| Name | Category | Theorems |
Homâ đ | CompData | â |
bicategory đ | CompOp | 326 mathmath: CategoryTheory.Join.pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_id, CategoryTheory.Pseudofunctor.mapComp'_naturality_1_assoc, CategoryTheory.Join.pseudofunctorLeft_mapId_inv_toNatTrans_app, CategoryTheory.Pseudofunctor.DescentData.isEquivalence_toDescentData_of_sieve_le, CategoryTheory.Join.pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_mapâ_toNatTrans_app, CategoryTheory.Pseudofunctor.DescentData.ofObj_hom, CategoryTheory.Pseudofunctor.DescentData.subtypeCompatibleHomEquiv_toCompatible_presheafHomObjHomEquiv, AlgebraicGeometry.Scheme.Modules.pseudofunctor_map_adj, CategoryTheory.Join.pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_map, whiskerRight_toNatTrans, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_mapâ, CategoryTheory.Join.pseudofunctorRight_mapComp_inv_toNatTrans_app, CategoryTheory.Pseudofunctor.mapComp_assoc_right_hom_app_assoc, CategoryTheory.Pseudofunctor.mapâ_associator_app_assoc, CategoryTheory.Pseudofunctor.DescentData.pullFunctorCompIso_inv_app_hom, CategoryTheory.Pseudofunctor.isEquivalence_toDescentData, Hom.id_map, CategoryTheory.Pseudofunctor.mapComp'_inv_whiskerRight_mapComp'âââ_inv_app, Hom.toNatIso_associator, associator_hom_app, CategoryTheory.Pseudofunctor.mapComp'âââ_hom_comp_whiskerLeft_mapComp'_hom_app_assoc, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_id_app, CategoryTheory.OplaxFunctor.mapâ_associator_app, CategoryTheory.Pseudofunctor.CoGrothendieck.categoryStruct_id_fiber, CategoryTheory.Pseudofunctor.ObjectProperty.fullsubcategory_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj, CategoryTheory.Pseudofunctor.CoGrothendieck.map_comp_eq, CategoryTheory.Adjunction.ofCat_counit, CategoryTheory.Pseudofunctor.mapComp'_comp_id_hom_app, CategoryTheory.Pseudofunctor.mapComp'_comp_id_inv_app, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_comp_app, CategoryTheory.Pseudofunctor.mapComp_assoc_left_inv_app_assoc, CategoryTheory.Pseudofunctor.DescentData.pullFunctor_map_hom, CommRingCat.moduleCatRestrictScalarsPseudofunctor_mapComp, CategoryTheory.Pseudofunctor.mapId'_inv_naturality_assoc, CategoryTheory.Pseudofunctor.mapComp_id_left_inv_app, CategoryTheory.Pseudofunctor.whiskerLeft_mapId_inv_app_assoc, CategoryTheory.OplaxFunctor.mapComp_assoc_left_app_assoc, CategoryTheory.Pseudofunctor.CoGrothendieck.instIsEquivalenceαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, CategoryTheory.Pseudofunctor.DescentData.isoMk_inv_hom, CategoryTheory.Pseudofunctor.CoGrothendieck.map_map_base, CategoryTheory.Pseudofunctor.CoGrothendieck.map_map_fiber, CategoryTheory.Pseudofunctor.Grothendieck.map_id_eq, AlgebraicGeometry.Scheme.Modules.pseudofunctor_map_l, CategoryTheory.Pseudofunctor.ObjectProperty.Îč_app_toFunctor, CategoryTheory.LaxFunctor.mapComp_naturality_left_app_assoc, CategoryTheory.Pseudofunctor.DescentData.comp_hom, leftUnitor_hom_app, CategoryTheory.OplaxFunctor.mapâ_leftUnitor_app, CategoryTheory.Adjunction.toCat_comp_toCat, CategoryTheory.Pseudofunctor.Grothendieck.ext_iff, CategoryTheory.Pseudofunctor.mapComp'_inv_naturality, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_naturality_app, CategoryTheory.Pseudofunctor.whiskerLeft_mapComp'_inv_comp_mapComp'âââ_inv_app, CategoryTheory.Pseudofunctor.ObjectProperty.fullsubcategory_mapComp, CategoryTheory.LaxFunctor.mapComp_assoc_right_app, CategoryTheory.Pseudofunctor.mapComp'_naturality_1, CategoryTheory.Pseudofunctor.isStackFor_ofArrows_iff, CategoryTheory.LaxFunctor.mapâ_leftUnitor_hom_app, CategoryTheory.Pseudofunctor.mapComp'âââ_hom_app, CategoryTheory.Join.pseudofunctorLeft_mapId_hom_toNatTrans_app, CategoryTheory.Pseudofunctor.mapComp_id_right_inv_app_assoc, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_comp_val_app, CategoryTheory.Pseudofunctor.mapâ_associator_app, rightUnitor_hom_toNatTrans, CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapComp_inv_toNatTrans_app_val_app, CategoryTheory.Pseudofunctor.DescentData.iso_hom, CategoryTheory.Pseudofunctor.mapComp'_comp_id_inv_app_assoc, CategoryTheory.Pseudofunctor.mapComp'_inv_naturality_assoc, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_id_app, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_comp_app, CategoryTheory.Pseudofunctor.presheafHom_obj, CategoryTheory.Pseudofunctor.mapComp_assoc_right_inv_app, CommRingCat.moduleCatRestrictScalarsPseudofunctor_mapId, CategoryTheory.Join.pseudofunctorLeft_mapComp_hom_toNatTrans_app, CategoryTheory.Pseudofunctor.DescentData.iso_inv, CategoryTheory.OplaxFunctor.mapComp_assoc_left_app, CategoryTheory.Pseudofunctor.CoGrothendieck.instFullαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_naturality_app, CategoryTheory.Pseudofunctor.DescentData.nonempty_fullyFaithful_toDescentData_iff_of_sieve_eq, associator_inv_app, Hom.comp_toFunctor, rightUnitor_hom_app, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_hom_app_assoc, CategoryTheory.Pseudofunctor.ObjectProperty.Îč_naturality, CategoryTheory.LaxFunctor.mapComp_naturality_right_app_assoc, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_obj_val_obj, CategoryTheory.Pseudofunctor.Grothendieck.map_id_map, CategoryTheory.Pseudofunctor.ObjectProperty.mapId_inv_app, CategoryTheory.OplaxFunctor.mapâ_associator_app_assoc, CategoryTheory.Pseudofunctor.mapComp_id_left_hom_app_assoc, CategoryTheory.LaxFunctor.mapâ_associator_app_assoc, CategoryTheory.Pseudofunctor.ObjectProperty.fullsubcategory_toPrelaxFunctor_toPrelaxFunctorStruct_mapâ_toNatTrans, CategoryTheory.Pseudofunctor.mapComp'âââ_hom_comp_mapComp'_hom_whiskerRight_app, CategoryTheory.Pseudofunctor.DescentData.instIsIsoαCategoryObjLocallyDiscreteOppositeCatMkOpHom, CategoryTheory.Pseudofunctor.whiskerLeft_mapId_inv_app, CategoryTheory.LaxFunctor.mapâ_leftUnitor_hom_app_assoc, CategoryTheory.Pseudofunctor.mapComp'âââ_hom_app, CategoryTheory.Adjunction.toCat_counit_toNatTrans, CategoryTheory.OplaxFunctor.mapComp_assoc_right_app, CategoryTheory.Pseudofunctor.CoGrothendieck.Îč_map_base, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_comp_app, CommRingCat.moduleCatRestrictScalarsPseudofunctor_map, CategoryTheory.Pseudofunctor.isPrestackFor_ofArrows_iff, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_inv_app_assoc, CategoryTheory.Bicategory.Adjunction.ofCat_id, CategoryTheory.Join.pseudofunctorLeft_mapComp_inv_toNatTrans_app, CategoryTheory.Pseudofunctor.CoGrothendieck.map_obj_fiber, CategoryTheory.Bicategory.Adjunction.ofCat_comp, CategoryTheory.Pseudofunctor.ObjectProperty.mapComp_hom_app, CategoryTheory.LaxFunctor.mapâ_rightUnitor_hom_app, CategoryTheory.Pseudofunctor.DescentData.Hom.comm_assoc, CategoryTheory.WithInitial.prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_obj, CategoryTheory.Pseudofunctor.mapComp_id_left_inv_app_assoc, CategoryTheory.WithInitial.prelaxfunctor_toPrelaxFunctorStruct_mapâ, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_id_app, CategoryTheory.Pseudofunctor.mapComp'_hom_naturality_assoc, CategoryTheory.Pseudofunctor.mapComp'_naturality_2_assoc, CategoryTheory.Pseudofunctor.Grothendieck.categoryStruct_id_fiber, CategoryTheory.Pseudofunctor.ObjectProperty.map_map_hom, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_naturality_app, CategoryTheory.Pseudofunctor.CoGrothendieck.Hom.congr, CategoryTheory.Pseudofunctor.mapComp'âââ_inv_comp_mapComp'âââ_hom_app, CategoryTheory.Pseudofunctor.mapComp'_id_comp_inv_app_assoc, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapComp_hom_Ïl, CategoryTheory.Join.pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_id, CategoryTheory.OplaxFunctor.mapComp_naturality_left_app, Hom.comp_map, CategoryTheory.Pseudofunctor.DescentData.ofObj_obj, CategoryTheory.LaxFunctor.mapâ_rightUnitor_hom_app_assoc, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_hom_app, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_id_val_app, CategoryTheory.Pseudofunctor.CoGrothendieck.ext_iff, CategoryTheory.Pseudofunctor.DescentData.hom_comp_assoc, CategoryTheory.Pseudofunctor.Grothendieck.map_obj_fiber, CategoryTheory.Pseudofunctor.mapComp_assoc_left_hom_app_assoc, CategoryTheory.Pseudofunctor.CoGrothendieck.