Documentation Verification Report

Factorisation

📁 Source: Mathlib/CategoryTheory/Category/Factorisation.lean

Statistics

MetricCount
DefinitionsFactorisation, comp, h, id, IsInitial_initial, IsTerminal_terminal, forget, initial, initialHom, instCategory, instUniqueHomInitial, instUniqueHomTerminal, mid, terminal, terminalHom, ι, π
17
Theoremscomp_h, ext, ext_iff, h_π, id_h, ι_h, forget_map, forget_obj, initialHom_h, initial_mid, initial_ι, initial_π, instHasInitial, instHasTerminal, terminalHom_h, terminal_mid, terminal_ι, terminal_π, ι_π
19
Total36

CategoryTheory

Definitions

NameCategoryTheorems
Factorisation 📖CompData
4 mathmath: Factorisation.forget_map, Factorisation.forget_obj, Factorisation.instHasInitial, Factorisation.instHasTerminal

CategoryTheory.Factorisation

Definitions

NameCategoryTheorems
IsInitial_initial 📖CompOp
IsTerminal_terminal 📖CompOp
forget 📖CompOp
2 mathmath: forget_map, forget_obj
initial 📖CompOp
4 mathmath: initial_π, initial_ι, initial_mid, initialHom_h
initialHom 📖CompOp
1 mathmath: initialHom_h
instCategory 📖CompOp
4 mathmath: forget_map, forget_obj, instHasInitial, instHasTerminal
instUniqueHomInitial 📖CompOp
instUniqueHomTerminal 📖CompOp
mid 📖CompOp
8 mathmath: forget_obj, Hom.id_h, Hom.ι_h, initial_mid, Hom.h_π, ι_π, Hom.comp_h, terminal_mid
terminal 📖CompOp
4 mathmath: terminalHom_h, terminal_π, terminal_ι, terminal_mid
terminalHom 📖CompOp
1 mathmath: terminalHom_h
ι 📖CompOp
5 mathmath: initial_ι, Hom.ι_h, terminal_ι, ι_π, initialHom_h
π 📖CompOp
5 mathmath: terminalHom_h, initial_π, terminal_π, Hom.h_π, ι_π

Theorems

NameKindAssumesProvesValidatesDepends On
forget_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Factorisation
instCategory
forget
Hom.h
forget_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Factorisation
instCategory
forget
mid
initialHom_h 📖mathematicalHom.h
initial
initialHom
ι
initial_mid 📖mathematicalmid
initial
initial_ι 📖mathematicalι
initial
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
initial_π 📖mathematicalπ
initial
instHasInitial 📖mathematicalCategoryTheory.Limits.HasInitial
CategoryTheory.Factorisation
instCategory
CategoryTheory.Limits.hasInitial_of_unique
Unique.instSubsingleton
instHasTerminal 📖mathematicalCategoryTheory.Limits.HasTerminal
CategoryTheory.Factorisation
instCategory
CategoryTheory.Limits.hasTerminal_of_unique
Unique.instSubsingleton
terminalHom_h 📖mathematicalHom.h
terminal
terminalHom
π
terminal_mid 📖mathematicalmid
terminal
terminal_ι 📖mathematicalι
terminal
terminal_π 📖mathematicalπ
terminal
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
ι_π 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
mid
ι
π

CategoryTheory.Factorisation.Hom

Definitions

NameCategoryTheorems
comp 📖CompOp
1 mathmath: comp_h
h 📖CompOp
8 mathmath: CategoryTheory.Factorisation.forget_map, id_h, CategoryTheory.Factorisation.terminalHom_h, ι_h, ext_iff, h_π, comp_h, CategoryTheory.Factorisation.initialHom_h
id 📖CompOp
1 mathmath: id_h

Theorems

NameKindAssumesProvesValidatesDepends On
comp_h 📖mathematicalh
comp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Factorisation.mid
ext 📖h
ext_iff 📖mathematicalhext
h_π 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Factorisation.mid
h
CategoryTheory.Factorisation.π
id_h 📖mathematicalh
id
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Factorisation.mid
ι_h 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Factorisation.mid
CategoryTheory.Factorisation.ι
h

---

← Back to Index