Documentation Verification Report

AsSmall

📁 Source: Mathlib/CategoryTheory/Category/Cat/AsSmall.lean

Statistics

MetricCount
DefinitionsAsSmall, asSmallFunctor
2
TheoremsasSmallFunctor_map, asSmallFunctor_obj
2
Total4

CategoryTheory

Definitions

NameCategoryTheorems
AsSmall 📖CompOp
27 mathmath: Cat.asSmallFunctor_obj, Abelian.FreydMitchell.instNonemptyAsSmall, down_comp_assoc, AsSmall.hasFiniteLimits, Grothendieck.compAsSmallFunctorEquivalenceFunctor_map_fiber, instIsCofilteredAsSmall, AsSmall.down_obj, AsSmall.instAdditiveDown, AsSmall.equiv_unitIso, AsSmall.equiv_counitIso, Grothendieck.compAsSmallFunctorEquivalenceFunctor_obj_fiber, Grothendieck.compAsSmallFunctorEquivalenceInverse_obj_fiber, AsSmall.equiv_inverse, AsSmall.up_obj_down, AsSmall.equiv_functor, instIsFilteredAsSmall, AsSmall.up_map_down, Grothendieck.compAsSmallFunctorEquivalenceFunctor_map_base, eqToHom_down, Grothendieck.compAsSmallFunctorEquivalenceInverse_map_fiber, IsSifted.isSifted_iff_asSmallIsSifted, Cat.asSmallFunctor_map, AsSmall.instAdditiveUp, Grothendieck.compAsSmallFunctorEquivalenceInverse_map_base, AsSmall.hasLimitsOfShape, AsSmall.down_map, down_comp

CategoryTheory.Cat

Definitions

NameCategoryTheorems
asSmallFunctor 📖CompOp
14 mathmath: asSmallFunctor_obj, CategoryTheory.Grothendieck.compAsSmallFunctorEquivalenceFunctor_map_fiber, CategoryTheory.Grothendieck.compAsSmallFunctorEquivalenceFunctor_obj_fiber, CategoryTheory.Grothendieck.compAsSmallFunctorEquivalenceInverse_obj_fiber, CategoryTheory.Grothendieck.compAsSmallFunctorEquivalence_functor, CategoryTheory.Grothendieck.compAsSmallFunctorEquivalence_inverse, CategoryTheory.Grothendieck.compAsSmallFunctorEquivalenceFunctor_obj_base, CategoryTheory.Grothendieck.compAsSmallFunctorEquivalenceFunctor_map_base, CategoryTheory.Grothendieck.compAsSmallFunctorEquivalenceInverse_obj_base, CategoryTheory.Grothendieck.compAsSmallFunctorEquivalenceInverse_map_fiber, CategoryTheory.Grothendieck.compAsSmallFunctorEquivalence_unitIso, asSmallFunctor_map, CategoryTheory.Grothendieck.compAsSmallFunctorEquivalenceInverse_map_base, CategoryTheory.Grothendieck.compAsSmallFunctorEquivalence_counitIso

Theorems

NameKindAssumesProvesValidatesDepends On
asSmallFunctor_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Cat
category
asSmallFunctor
CategoryTheory.Functor.toCatHom
CategoryTheory.AsSmall
CategoryTheory.Bundled.α
CategoryTheory.Category
str
CategoryTheory.instSmallCategoryAsSmall
CategoryTheory.Functor.comp
CategoryTheory.AsSmall.down
Hom.toFunctor
CategoryTheory.AsSmall.up
asSmallFunctor_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Cat
category
asSmallFunctor
of
CategoryTheory.AsSmall
CategoryTheory.Bundled.α
CategoryTheory.Category
str
CategoryTheory.instSmallCategoryAsSmall

---

← Back to Index