Îč_obj_fiber, CategoryTheory.Pseudofunctor.isStackFor_iff, CommRingCat.moduleCatExtendScalarsPseudofunctor_map, CategoryTheory.Pseudofunctor.bijective_toDescentData_map_iff, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapComp_hom_Ïr, CategoryTheory.Join.pseudofunctorRight_mapId_hom_toNatTrans_app, CategoryTheory.Pseudofunctor.CoGrothendieck.Îč_map_fiber, CategoryTheory.OplaxFunctor.mapComp_assoc_right_app_assoc, RingCat.moduleCatRestrictScalarsPseudofunctor_mapId, CategoryTheory.Pseudofunctor.DescentData.pullFunctorObj_obj, CommRingCat.moduleCatExtendScalarsPseudofunctor_obj, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_inv_app, CategoryTheory.WithInitial.pseudofunctor_mapId, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapId_hom_Ïr, CategoryTheory.Join.pseudofunctorRight_mapId_inv_toNatTrans_app, RingCat.moduleCatRestrictScalarsPseudofunctor_map, CategoryTheory.Pseudofunctor.ObjectProperty.IsClosedUnderMapObj.map_obj, CategoryTheory.Pseudofunctor.mapComp'âââ_inv_comp_mapComp'âââ_hom_app_assoc, CategoryTheory.Pseudofunctor.mapComp'_hom_naturality, comp_eq_comp, leftUnitor_hom_toNatTrans, CategoryTheory.Pseudofunctor.mapComp'_comp_id_hom_app_assoc, AlgebraicGeometry.Scheme.Modules.pseudofunctor_obj_obj, CategoryTheory.WithInitial.pseudofunctor_toPrelaxFunctor, CategoryTheory.Pseudofunctor.IsStack.essSurj_of_sieve, CategoryTheory.Bicategory.toNatTrans_mateEquiv, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_inv_app_assoc, CategoryTheory.Pseudofunctor.mapComp_assoc_right_hom_app, associator_inv_toNatTrans, CategoryTheory.WithTerminal.prelaxfunctor_toPrelaxFunctorStruct_mapâ, CategoryTheory.Join.pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_comp, leftUnitor_inv_toNatTrans, CategoryTheory.Pseudofunctor.mapâ_left_unitor_app, CategoryTheory.Pseudofunctor.ObjectProperty.mapId_hom_app, CategoryTheory.Pseudofunctor.whiskerLeft_mapId_hom_app, CategoryTheory.Pseudofunctor.toDescentData_obj, Hom.toNatIso_leftUnitor, CategoryTheory.Pseudofunctor.mapâ_whisker_right_app_assoc, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_map_val_app, CategoryTheory.Join.pseudofunctorRight_mapComp_hom_toNatTrans_app, CategoryTheory.Pseudofunctor.mapComp'âââ_inv_comp_mapComp'âââ_hom_app, CategoryTheory.Pseudofunctor.presheafHomObjHomEquiv_apply, Hom.toNatIso_rightUnitor, Hom.id_obj, CategoryTheory.Pseudofunctor.mapComp_assoc_right_inv_app_assoc, CategoryTheory.WithTerminal.pseudofunctor_toPrelaxFunctor, CategoryTheory.LaxFunctor.mapComp_assoc_left_app, rightUnitor_inv_app, CategoryTheory.Pseudofunctor.mapComp'_id_comp_hom_app_assoc, CategoryTheory.Pseudofunctor.Grothendieck.Hom.ext_iff, CategoryTheory.Pseudofunctor.mapComp'âââ_inv_app_assoc, rightUnitor_inv_toNatTrans, CategoryTheory.Pseudofunctor.isPrestackFor_iff, CategoryTheory.Pseudofunctor.IsStackFor.isEquivalence, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_inv_app, CategoryTheory.Adjunction.toCat_unit_toNatTrans, CategoryTheory.Pseudofunctor.CoGrothendieck.instEssSurjαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, CategoryTheory.Pseudofunctor.mapComp'âââ_hom_app_assoc, CategoryTheory.Pseudofunctor.whiskerRight_mapId_hom_app_assoc, Hom.comp_obj, RingCat.moduleCatRestrictScalarsPseudofunctor_obj, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_comp_app, CategoryTheory.Pseudofunctor.Grothendieck.Hom.congr, CategoryTheory.Pseudofunctor.Grothendieck.map_comp_eq, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_obj_val_map, CategoryTheory.Pseudofunctor.Grothendieck.map_map_fiber, CategoryTheory.Pseudofunctor.mapâ_whisker_left_app_assoc, CategoryTheory.Join.pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_α, CategoryTheory.Pseudofunctor.mapComp'_naturality_2, CategoryTheory.Pseudofunctor.CoGrothendieck.Îč_obj_base, CategoryTheory.Pseudofunctor.mapComp_id_right_inv_app, CategoryTheory.Pseudofunctor.mapComp'_inv_whiskerRight_mapComp'âââ_inv_app_assoc, CategoryTheory.Pseudofunctor.mapComp_id_left_hom_app, CategoryTheory.Pseudofunctor.StrongTrans.naturality_naturality_hom_app_assoc, CategoryTheory.Pseudofunctor.toDescentData_map_hom, CategoryTheory.Pseudofunctor.ObjectProperty.IsClosedUnderIsomorphisms.isClosedUnderIsomorphisms, RingCat.moduleCatRestrictScalarsPseudofunctor_mapComp, CategoryTheory.Pseudofunctor.whiskerLeft_mapId_hom_app_assoc, CategoryTheory.Pseudofunctor.DescentData.pullFunctorObjHom_eq_assoc, CategoryTheory.LaxFunctor.mapâ_rightUnitor_app_assoc, CategoryTheory.Join.pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_mapâ_toNatTrans_app, CategoryTheory.WithTerminal.pseudofunctor_mapId, CategoryTheory.Pseudofunctor.IsStackFor.essSurj, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_α, CategoryTheory.WithInitial.prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_map, CategoryTheory.LaxFunctor.mapâ_rightUnitor_app, CategoryTheory.Pseudofunctor.mapComp'_id_comp_inv_app, CategoryTheory.Pseudofunctor.mapComp'âââ_inv_app_assoc, CommRingCat.moduleCatExtendScalarsPseudofunctor_mapComp, CategoryTheory.WithTerminal.pseudofunctor_mapComp, CategoryTheory.Join.pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_α, CategoryTheory.WithTerminal.prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_obj, CategoryTheory.Pseudofunctor.whiskerLeft_mapComp'_inv_comp_mapComp'âââ_inv_app_assoc, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapComp_inv_Ïl, CategoryTheory.Pseudofunctor.DescentData.exists_equivalence_of_sieve_eq, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_id_app, CategoryTheory.Pseudofunctor.mapComp_id_right_hom_app_assoc, CategoryTheory.Pseudofunctor.DescentData.pullFunctorIdIso_inv_app_hom, CategoryTheory.Pseudofunctor.LocallyDiscreteOpToCat.map_eq_pullHom_assoc, CategoryTheory.Pseudofunctor.mapâ_whisker_left_app, CategoryTheory.Pseudofunctor.DescentData.isEquivalence_toDescentData_iff_of_sieve_eq, CategoryTheory.Pseudofunctor.CoGrothendieck.comp_const, CategoryTheory.WithTerminal.prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_map, CategoryTheory.Pseudofunctor.whiskerRight_mapId_inv_app, CategoryTheory.Pseudofunctor.CoGrothendieck.map_id_eq, CategoryTheory.Pseudofunctor.CoGrothendieck.compIso_inv_app, CategoryTheory.OplaxFunctor.mapâ_leftUnitor_app_assoc, CategoryTheory.Pseudofunctor.DescentData.pullFunctorIdIso_hom_app_hom, CategoryTheory.Pseudofunctor.mapComp'_id_comp_hom_app, CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapComp_hom_toNatTrans_app_val_app, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapId_hom_Ïl, CategoryTheory.Adjunction.ofCat_unit, CategoryTheory.OplaxFunctor.mapâ_rightUnitor_app, CategoryTheory.Pseudofunctor.mapComp_assoc_left_hom_app, CategoryTheory.LaxFunctor.mapComp_naturality_right_app, id_eq_id, CategoryTheory.Pseudofunctor.LocallyDiscreteOpToCat.map_eq_pullHom, CategoryTheory.Pseudofunctor.mapComp_id_right_hom_app, CategoryTheory.Pseudofunctor.DescentData.id_hom, CategoryTheory.Pseudofunctor.mapComp'âââ_inv_comp_mapComp'âââ_hom_app_assoc, CategoryTheory.LaxFunctor.mapComp_naturality_left_app, bicategory.strict, CategoryTheory.Pseudofunctor.DescentData.pullFunctorCompIso_hom_app_hom, CategoryTheory.Pseudofunctor.StrongTrans.naturality_naturality_hom_app, CategoryTheory.Pseudofunctor.DescentData.isoMk_hom_hom, CategoryTheory.Pseudofunctor.DescentData.pullFunctorObjHom_eq, CategoryTheory.Pseudofunctor.mapId'_hom_naturality, CategoryTheory.Pseudofunctor.DescentData.hom_self, CategoryTheory.Pseudofunctor.DescentData.comp_hom_assoc, CategoryTheory.Pseudofunctor.mapComp'âââ_inv_app, CategoryTheory.Pseudofunctor.ObjectProperty.fullsubcategory_mapId, CategoryTheory.Pseudofunctor.ObjectProperty.map_obj_obj, CategoryTheory.Pseudofunctor.CoGrothendieck.categoryStruct_