso_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
iso
vComp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
β€”CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
vComp_iso_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
iso
vComp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
β€”CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
vId_iso_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
iso
vId
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
β€”CategoryTheory.Category.comp_id
vId_iso_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
iso
vId
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
β€”CategoryTheory.Category.comp_id
vInv_iso_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.inverse
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
iso
vInv
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Equivalence.functor
CategoryTheory.Functor.map
CategoryTheory.Functor.id
CategoryTheory.Iso.inv
CategoryTheory.Equivalence.counitIso
CategoryTheory.Equivalence.unitIso
β€”CategoryTheory.Category.id_comp
CategoryTheory.Functor.map_comp
CategoryTheory.Category.comp_id
CategoryTheory.Category.assoc
vInv_iso_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.inverse
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
iso
vInv
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Equivalence.functor
CategoryTheory.Functor.id
CategoryTheory.Iso.hom
CategoryTheory.Equivalence.unitIso
CategoryTheory.Functor.map
CategoryTheory.Equivalence.counitIso
β€”CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
CategoryTheory.Functor.map_comp
vInv_vInv πŸ“–mathematicalβ€”vInv
CategoryTheory.Equivalence.symm
β€”ext
CategoryTheory.Iso.ext
CategoryTheory.NatTrans.ext'
vInv_iso_hom_app
vInv_iso_inv_app
CategoryTheory.cancel_mono
CategoryTheory.IsIso.mono_of_iso
CategoryTheory.Functor.map_isIso
CategoryTheory.NatIso.hom_app_isIso
CategoryTheory.Functor.comp_map
CategoryTheory.Functor.map_comp
CategoryTheory.Equivalence.fun_inv_map
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id_app_assoc
CategoryTheory.Iso.inv_hom_id_app
CategoryTheory.Category.comp_id
CategoryTheory.Equivalence.counit_app_functor
CategoryTheory.NatTrans.comp_app
CategoryTheory.Iso.inv_hom_id
CategoryTheory.NatTrans.id_app
CategoryTheory.Functor.map_id
CategoryTheory.Functor.map_comp_assoc
CategoryTheory.Iso.hom_inv_id
iso_hom_naturality

---

← Back to Index