comp_fiber, whiskerLeft_toNatTrans, CategoryTheory.Pseudofunctor.mapId'_hom_naturality_assoc, CategoryTheory.OplaxFunctor.mapComp_naturality_right_app_assoc, CategoryTheory.Bicategory.toNatTrans_conjugateEquiv, CommRingCat.moduleCatExtendScalarsPseudofunctor_mapId, CategoryTheory.Join.pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_comp, CategoryTheory.Pseudofunctor.mapâ_whisker_right_app, AlgebraicGeometry.Scheme.Modules.pseudofunctor_map_r, CategoryTheory.Pseudofunctor.CoGrothendieck.instFaithfulαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, CategoryTheory.WithInitial.pseudofunctor_mapComp, CategoryTheory.Pseudofunctor.mapâ_left_unitor_app_assoc, CategoryTheory.Pseudofunctor.mapâ_right_unitor_app_assoc, CategoryTheory.Pseudofunctor.mapâ_right_unitor_app, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_naturality_app, CategoryTheory.Join.pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_obj, CategoryTheory.Pseudofunctor.CoGrothendieck.map_id_map, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapComp_inv_Ïr, CategoryTheory.OplaxFunctor.mapComp_naturality_left_app_assoc, CategoryTheory.Pseudofunctor.presheafHomObjHomEquiv_symm_apply, whiskerRight_app, CategoryTheory.LaxFunctor.mapâ_associator_app, CommRingCat.moduleCatRestrictScalarsPseudofunctor_obj, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_hom_app_assoc, CategoryTheory.Pseudofunctor.mapComp'âââ_hom_comp_whiskerLeft_mapComp'_hom_app, CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapId_inv_toNatTrans_app_val_app, associator_hom_toNatTrans, Hom.id_toFunctor, CategoryTheory.Pseudofunctor.mapComp'âââ_hom_app_assoc, CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapId_hom_toNatTrans_app_val_app, CategoryTheory.Pseudofunctor.ObjectProperty.mapComp_inv_app, CategoryTheory.LaxFunctor.mapComp_assoc_right_app_assoc, CategoryTheory.OplaxFunctor.mapComp_naturality_right_app, CategoryTheory.LaxFunctor.mapComp_assoc_left_app_assoc, leftUnitor_inv_app, CategoryTheory.LaxFunctor.mapâ_leftUnitor_app, CategoryTheory.Join.pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_obj, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapId_inv_Ïl, CategoryTheory.Pseudofunctor.Grothendieck.categoryStruct_comp_fiber, CategoryTheory.Pseudofunctor.whiskerRight_mapId_hom_app, CategoryTheory.Pseudofunctor.CoGrothendieck.compIso_hom_app, CategoryTheory.Pseudofunctor.DescentData.hom_comp, CategoryTheory.Pseudofunctor.IsPrestackFor.nonempty_fullyFaithful, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapId_inv_Ïr, whiskerLeft_app, CategoryTheory.Pseudofunctor.ObjectProperty.mapâ_app_hom, CategoryTheory.Pseudofunctor.CoGrothendieck.Hom.ext_iff, CategoryTheory.OplaxFunctor.mapâ_rightUnitor_app_assoc, CategoryTheory.Pseudofunctor.Grothendieck.map_map_base, CategoryTheory.LaxFunctor.mapâ_leftUnitor_app_assoc, CategoryTheory.Pseudofunctor.ObjectProperty.fullsubcategory_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor, CategoryTheory.Pseudofunctor.whiskerRight_mapId_inv_app_assoc, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_hom_app, CategoryTheory.Pseudofunctor.mapId'_inv_naturality, CategoryTheory.Pseudofunctor.mapComp'âââ_hom_comp_mapComp'_hom_whiskerRight_app_assoc, CategoryTheory.Pseudofunctor.mapComp'âââ_inv_app, CategoryTheory.Pseudofunctor.mapComp_assoc_left_inv_app, CategoryTheory.Pseudofunctor.DescentData.Hom.comm, CategoryTheory.Join.pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_map
|
category đ | CompOp | 244 mathmath: SSet.Truncated.HomotopyCategory.BinaryProduct.iso_inv_toFunctor, asSmallFunctor_obj, SSet.OneTruncationâ.ofNerveâ.natIso_hom_app_map, CategoryTheory.Grothendieck.ÎčCompMap_hom_app_fiber, CategoryTheory.Grpd.forgetToCat_full, CategoryTheory.ReflQuiv.adj_homEquiv, freeRefl_map, CategoryTheory.nerve.instFullCatTruncatedOfNatNatNerveFunctorâ, CategoryTheory.curryingIso_hom_toFunctor_obj_map, CategoryTheory.nerve.functorOfNerveMap_map, CategoryTheory.Grothendieck.map_comp_eq, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorToComma_map_left, CategoryTheory.Grothendieck.pre_comp_map_assoc, CategoryTheory.Grpd.free_obj, CategoryTheory.Grothendieck.ÎčNatTrans_app_fiber, CategoryTheory.nerveFunctor.faithful, SSet.hoFunctor.preservesTerminal', CategoryTheory.Grothendieck.grothendieckTypeToCat_inverse_map_base, CategoryTheory.CostructuredArrow.functor_obj, CategoryTheory.Grothendieck.grothendieckTypeToCat_counitIso_inv_app_coe, CategoryTheory.Grpd.free_map, CategoryTheory.instFullCatTypeToCat, CategoryTheory.Monoidal.whiskerRight_fst, CategoryTheory.Grothendieck.compAsSmallFunctorEquivalenceFunctor_map_fiber, CategoryTheory.Grothendieck.grothendieckTypeToCatFunctor_obj_snd, CategoryTheory.Grothendieck.grothendieckTypeToCat_unitIso_hom_app_fiber, CategoryTheory.Grothendieck.isoMk_inv_fiber, CategoryTheory.ReflQuiv.adj_unit_app, CategoryTheory.flippingIso_inv_toFunctor_obj_obj_obj, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorEquivalence_functor, CategoryTheory.CostructuredArrow.commaToGrothendieckPrecompFunctor_map_fiber, SSet.OneTruncationâ.ofNerveâ.natIso_inv_app_obj_obj, CategoryTheory.CostructuredArrow.commaToGrothendieckPrecompFunctor_obj_fiber, CategoryTheory.Grothendieck.grothendieckTypeToCat_unitIso_inv_app_fiber, CategoryTheory.Under.mapFunctor_obj, exp_obj, opEquivalence_counitIso, MonCat.toCat_faithful, CategoryTheory.CostructuredArrow.ÎčCompGrothendieckProj_inv_app, CategoryTheory.Grothendieck.id_fiber, ihom_obj, CategoryTheory.Functor.hasColimit_map_comp_Îč_comp_grothendieckProj, CategoryTheory.flippingIso_inv_toFunctor_obj_map_app, CategoryTheory.StructuredArrow.functor_map, instHasTerminal, HasLimits.limitCone_Ï_app, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorToComma_obj_right, free_map, CategoryTheory.CostructuredArrow.commaToGrothendieckPrecompFunctor_map_base, HasLimits.limitCone_pt, HasLimits.homDiagram_map, CategoryTheory.Grothendieck.ÎčNatTrans_app_base, opFunctor_obj, CategoryTheory.Grothendieck.comp_fiber, CategoryTheory.Grothendieck.map_map, CategoryTheory.Grothendieck.grothendieckTypeToCat_unitIso_inv_app_base, CategoryTheory.Grothendieck.ÎčCompMap_inv_app_fiber, instFaithfulPreordCatPreordToCat, CategoryTheory.Nerve.instIsStrictSegalObjCatTruncatedOfNatNatNerveFunctorâ, CategoryTheory.Monoidal.whiskerRight, SSet.hoFunctor.unitHomEquiv_eq, HasLimits.limitConeX_α, CategoryTheory.ReflQuiv.forget_map, CategoryTheory.Grothendieck.grothendieckTypeToCat_functor_obj_fst, CategoryTheory.Monoidal.tensorHom, CategoryTheory.ReflQuiv.adj.unit.map_app_eq, CategoryTheory.hoFunctor.preservesFiniteProducts, SSet.OneTruncationâ.ofNerveâ.natIso_hom_app_obj, CategoryTheory.CatEnrichedOrdinary.Hom.mk_comp, CategoryTheory.Grothendieck.grothendieckTypeToCat_unitIso_hom_app_base, CategoryTheory.CostructuredArrow.ÎčCompGrothendieckPrecompFunctorToCommaCompFst_inv_app, CategoryTheory.curryingIso_inv_toFunctor_obj_map_app, CategoryTheory.Grothendieck.fiber_eqToHom, SSet.Truncated.HomotopyCategory.BinaryProduct.left_unitality, CategoryTheory.Monoidal.rightUnitor_hom, CategoryTheory.Grothendieck.eqToHom_eq, CategoryTheory.curryingIso_hom_toFunctor_obj_obj, opEquivalence_unitIso, CategoryTheory.hoFunctor.instIsLeftAdjointSSetCatHoFunctor, CategoryTheory.Quiv.forget_map, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorToComma_obj_left, SimplexCategory.toCat.obj_eq_Fin, CategoryTheory.Grothendieck.compAsSmallFunctorEquivalenceFunctor_obj_fiber, exp_map, CategoryTheory.CatEnrichedOrdinary.Hom.id_eq, CategoryTheory.ReflQuiv.forget_obj, CategoryTheory.Grothendieck.grothendieckTypeToCat_inverse_obj_base, CategoryTheory.Grpd.freeForgetAdjunction_homEquiv_symm_apply, isoOfEquiv_inv, CategoryTheory.Grothendieck.grothendieckTypeToCatFunctor_map_coe, CategoryTheory.Quiv.adj_homEquiv, isoOfEquiv_hom, CategoryTheory.Grothendieck.compAsSmallFunctorEquivalenceInverse_obj_fiber, SSet.hoFunctor.preservesTerminal, HasLimits.limit_Ï_homDiagram_eqToHom, CategoryTheory.Grothendieck.pre_map_fiber, CategoryTheory.CostructuredArrow.mapCompÎčCompGrothendieckProj_inv_app, opFunctor_map, CategoryTheory.flippingIso_inv_toFunctor_map_app_app, CategoryTheory.Grothendieck.map_id_eq, opFunctorInvolutive_hom_app_toFunctor_map, opFunctorInvolutive_hom_app_toFunctor_obj, HasLimits.limitConeX_str, instHasLimits, CategoryTheory.CostructuredArrow.functor_map, CategoryTheory.Grothendieck.grothendieckTypeToCat_counitIso_hom_app_coe, CategoryTheory.Monoidal.associator_hom, CategoryTheory.Grothendieck.compAsSmallFunctorEquivalence_functor, opEquivalence_inverse, SSet.Truncated.HomotopyCategory.BinaryProduct.iso_hom_toFunctor, CategoryTheory.Under.mapFunctor_map, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorEquivalence_unitIso, CategoryTheory.Grpd.forgetToCat_faithful, CategoryTheory.ReflQuiv.forget_forgetToQuiv, CategoryTheory.nerveFunctor_map, CategoryTheory.Grothendieck.toTransport_fiber, CategoryTheory.Codiscrete.adj_counit_app, HasLimits.id_def, CategoryTheory.Monoidal.whiskerLeft_snd, CategoryTheory.CatEnrichedOrdinary.Hom.base_comp, free_obj, CategoryTheory.Grothendieck.pre_obj_base, opEquivalence_functor, opFunctorInvolutive_inv_app_toFunctor_map, CategoryTheory.flippingIso_hom_toFunctor_obj_obj_map, CategoryTheory.Functor.elementsFunctor_map, CategoryTheory.CostructuredArrow.grothendieckProj_map, SSet.Truncated.hoFunctorâ_naturality, CategoryTheory.Grothendieck.grothendieckTypeToCatFunctor_obj_fst, CategoryTheory.Grpd.freeForgetAdjunction_counit_app, CategoryTheory.ReflQuiv.adj_counit_app, CategoryTheory.hoFunctor.preservesBinaryProducts, CategoryTheory.Grothendieck.compAsSmallFunctorEquivalence_inverse, CategoryTheory.Grothendieck.pre_comp_map, instFullPreordCatPreordToCat, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorEquivalence_inverse, CategoryTheory.Grothendieck.map_obj_fiber, CategoryTheory.ReflQuiv.forget.Faithful, CategoryTheory.Grothendieck.compAsSmallFunctorEquivalenceFunctor_obj_base, ihom_map, CategoryTheory.hoFunctor.isIso_prodComparison_stdSimplex, CategoryTheory.CostructuredArrow.preFunctor_app, CategoryTheory.Monoidal.tensorUnit, CategoryTheory.Grothendieck.compAsSmallFunctorEquivalenceFunctor_map_base, CategoryTheory.CatEnrichedOrdinary.Hom.comp_eq, CategoryTheory.Grothendieck.ÎčCompMap_inv_app_base, CategoryTheory.nerve_map, CategoryTheory.CatEnriched.comp_eq, CategoryTheory.Grothendieck.pre_comp, MonCat.toCat_full, CategoryTheory.curryingIso_inv_toFunctor_obj_obj_obj, CategoryTheory.nerveFunctor.full, CategoryTheory.Grothendieck.transportIso_inv_fiber, CategoryTheory.CatEnrichedOrdinary.homEquiv_comp, CategoryTheory.Grothendieck.map_obj, opFunctorInvolutive_inv_app_toFunctor_obj, CategoryTheory.Grpd.freeForgetAdjunction_homEquiv_apply, CategoryTheory.Grothendieck.compAsSmallFunctorEquivalenceInverse_obj_base, CategoryTheory.flippingIso_hom_toFunctor_obj_map_app, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorEquivalence_counitIso, CategoryTheory.CostructuredArrow.grothendieckProj_obj, freeRefl_obj, preordToCat_obj, CategoryTheory.Functor.elementsFunctor_obj, preordToCat_map, CategoryTheory.Codiscrete.adj_unit_app, CategoryTheory.curryingIso_inv_toFunctor_map_app_app, CategoryTheory.ReflQuiv.adj.counit.comp_app_eq, CategoryTheory.Grothendieck.final_pre, CategoryTheory.Grothendieck.compAsSmallFunctorEquivalenceInverse_map_fiber, CategoryTheory.StructuredArrow.functor_obj, SSet.OneTruncationâ.ofNerveâ.natIso_inv_app_map, CategoryTheory.Grothendieck.compAsSmallFunctorEquivalence_unitIso, CategoryTheory.Grothendieck.grothendieckTypeToCat_inverse_obj_fiber_as, CategoryTheory.CatEnriched.id_eq, SimplexCategory.toCat_obj, HasLimits.comp_def, CategoryTheory.Over.mapFunctor_obj, CategoryTheory.Monoidal.whiskerRight_snd, CategoryTheory.CostructuredArrow.mapCompÎčCompGrothendieckProj_hom_app, CategoryTheory.instFaithfulCatTypeToCat, CategoryTheory.flippingIso_inv_toFunctor_obj_obj_map, CategoryTheory.hoFunctor.instIsIsoCatProdComparisonSSetHoFunctorNerve, CategoryTheory.CostructuredArrow.ÎčCompGrothendieckPrecompFunctorToCommaCompFst_hom_app, SSet.OneTruncationâ.ofNerveâ.natIso_inv_app_obj_map, SSet.Truncated.HomotopyCategory.BinaryProduct.right_unitality, CategoryTheory.hoFunctor.preservesBinaryProduct, CategoryTheory.nerve.functorOfNerveMap_nerveFunctorâ_map, CategoryTheory.Grothendieck.transport_fiber, HasLimits.limitConeLift_toFunctor, CategoryTheory.nerveFunctor_obj, CategoryTheory.Grothendieck.map_map_fiber, CategoryTheory.typeToCat_obj, asSmallFunctor_map, CategoryTheory.Monoidal.associator_inv, CategoryTheory.Grothendieck.map_map_base, CategoryTheory.Monoidal.rightUnitor_inv, CategoryTheory.Monoidal.whiskerLeft, CategoryTheory.Grothendieck.Îč_obj, CategoryTheory.flippingIso_hom_toFunctor_obj_obj_obj, CategoryTheory.typeToCat_map, CategoryTheory.flippingIso_hom_toFunctor_map_app_app, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorToComma_map_right, CategoryTheory.Grothendieck.ÎčCompMap_hom_app_base, CategoryTheory.Grothendieck.compAsSmallFunctorEquivalenceInverse_map_base, CategoryTheory.Monoidal.tensorObj, instPreservesLimitsObjects, CategoryTheory.Grothendieck.pre_obj_fiber, CategoryTheory.Grothendieck.grothendieckTypeToCatInverse_obj_base, CategoryTheory.curryingIso_inv_toFunctor_obj_obj_map, CategoryTheory.nerve.functorOfNerveMap_obj, CategoryTheory.CostructuredArrow.ÎčCompGrothendieckProj_hom_app, CategoryTheory.Monoidal.whiskerLeft_fst, CategoryTheory.nerve.nerveFunctorâ_map_functorOfNerveMap, CategoryTheory.Grpd.freeForgetAdjunction_unit_app, CategoryTheory.Grothendieck.pre_id, SimplexCategory.toCat_map, HasLimits.homDiagram_obj, CategoryTheory.Grothendieck.grothendieckTypeToCatInverse_map_base, CategoryTheory.Grothendieck.congr, CategoryTheory.Over.mapFunctor_map, CategoryTheory.Grothendieck.grothendieckTypeToCat_functor_map_coe, CategoryTheory.Grothendieck.isoMk_hom_fiber, CategoryTheory.Monoidal.leftUnitor_inv, CategoryTheory.Grothendieck.grothendieckTypeToCat_functor_obj_snd, CategoryTheory.hoFunctor.isIso_prodComparison, CategoryTheory.CostructuredArrow.commaToGrothendieckPrecompFunctor_obj_base, CategoryTheory.Grothendieck.compAsSmallFunctorEquivalence_counitIso, CategoryTheory.curryingIso_hom_toFunctor_map_app, CategoryTheory.instIsIsoSSetProdComparisonCatCompNerveFunctorHoFunctorOf, CategoryTheory.Grothendieck.grothendieckTypeToCatInverse_obj_fiber_as, CategoryTheory.nerveAdjunction.isIso_counit, CategoryTheory.CatEnrichedOrdinary.homEquiv_id, instHasColimits, CategoryTheory.Monoidal.leftUnitor_hom, CategoryTheory.CatEnrichedOrdinary.Hom.base_eqToHom, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorToComma_obj_hom, CategoryTheory.nerve.instFaithfulCatTruncatedOfNatNatNerveFunctorâ, CategoryTheory.Quiv.forget_obj, CategoryTheory.Grothendieck.transportIso_hom_fiber, CategoryTheory.Grothendieck.pre_map_base, CategoryTheory.Grothendieck.Îč_map, CategoryTheory.Grothendieck.faithful_Îč, CategoryTheory.CatEnrichedOrdinary.Hom.base_id
|
equivOfIso đ | CompOp | â |
instCategoryObjObjects đ | CompOp | â |
instCoeSortType đ | CompOp | â |
instInhabited đ | CompOp | â |
instQuiver đ | CompOp | 47 mathmath: CategoryTheory.Join.pseudofunctorLeft_mapId_inv_toNatTrans_app, Homâ.comp_app, CategoryTheory.ReflQuiv.adj_homEquiv, CategoryTheory.Join.pseudofunctorRight_mapComp_inv_toNatTrans_app, CategoryTheory.Pseudofunctor.DescentData.pullFunctorCompIso_inv_app_hom, Hom.inv_hom_id_toNatTrans_assoc, Homâ.eqToHom_toNatTrans, Homâ.id_app, Hom.isoMk_hom, Hom.toNatIso_hom, CategoryTheory.Functor.equivCatHom_symm_apply, Homâ.comp_app_assoc, Hom.inv_hom_id_toNatTrans, Hom.isoMk_inv, CategoryTheory.Join.pseudofunctorLeft_mapId_hom_toNatTrans_app, CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapComp_inv_toNatTrans_app_val_app, CategoryTheory.Functor.equivCatHom_apply, CategoryTheory.Join.pseudofunctorLeft_mapComp_hom_toNatTrans_app, CategoryTheory.Join.pseudofunctorLeft_mapComp_inv_toNatTrans_app, CategoryTheory.NatTrans.toCatHomâ_id, Hom.hom_inv_id_toNatTrans, CategoryTheory.Quiv.adj_homEquiv, CategoryTheory.Join.pseudofunctorRight_mapId_hom_toNatTrans_app, CategoryTheory.Join.pseudofunctorRight_mapId_inv_toNatTrans_app, Hom.hom_inv_id_toNatTrans_assoc, Hom.inv_hom_id_toNatTrans_app_assoc, Hom.instIsIsoFunctorαCategoryToNatTransInvHom, CategoryTheory.Join.pseudofunctorRight_mapComp_hom_toNatTrans_app, CategoryTheory.Pseudofunctor.presheafHomObjHomEquiv_apply, Hom.toNatTrans_id, CategoryTheory.NatTrans.toCatHomâ_comp, Hom.hom_inv_id_toNatTrans_app, CategoryTheory.Pseudofunctor.DescentData.pullFunctorIdIso_inv_app_hom, CategoryTheory.Pseudofunctor.DescentData.pullFunctorIdIso_hom_app_hom, CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapComp_hom_toNatTrans_app_val_app, Hom.toNatTrans_comp, CategoryTheory.Pseudofunctor.DescentData.pullFunctorCompIso_hom_app_hom, Hom.inv_hom_id_toNatTrans_app, Hom.hom_inv_id_toNatTrans_app_assoc, Hom.equivFunctor_apply, Hom.toNatIso_inv, CategoryTheory.Pseudofunctor.presheafHomObjHomEquiv_symm_apply, CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapId_inv_toNatTrans_app_val_app, Hom.instIsIsoFunctorαCategoryToNatTransHomHom, CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapId_hom_toNatTrans_app_val_app, Hom.equivFunctor_symm_apply, eqToHom_app
|
isoOfEquiv đ | CompOp | 2 mathmath: isoOfEquiv_inv, isoOfEquiv_hom
|
objects đ | CompOp | 12 mathmath: HasLimits.limitCone_Ï_app, HasLimits.homDiagram_map, HasLimits.limitConeX_α, HasLimits.limit_Ï_homDiagram_eqToHom, HasLimits.limitConeX_str, CategoryTheory.Codiscrete.adj_counit_app, HasLimits.id_def, CategoryTheory.Codiscrete.adj_unit_app, HasLimits.comp_def, HasLimits.limitConeLift_toFunctor, instPreservesLimitsObjects, HasLimits.homDiagram_obj
|
of đ | CompOp | 115 mathmath: CategoryTheory.Join.pseudofunctorLeft_mapId_inv_toNatTrans_app, SSet.Truncated.HomotopyCategory.BinaryProduct.iso_inv_toFunctor, CategoryTheory.Join.pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_mapâ_toNatTrans_app, CategoryTheory.Join.pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_map, asSmallFunctor_obj, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_mapâ, CategoryTheory.ReflQuiv.adj_homEquiv, CategoryTheory.Join.pseudofunctorRight_mapComp_inv_toNatTrans_app, CategoryTheory.curryingIso_hom_toFunctor_obj_map, CategoryTheory.Pseudofunctor.ObjectProperty.fullsubcategory_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj, CategoryTheory.nerve.functorOfNerveMap_map, of_α, CategoryTheory.CostructuredArrow.functor_obj, Hom.isoMk_hom, CommRingCat.moduleCatRestrictScalarsPseudofunctor_mapComp, CategoryTheory.Functor.equivCatHom_symm_apply, CategoryTheory.Grothendieck.grothendieckTypeToCat_unitIso_hom_app_fiber, CategoryTheory.flippingIso_inv_toFunctor_obj_obj_obj, CategoryTheory.Adjunction.toCat_comp_toCat, Hom.isoMk_inv, CategoryTheory.Pseudofunctor.ObjectProperty.fullsubcategory_mapComp, Hom.toNatIso_isoMk, CategoryTheory.Grothendieck.grothendieckTypeToCat_unitIso_inv_app_fiber, CategoryTheory.Under.mapFunctor_obj, exp_obj, ihom_obj, CategoryTheory.Join.pseudofunctorLeft_mapId_hom_toNatTrans_app, CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapComp_inv_toNatTrans_app_val_app, CategoryTheory.flippingIso_inv_toFunctor_obj_map_app, CategoryTheory.Functor.equivCatHom_apply, CommRingCat.moduleCatRestrictScalarsPseudofunctor_mapId, CategoryTheory.Join.pseudofunctorLeft_mapComp_hom_toNatTrans_app, opFunctor_obj, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_obj_val_obj, CategoryTheory.Pseudofunctor.ObjectProperty.fullsubcategory_toPrelaxFunctor_toPrelaxFunctorStruct_mapâ_toNatTrans, CategoryTheory.Adjunction.toCat_counit_toNatTrans, CategoryTheory.Join.pseudofunctorLeft_mapComp_inv_toNatTrans_app, CategoryTheory.NatTrans.toCatHomâ_id, CategoryTheory.curryingIso_inv_toFunctor_obj_map_app, CategoryTheory.WithInitial.prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_obj, SSet.Truncated.HomotopyCategory.BinaryProduct.left_unitality, CategoryTheory.curryingIso_hom_toFunctor_obj_obj, CategoryTheory.Grpd.freeForgetAdjunction_homEquiv_symm_apply, CategoryTheory.Quiv.adj_homEquiv, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapComp_hom_Ïl, CategoryTheory.flippingIso_inv_toFunctor_map_app_app, SSet.Truncated.HomotopyCategory.BinaryProduct.iso_hom_toFunctor, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapComp_hom_Ïr, CategoryTheory.Join.pseudofunctorRight_mapId_hom_toNatTrans_app, RingCat.moduleCatRestrictScalarsPseudofunctor_mapId, free_obj, CategoryTheory.flippingIso_hom_toFunctor_obj_obj_map, CategoryTheory.CostructuredArrow.grothendieckProj_map, CommRingCat.moduleCatExtendScalarsPseudofunctor_obj, coe_of, CategoryTheory.ReflQuiv.adj_counit_app, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapId_hom_Ïr, CategoryTheory.Join.pseudofunctorRight_mapId_inv_toNatTrans_app, ihom_map, AlgebraicGeometry.Scheme.Modules.pseudofunctor_obj_obj, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_map_val_app, CategoryTheory.Join.pseudofunctorRight_mapComp_hom_toNatTrans_app, CategoryTheory.curryingIso_inv_toFunctor_obj_obj_obj, CategoryTheory.NatTrans.toCatHomâ_toNatTrans, CategoryTheory.Adjunction.ofCat_toCat, CategoryTheory.Adjunction.toCat_unit_toNatTrans, RingCat.moduleCatRestrictScalarsPseudofunctor_obj, CategoryTheory.Grpd.freeForgetAdjunction_homEquiv_apply, CategoryTheory.NatTrans.toCatHomâ_comp, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_obj_val_map, CategoryTheory.flippingIso_hom_toFunctor_obj_map_app, CategoryTheory.Functor.leftKanExtensionIsoFiberwiseColimit_hom_app, RingCat.moduleCatRestrictScalarsPseudofunctor_mapComp, freeRefl_obj, preordToCat_obj, CategoryTheory.Functor.elementsFunctor_obj, CategoryTheory.Join.pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_mapâ_toNatTrans_app, CategoryTheory.curryingIso_inv_toFunctor_map_app_app, CategoryTheory.ReflQuiv.adj.counit.comp_app_eq, CategoryTheory.StructuredArrow.functor_obj, SimplexCategory.toCat_obj, CommRingCat.moduleCatExtendScalarsPseudofunctor_mapComp, CategoryTheory.WithTerminal.prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_obj, CategoryTheory.Over.mapFunctor_obj, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapComp_inv_Ïl, CategoryTheory.flippingIso_inv_toFunctor_obj_obj_map, SSet.Truncated.HomotopyCategory.BinaryProduct.right_unitality, CategoryTheory.nerve.functorOfNerveMap_nerveFunctorâ_map, CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapComp_hom_toNatTrans_app_val_app, CategoryTheory.typeToCat_obj, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapId_hom_Ïl, CategoryTheory.flippingIso_hom_toFunctor_obj_obj_obj, CategoryTheory.flippingIso_hom_toFunctor_map_app_app, CategoryTheory.Pseudofunctor.ObjectProperty.fullsubcategory_mapId, CategoryTheory.Monoidal.tensorObj, CommRingCat.moduleCatExtendScalarsPseudofunctor_mapId, CategoryTheory.curryingIso_inv_toFunctor_obj_obj_map, CategoryTheory.nerve.functorOfNerveMap_obj, CategoryTheory.nerve.nerveFunctorâ_map_functorOfNerveMap, CategoryTheory.Grpd.freeForgetAdjunction_unit_app, CategoryTheory.Join.pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_obj, Hom.equivFunctor_apply, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapComp_inv_Ïr, CommRingCat.moduleCatRestrictScalarsPseudofunctor_obj, CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapId_inv_toNatTrans_app_val_app, CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapId_hom_toNatTrans_app_val_app, CategoryTheory.curryingIso_hom_toFunctor_map_app, CategoryTheory.instIsIsoSSetProdComparisonCatCompNerveFunctorHoFunctorOf, CategoryTheory.Functor.leftKanExtensionIsoFiberwiseColimit_inv_app, CategoryTheory.Join.pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_obj, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapId_inv_Ïl, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapId_inv_Ïr, CategoryTheory.Pseudofunctor.ObjectProperty.fullsubcategory_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor, CategoryTheory.Functor.toCatHom_toFunctor, CategoryTheory.Join.pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_map
|
str đ | CompOp | 434 mathmath: CategoryTheory.Join.pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_id, CategoryTheory.Pseudofunctor.mapComp'_naturality_1_assoc, CategoryTheory.Join.pseudofunctorLeft_mapId_inv_toNatTrans_app, CategoryTheory.Pseudofunctor.DescentData.isEquivalence_toDescentData_of_sieve_le, CategoryTheory.Join.pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_mapâ_toNatTrans_app, CategoryTheory.Pseudofunctor.DescentData.ofObj_hom, CategoryTheory.Pseudofunctor.DescentData.subtypeCompatibleHomEquiv_toCompatible_presheafHomObjHomEquiv, CategoryTheory.Join.pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_map, Homâ.comp_app, whiskerRight_toNatTrans, asSmallFunctor_obj, SSet.OneTruncationâ.ofNerveâ.natIso_hom_app_map, CategoryTheory.Grothendieck.ÎčCompMap_hom_app_fiber, CategoryTheory.ReflQuiv.adj_homEquiv, CategoryTheory.Join.pseudofunctorRight_mapComp_inv_toNatTrans_app, CategoryTheory.Pseudofunctor.mapComp_assoc_right_hom_app_assoc, CategoryTheory.Pseudofunctor.mapâ_associator_app_assoc, CategoryTheory.Pseudofunctor.DescentData.pullFunctorCompIso_inv_app_hom, CategoryTheory.Pseudofunctor.isEquivalence_toDescentData, Hom.id_map, CategoryTheory.Pseudofunctor.mapComp'_inv_whiskerRight_mapComp'âââ_inv_app, Hom.toNatIso_associator, associator_hom_app, CategoryTheory.Pseudofunctor.mapComp'âââ_hom_comp_whiskerLeft_mapComp'_hom_app_assoc, Hom.inv_hom_id_toNatTrans_assoc, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_id_app, CategoryTheory.OplaxFunctor.mapâ_associator_app, CategoryTheory.Pseudofunctor.CoGrothendieck.categoryStruct_id_fiber, CategoryTheory.curryingIso_hom_toFunctor_obj_map, CategoryTheory.Pseudofunctor.ObjectProperty.fullsubcategory_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj, CategoryTheory.nerve.functorOfNerveMap_map, CategoryTheory.Adjunction.ofCat_counit, CategoryTheory.Pseudofunctor.mapComp'_comp_id_hom_app, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorToComma_map_left, CategoryTheory.Pseudofunctor.mapComp'_comp_id_inv_app, CategoryTheory.Grpd.free_obj, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_comp_app, Homâ.eqToHom_toNatTrans, Homâ.id_app, CategoryTheory.Grothendieck.ÎčNatTrans_app_fiber, CategoryTheory.Pseudofunctor.mapComp_assoc_left_inv_app_assoc, CategoryTheory.Pseudofunctor.DescentData.pullFunctor_map_hom, CategoryTheory.Grpd.free_map, CommRingCat.moduleCatRestrictScalarsPseudofunctor_mapComp, CategoryTheory.Pseudofunctor.mapId'_inv_naturality_assoc, Hom.toNatIso_hom, CategoryTheory.Pseudofunctor.mapComp_id_left_inv_app, CategoryTheory.Pseudofunctor.whiskerLeft_mapId_inv_app_assoc, CategoryTheory.OplaxFunctor.mapComp_assoc_left_app_assoc, CategoryTheory.Pseudofunctor.CoGrothendieck.instIsEquivalenceαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, CategoryTheory.Monoidal.whiskerRight_fst, CategoryTheory.Grothendieck.compAsSmallFunctorEquivalenceFunctor_map_fiber, CategoryTheory.Pseudofunctor.DescentData.isoMk_inv_hom, Homâ.comp_app_assoc, CategoryTheory.Pseudofunctor.CoGrothendieck.map_map_base, CategoryTheory.Pseudofunctor.CoGrothendieck.map_map_fiber, CategoryTheory.Grothendieck.grothendieckTypeToCat_unitIso_hom_app_fiber, Hom.isoMk_toNatIso, CategoryTheory.Pseudofunctor.ObjectProperty.Îč_app_toFunctor, CategoryTheory.LaxFunctor.mapComp_naturality_left_app_assoc, CategoryTheory.Pseudofunctor.DescentData.comp_hom, leftUnitor_hom_app, CategoryTheory.Grothendieck.isoMk_inv_fiber, CategoryTheory.OplaxFunctor.mapâ_leftUnitor_app, Hom.inv_hom_id_toNatTrans, CategoryTheory.flippingIso_inv_toFunctor_obj_obj_obj, CategoryTheory.Pseudofunctor.mapComp'_inv_naturality, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_naturality_app, CategoryTheory.Pseudofunctor.whiskerLeft_mapComp'_inv_comp_mapComp'âââ_inv_app, CategoryTheory.CostructuredArrow.commaToGrothendieckPrecompFunctor_map_fiber, CategoryTheory.Pseudofunctor.ObjectProperty.fullsubcategory_mapComp, SSet.OneTruncationâ.ofNerveâ.natIso_inv_app_obj_obj, CategoryTheory.Grothendieck.grothendieckTypeToCat_unitIso_inv_app_fiber, exp_obj, CategoryTheory.LaxFunctor.mapComp_assoc_right_app, opEquivalence_counitIso, CategoryTheory.Pseudofunctor.mapComp'_naturality_1, CategoryTheory.Pseudofunctor.isStackFor_ofArrows_iff, CategoryTheory.LaxFunctor.mapâ_leftUnitor_hom_app, CategoryTheory.CostructuredArrow.ÎčCompGrothendieckProj_inv_app, CategoryTheory.Pseudofunctor.mapComp'âââ_hom_app, CategoryTheory.Grothendieck.id_fiber, CategoryTheory.Join.pseudofunctorLeft_mapId_hom_toNatTrans_app, CategoryTheory.Pseudofunctor.mapComp_id_right_inv_app_assoc, CategoryTheory.Functor.hasColimit_map_comp_Îč_comp_grothendieckProj, CategoryTheory.Pseudofunctor.mapâ_associator_app, rightUnitor_hom_toNatTrans, CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapComp_inv_toNatTrans_app_val_app, CategoryTheory.flippingIso_inv_toFunctor_obj_map_app, CategoryTheory.Pseudofunctor.DescentData.iso_hom, CategoryTheory.Pseudofunctor.mapComp'_comp_id_inv_app_assoc, CategoryTheory.Pseudofunctor.mapComp'_inv_naturality_assoc, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_id_app, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_comp_app, CategoryTheory.Pseudofunctor.presheafHom_obj, CategoryTheory.Pseudofunctor.mapComp_assoc_right_inv_app, CommRingCat.moduleCatRestrictScalarsPseudofunctor_mapId, CategoryTheory.Join.pseudofunctorLeft_mapComp_hom_toNatTrans_app, CategoryTheory.Pseudofunctor.DescentData.iso_inv, CategoryTheory.OplaxFunctor.mapComp_assoc_left_app, HasLimits.homDiagram_map, CategoryTheory.Pseudofunctor.CoGrothendieck.instFullαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_naturality_app, CategoryTheory.Pseudofunctor.DescentData.nonempty_fullyFaithful_toDescentData_iff_of_sieve_eq, associator_inv_app, Hom.comp_toFunctor, CategoryTheory.Grothendieck.ÎčNatTrans_app_base, rightUnitor_hom_app, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_hom_app_assoc, CategoryTheory.Pseudofunctor.ObjectProperty.Îč_naturality, opFunctor_obj, CategoryTheory.LaxFunctor.mapComp_naturality_right_app_assoc, CategoryTheory.Grothendieck.comp_fiber, CategoryTheory.Grothendieck.map_map, CategoryTheory.Grothendieck.ÎčCompMap_inv_app_fiber, CategoryTheory.Pseudofunctor.ObjectProperty.mapId_inv_app, CategoryTheory.Monoidal.whiskerRight, CategoryTheory.OplaxFunctor.mapâ_associator_app_assoc, CategoryTheory.Pseudofunctor.mapComp_id_left_hom_app_assoc, CategoryTheory.LaxFunctor.mapâ_associator_app_assoc, CategoryTheory.Pseudofunctor.ObjectProperty.fullsubcategory_toPrelaxFunctor_toPrelaxFunctorStruct_mapâ_toNatTrans, SSet.hoFunctor.unitHomEquiv_eq, CategoryTheory.ReflQuiv.forget_map, CategoryTheory.Pseudofunctor.mapComp'âââ_hom_comp_mapComp'_hom_whiskerRight_app, CategoryTheory.Pseudofunctor.DescentData.instIsIsoαCategoryObjLocallyDiscreteOppositeCatMkOpHom, CategoryTheory.Pseudofunctor.whiskerLeft_mapId_inv_app, CategoryTheory.LaxFunctor.mapâ_leftUnitor_hom_app_assoc, CategoryTheory.Monoidal.tensorHom, CategoryTheory.Pseudofunctor.mapComp'âââ_hom_app, CategoryTheory.OplaxFunctor.mapComp_assoc_right_app, CategoryTheory.Pseudofunctor.CoGrothendieck.Îč_map_base, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_comp_app, CategoryTheory.Pseudofunctor.isPrestackFor_ofArrows_iff, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_inv_app_assoc, CategoryTheory.Bicategory.Adjunction.ofCat_id, CategoryTheory.Join.pseudofunctorLeft_mapComp_inv_toNatTrans_app, SSet.OneTruncationâ.ofNerveâ.natIso_hom_app_obj, CategoryTheory.Pseudofunctor.CoGrothendieck.map_obj_fiber, CategoryTheory.Bicategory.Adjunction.ofCat_comp, CategoryTheory.Pseudofunctor.ObjectProperty.mapComp_hom_app, CategoryTheory.CostructuredArrow.ÎčCompGrothendieckPrecompFunctorToCommaCompFst_inv_app, CategoryTheory.curryingIso_inv_toFunctor_obj_map_app, CategoryTheory.LaxFunctor.mapâ_rightUnitor_hom_app, CategoryTheory.Pseudofunctor.DescentData.Hom.comm_assoc, CategoryTheory.Grothendieck.fiber_eqToHom, CategoryTheory.WithInitial.prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_obj, SSet.Truncated.HomotopyCategory.BinaryProduct.left_unitality, CategoryTheory.Monoidal.rightUnitor_hom, CategoryTheory.Grothendieck.eqToHom_eq, CategoryTheory.curryingIso_hom_toFunctor_obj_obj, opEquivalence_unitIso, CategoryTheory.Pseudofunctor.mapComp_id_left_inv_app_assoc, CategoryTheory.WithInitial.prelaxfunctor_toPrelaxFunctorStruct_mapâ, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_id_app, CategoryTheory.Pseudofunctor.mapComp'_hom_naturality_assoc, CategoryTheory.Pseudofunctor.mapComp'_naturality_2_assoc, CategoryTheory.Pseudofunctor.Grothendieck.categoryStruct_id_fiber, CategoryTheory.Quiv.forget_map, CategoryTheory.Pseudofunctor.ObjectProperty.map_map_hom, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_naturality_app, CategoryTheory.Grothendieck.compAsSmallFunctorEquivalenceFunctor_obj_fiber, Hom.hom_inv_id_toNatTrans, exp_map, CategoryTheory.Pseudofunctor.CoGrothendieck.Hom.congr, CategoryTheory.Pseudofunctor.mapComp'âââ_inv_comp_mapComp'âââ_hom_app, CategoryTheory.ReflQuiv.forget_obj, CategoryTheory.Pseudofunctor.mapComp'_id_comp_inv_app_assoc, CategoryTheory.Functor.toReflPrefunctor_toPrefunctor, CategoryTheory.Quiv.adj_homEquiv, CategoryTheory.Grothendieck.compAsSmallFunctorEquivalenceInverse_obj_fiber, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapComp_hom_Ïl, CategoryTheory.Join.pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_id, CategoryTheory.OplaxFunctor.mapComp_naturality_left_app, CategoryTheory.CostructuredArrow.mapCompÎčCompGrothendieckProj_inv_app, opFunctor_map, CategoryTheory.flippingIso_inv_toFunctor_map_app_app, Hom.comp_map, opFunctorInvolutive_hom_app_toFunctor_map, CategoryTheory.Pseudofunctor.DescentData.ofObj_obj, opFunctorInvolutive_hom_app_toFunctor_obj, CategoryTheory.LaxFunctor.mapâ_rightUnitor_hom_app_assoc, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_hom_app, CategoryTheory.Pseudofunctor.DescentData.hom_comp_assoc, CategoryTheory.Pseudofunctor.Grothendieck.map_obj_fiber, CategoryTheory.Monoidal.associator_hom, CategoryTheory.Pseudofunctor.mapComp_assoc_left_hom_app_assoc, CategoryTheory.Pseudofunctor.CoGrothendieck.Îč_obj_fiber, CategoryTheory.Pseudofunctor.isStackFor_iff, CategoryTheory.Pseudofunctor.bijective_toDescentData_map_iff, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapComp_hom_Ïr, CategoryTheory.Join.pseudofunctorRight_mapId_hom_toNatTrans_app, CategoryTheory.Pseudofunctor.CoGrothendieck.Îč_map_fiber, CategoryTheory.nerveFunctor_map, CategoryTheory.Grothendieck.toTransport_fiber, CategoryTheory.OplaxFunctor.mapComp_assoc_right_app_assoc, CategoryTheory.Monoidal.whiskerLeft_snd, RingCat.moduleCatRestrictScalarsPseudofunctor_mapId, CategoryTheory.Pseudofunctor.DescentData.pullFunctorObj_obj, opFunctorInvolutive_inv_app_toFunctor_map, CategoryTheory.flippingIso_hom_toFunctor_obj_obj_map, CategoryTheory.CostructuredArrow.grothendieckProj_map, SSet.Truncated.hoFunctorâ_naturality, coe_of, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_inv_app, CategoryTheory.WithInitial.pseudofunctor_mapId, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapId_hom_Ïr, CategoryTheory.Join.pseudofunctorRight_mapId_inv_toNatTrans_app, CategoryTheory.Pseudofunctor.ObjectProperty.IsClosedUnderMapObj.map_obj, CategoryTheory.Pseudofunctor.mapComp'âââ_inv_comp_mapComp'âââ_hom_app_assoc, CategoryTheory.Pseudofunctor.mapComp'_hom_naturality, CategoryTheory.Grothendieck.map_obj_fiber, comp_eq_comp, leftUnitor_hom_toNatTrans, CategoryTheory.Pseudofunctor.mapComp'_comp_id_hom_app_assoc, CategoryTheory.Adjunction.toCat_ofCat, CategoryTheory.Pseudofunctor.IsStack.essSurj_of_sieve, CategoryTheory.Bicategory.toNatTrans_mateEquiv, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_inv_app_assoc, Hom.hom_inv_id_toNatTrans_assoc, CategoryTheory.Pseudofunctor.mapComp_assoc_right_hom_app, associator_inv_toNatTrans, CategoryTheory.WithTerminal.prelaxfunctor_toPrelaxFunctorStruct_mapâ, CategoryTheory.Join.pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_comp, leftUnitor_inv_toNatTrans, CategoryTheory.Pseudofunctor.mapâ_left_unitor_app, Hom.inv_hom_id_toNatTrans_app_assoc, CategoryTheory.Grothendieck.compAsSmallFunctorEquivalenceFunctor_map_base, CategoryTheory.Pseudofunctor.ObjectProperty.mapId_hom_app, CategoryTheory.Grothendieck.ÎčCompMap_inv_app_base, CategoryTheory.Pseudofunctor.whiskerLeft_mapId_hom_app, CategoryTheory.CatEnriched.comp_eq, Hom.instIsIsoFunctorαCategoryToNatTransInvHom, CategoryTheory.Pseudofunctor.toDescentData_obj, Hom.toNatIso_leftUnitor, CategoryTheory.Pseudofunctor.mapâ_whisker_right_app_assoc, CategoryTheory.Join.pseudofunctorRight_mapComp_hom_toNatTrans_app, CategoryTheory.Pseudofunctor.mapComp'âââ_inv_comp_mapComp'âââ_hom_app, CategoryTheory.Pseudofunctor.presheafHomObjHomEquiv_apply, Hom.toNatIso_rightUnitor, Hom.id_obj, CategoryTheory.curryingIso_inv_toFunctor_obj_obj_obj, CategoryTheory.Pseudofunctor.mapComp_assoc_right_inv_app_assoc, CategoryTheory.LaxFunctor.mapComp_assoc_left_app, CategoryTheory.Grothendieck.transportIso_inv_fiber, rightUnitor_inv_app, CategoryTheory.Pseudofunctor.mapComp'_id_comp_hom_app_assoc, CategoryTheory.Pseudofunctor.Grothendieck.Hom.ext_iff, CategoryTheory.Pseudofunctor.mapComp'âââ_inv_app_assoc, CategoryTheory.Grothendieck.map_obj, Hom.toNatTrans_id, opFunctorInvolutive_inv_app_toFunctor_obj, rightUnitor_inv_toNatTrans, CategoryTheory.Pseudofunctor.isPrestackFor_iff, CategoryTheory.Pseudofunctor.IsStackFor.isEquivalence, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_inv_app, CategoryTheory.Pseudofunctor.CoGrothendieck.instEssSurjαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, CategoryTheory.Pseudofunctor.mapComp'âââ_hom_app_assoc, CategoryTheory.Pseudofunctor.whiskerRight_mapId_hom_app_assoc, Hom.comp_obj, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_comp_app, CategoryTheory.Pseudofunctor.Grothendieck.Hom.congr, CategoryTheory.Pseudofunctor.Grothendieck.map_map_fiber, CategoryTheory.Pseudofunctor.mapâ_whisker_left_app_assoc, CategoryTheory.Join.pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_α, CategoryTheory.Pseudofunctor.mapComp'_naturality_2, CategoryTheory.Pseudofunctor.CoGrothendieck.Îč_obj_base, CategoryTheory.flippingIso_hom_toFunctor_obj_map_app, CategoryTheory.Pseudofunctor.mapComp_id_right_inv_app, CategoryTheory.Pseudofunctor.mapComp'_inv_whiskerRight_mapComp'âââ_inv_app_assoc, CategoryTheory.Pseudofunctor.mapComp_id_left_hom_app, CategoryTheory.Pseudofunctor.StrongTrans.naturality_naturality_hom_app_assoc, CategoryTheory.Functor.leftKanExtensionIsoFiberwiseColimit_hom_app, CategoryTheory.Pseudofunctor.toDescentData_map_hom, CategoryTheory.Pseudofunctor.ObjectProperty.IsClosedUnderIsomorphisms.isClosedUnderIsomorphisms, RingCat.moduleCatRestrictScalarsPseudofunctor_mapComp, CategoryTheory.Pseudofunctor.whiskerLeft_mapId_hom_app_assoc, CategoryTheory.Pseudofunctor.DescentData.pullFunctorObjHom_eq_assoc, CategoryTheory.LaxFunctor.mapâ_rightUnitor_app_assoc, CategoryTheory.Join.pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_mapâ_toNatTrans_app, CategoryTheory.Codiscrete.adj_unit_app, CategoryTheory.curryingIso_inv_toFunctor_map_app_app, CategoryTheory.ReflQuiv.adj.counit.comp_app_eq, CategoryTheory.WithTerminal.pseudofunctor_mapId, CategoryTheory.Grothendieck.compAsSmallFunctorEquivalenceInverse_map_fiber, CategoryTheory.Pseudofunctor.IsStackFor.essSurj, SSet.OneTruncationâ.ofNerveâ.natIso_inv_app_map, CategoryTheory.WithInitial.prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_map, CategoryTheory.LaxFunctor.mapâ_rightUnitor_app, CategoryTheory.Pseudofunctor.mapComp'_id_comp_inv_app, CategoryTheory.Pseudofunctor.mapComp'âââ_inv_app_assoc, CategoryTheory.CatEnriched.id_eq, CommRingCat.moduleCatExtendScalarsPseudofunctor_mapComp, CategoryTheory.WithTerminal.pseudofunctor_mapComp, CategoryTheory.Join.pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_α, CategoryTheory.WithTerminal.prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_obj, Hom.hom_inv_id_toNatTrans_app, CategoryTheory.Monoidal.whiskerRight_snd, CategoryTheory.CostructuredArrow.mapCompÎčCompGrothendieckProj_hom_app, CategoryTheory.Pseudofunctor.whiskerLeft_mapComp'_inv_comp_mapComp'âââ_inv_app_assoc, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapComp_inv_Ïl, CategoryTheory.Pseudofunctor.DescentData.exists_equivalence_of_sieve_eq, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_id_app, CategoryTheory.flippingIso_inv_toFunctor_obj_obj_map, CategoryTheory.Pseudofunctor.mapComp_id_right_hom_app_assoc, CategoryTheory.Pseudofunctor.DescentData.pullFunctorIdIso_inv_app_hom, CategoryTheory.CostructuredArrow.ÎčCompGrothendieckPrecompFunctorToCommaCompFst_hom_app, SSet.OneTruncationâ.ofNerveâ.natIso_inv_app_obj_map, CategoryTheory.Pseudofunctor.LocallyDiscreteOpToCat.map_eq_pullHom_assoc, SSet.Truncated.HomotopyCategory.BinaryProduct.right_unitality, CategoryTheory.Pseudofunctor.mapâ_whisker_left_app, CategoryTheory.Pseudofunctor.DescentData.isEquivalence_toDescentData_iff_of_sieve_eq, CategoryTheory.Pseudofunctor.CoGrothendieck.comp_const, CategoryTheory.WithTerminal.prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_map, CategoryTheory.nerve.functorOfNerveMap_nerveFunctorâ_map, CategoryTheory.Grothendieck.transport_fiber, CategoryTheory.Pseudofunctor.whiskerRight_mapId_inv_app, CategoryTheory.Pseudofunctor.CoGrothendieck.compIso_inv_app, CategoryTheory.OplaxFunctor.mapâ_leftUnitor_app_assoc, HasLimits.limitConeLift_toFunctor, CategoryTheory.nerveFunctor_obj, CategoryTheory.Pseudofunctor.DescentData.pullFunctorIdIso_hom_app_hom, CategoryTheory.Pseudofunctor.mapComp'_id_comp_hom_app, CategoryTheory.Grothendieck.map_map_fiber, CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapComp_hom_toNatTrans_app_val_app, asSmallFunctor_map, CategoryTheory.Monoidal.associator_inv, CategoryTheory.Grothendieck.map_map_base, CategoryTheory.Monoidal.rightUnitor_inv, CategoryTheory.Monoidal.whiskerLeft, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapId_hom_Ïl, CategoryTheory.Grothendieck.Îč_obj, CategoryTheory.Adjunction.ofCat_unit, CategoryTheory.OplaxFunctor.mapâ_rightUnitor_app, CategoryTheory.Pseudofunctor.mapComp_assoc_left_hom_app, Hom.toNatTrans_comp, CategoryTheory.LaxFunctor.mapComp_naturality_right_app, id_eq_id, CategoryTheory.Pseudofunctor.LocallyDiscreteOpToCat.map_eq_pullHom, CategoryTheory.Pseudofunctor.mapComp_id_right_hom_app, CategoryTheory.flippingIso_hom_toFunctor_obj_obj_obj, CategoryTheory.Pseudofunctor.DescentData.id_hom, CategoryTheory.Pseudofunctor.mapComp'âââ_inv_comp_mapComp'âââ_hom_app_assoc, CategoryTheory.LaxFunctor.mapComp_naturality_left_app, CategoryTheory.Pseudofunctor.DescentData.pullFunctorCompIso_hom_app_hom, CategoryTheory.Pseudofunctor.StrongTrans.naturality_naturality_hom_app, CategoryTheory.Pseudofunctor.DescentData.isoMk_hom_hom, CategoryTheory.flippingIso_hom_toFunctor_map_app_app, CategoryTheory.Pseudofunctor.DescentData.pullFunctorObjHom_eq, CategoryTheory.Grothendieck.ÎčCompMap_hom_app_base, CategoryTheory.Pseudofunctor.mapId'_hom_naturality, CategoryTheory.Pseudofunctor.DescentData.hom_self, CategoryTheory.Grothendieck.compAsSmallFunctorEquivalenceInverse_map_base, CategoryTheory.Pseudofunctor.DescentData.comp_hom_assoc, CategoryTheory.Pseudofunctor.mapComp'âââ_inv_app, Hom.inv_hom_id_toNatTrans_app, CategoryTheory.Pseudofunctor.ObjectProperty.fullsubcategory_mapId, CategoryTheory.Pseudofunctor.ObjectProperty.map_obj_obj, CategoryTheory.Monoidal.tensorObj, Hom.hom_inv_id_toNatTrans_app_assoc, CategoryTheory.Pseudofunctor.CoGrothendieck.categoryStruct_comp_fiber, whiskerLeft_toNatTrans, CategoryTheory.Pseudofunctor.mapId'_hom_naturality_assoc, CategoryTheory.OplaxFunctor.mapComp_naturality_right_app_assoc, CategoryTheory.Bicategory.toNatTrans_conjugateEquiv, CommRingCat.moduleCatExtendScalarsPseudofunctor_mapId, CategoryTheory.Join.pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_comp, CategoryTheory.Pseudofunctor.mapâ_whisker_right_app, CategoryTheory.curryingIso_inv_toFunctor_obj_obj_map, CategoryTheory.Pseudofunctor.CoGrothendieck.instFaithfulαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, CategoryTheory.nerve.functorOfNerveMap_obj, CategoryTheory.CostructuredArrow.ÎčCompGrothendieckProj_hom_app, CategoryTheory.WithInitial.pseudofunctor_mapComp, CategoryTheory.Monoidal.whiskerLeft_fst, CategoryTheory.Pseudofunctor.mapâ_left_unitor_app_assoc, CategoryTheory.Pseudofunctor.mapâ_right_unitor_app_assoc, CategoryTheory.Pseudofunctor.mapâ_right_unitor_app, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_naturality_app, CategoryTheory.Join.pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_obj, Hom.equivFunctor_apply, Hom.toNatIso_inv, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapComp_inv_Ïr, CategoryTheory.OplaxFunctor.mapComp_naturality_left_app_assoc, CategoryTheory.Pseudofunctor.presheafHomObjHomEquiv_symm_apply, whiskerRight_app, CategoryTheory.LaxFunctor.mapâ_associator_app, CategoryTheory.Grothendieck.congr, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_hom_app_assoc, CategoryTheory.Pseudofunctor.mapComp'âââ_hom_comp_whiskerLeft_mapComp'_hom_app, CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapId_inv_toNatTrans_app_val_app, associator_hom_toNatTrans, Hom.instIsIsoFunctorαCategoryToNatTransHomHom, Hom.id_toFunctor, CategoryTheory.Grothendieck.isoMk_hom_fiber, CategoryTheory.Monoidal.leftUnitor_inv, CategoryTheory.Pseudofunctor.mapComp'âââ_hom_app_assoc, CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapId_hom_toNatTrans_app_val_app, CategoryTheory.Pseudofunctor.ObjectProperty.mapComp_inv_app, CategoryTheory.curryingIso_hom_toFunctor_map_app, CategoryTheory.LaxFunctor.mapComp_assoc_right_app_assoc, CategoryTheory.OplaxFunctor.mapComp_naturality_right_app, CategoryTheory.LaxFunctor.mapComp_assoc_left_app_assoc, leftUnitor_inv_app, CategoryTheory.Functor.leftKanExtensionIsoFiberwiseColimit_inv_app, CategoryTheory.Monoidal.leftUnitor_hom, CategoryTheory.LaxFunctor.mapâ_leftUnitor_app, CategoryTheory.Join.pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_obj, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapId_inv_Ïl, CategoryTheory.Pseudofunctor.Grothendieck.categoryStruct_comp_fiber, CategoryTheory.Pseudofunctor.whiskerRight_mapId_hom_app, CategoryTheory.Quiv.forget_obj, CategoryTheory.Grothendieck.transportIso_hom_fiber, CategoryTheory.Pseudofunctor.CoGrothendieck.compIso_hom_app, CategoryTheory.Pseudofunctor.DescentData.hom_comp, CategoryTheory.Pseudofunctor.IsPrestackFor.nonempty_fullyFaithful, Hom.equivFunctor_symm_apply, AlgebraicGeometry.Scheme.Modules.pseudofunctor_mapId_inv_Ïr, whiskerLeft_app, CategoryTheory.Pseudofunctor.ObjectProperty.mapâ_app_hom, CategoryTheory.Pseudofunctor.CoGrothendieck.Hom.ext_iff, CategoryTheory.OplaxFunctor.mapâ_rightUnitor_app_assoc, CategoryTheory.Pseudofunctor.Grothendieck.map_map_base, CategoryTheory.LaxFunctor.mapâ_leftUnitor_app_assoc, eqToHom_app, CategoryTheory.Pseudofunctor.ObjectProperty.fullsubcategory_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor, CategoryTheory.Grothendieck.Îč_map, CategoryTheory.Pseudofunctor.whiskerRight_mapId_inv_app_assoc, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_hom_app, CategoryTheory.Grothendieck.faithful_Îč, CategoryTheory.Pseudofunctor.mapId'_inv_naturality, CategoryTheory.Pseudofunctor.mapComp'âââ_hom_comp_mapComp'_hom_whiskerRight_app_assoc, CategoryTheory.Pseudofunctor.mapComp'âââ_inv_app, CategoryTheory.Pseudofunctor.mapComp_assoc_left_inv_app, CategoryTheory.Pseudofunctor.DescentData.Hom.comm, CategoryTheory.Join.pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_map
|