Documentation Verification Report

Pairwise

📁 Source: Mathlib/CategoryTheory/Category/Pairwise.lean

Statistics

MetricCount
DefinitionsPairwise, cocone, coconeIsColimit, coconeιApp, comp, diagram, diagramMap, diagramObj, homInhabited, id, instCategory, instCategoryStruct, instDecidableEqHom, decEq, instDecidableEqHom_1, instFinCategoryOfFintypeOfDecidableEq, pairwiseCases, pairwiseInhabited, instDecidableEqPairwise, decEq, instFintypePairwise
21
Theoremscocone_pt, cocone_ι_app, diagram_map, diagram_obj
4
Total25

CategoryTheory

Definitions

NameCategoryTheorems
Pairwise 📖CompData
31 mathmath: Pairwise.diagram_obj, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverse_obj_π_app, TopCat.Presheaf.SheafCondition.pairwiseToOpensLeCover_map, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivCounitIso_hom_app_hom, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverseObj_π_app, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquiv_counitIso, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctorObj_π_app, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivCounitIso_inv_app_hom, Pairwise.cocone_pt, TopCat.Presheaf.SheafCondition.pairwiseToOpensLeCover_obj, Pairwise.diagram_map, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctor_obj_pt, TopCat.Presheaf.SheafCondition.instFinalPairwiseOpensLeCoverPairwiseToOpensLeCover, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquiv_inverse, Pairwise.cocone_ι_app, TopCat.Presheaf.IsSheaf.isSheafPreservesLimitPairwiseIntersections, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivUnitIso_inv_app_hom, TopCat.Presheaf.SheafCondition.instNonemptyStructuredArrowPairwiseOpensLeCoverPairwiseToOpensLeCover, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctor_obj_π_app, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctor_map_hom, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverse_obj_pt, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivUnitIso_hom_app_hom, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivUnitIsoApp_hom_hom, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctorObj_pt, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverse_map_hom, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivUnitIsoApp_inv_hom, TopCat.Presheaf.IsSheaf.isSheafPairwiseIntersections, TopCat.Presheaf.isGluing_iff_pairwise, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquiv_functor, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquiv_unitIso, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverseObj_pt
instDecidableEqPairwise 📖CompOp
instFintypePairwise 📖CompOp

CategoryTheory.Pairwise

Definitions

NameCategoryTheorems
cocone 📖CompOp
4 mathmath: cocone_pt, cocone_ι_app, TopCat.Presheaf.IsSheaf.isSheafPairwiseIntersections, TopCat.Presheaf.isGluing_iff_pairwise
coconeIsColimit 📖CompOp
coconeιApp 📖CompOp
1 mathmath: cocone_ι_app
comp 📖CompOp
diagram 📖CompOp
27 mathmath: diagram_obj, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverse_obj_π_app, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivCounitIso_hom_app_hom, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverseObj_π_app, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquiv_counitIso, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctorObj_π_app, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivCounitIso_inv_app_hom, cocone_pt, diagram_map, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctor_obj_pt, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquiv_inverse, cocone_ι_app, TopCat.Presheaf.IsSheaf.isSheafPreservesLimitPairwiseIntersections, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivUnitIso_inv_app_hom, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctor_obj_π_app, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctor_map_hom, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverse_obj_pt, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivUnitIso_hom_app_hom, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivUnitIsoApp_hom_hom, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctorObj_pt, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverse_map_hom, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivUnitIsoApp_inv_hom, TopCat.Presheaf.IsSheaf.isSheafPairwiseIntersections, TopCat.Presheaf.isGluing_iff_pairwise, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquiv_functor, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquiv_unitIso, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverseObj_pt
diagramMap 📖CompOp
1 mathmath: diagram_map
diagramObj 📖CompOp
1 mathmath: diagram_obj
homInhabited 📖CompOp
id 📖CompOp
instCategory 📖CompOp
31 mathmath: diagram_obj, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverse_obj_π_app, TopCat.Presheaf.SheafCondition.pairwiseToOpensLeCover_map, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivCounitIso_hom_app_hom, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverseObj_π_app, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquiv_counitIso, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctorObj_π_app, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivCounitIso_inv_app_hom, cocone_pt, TopCat.Presheaf.SheafCondition.pairwiseToOpensLeCover_obj, diagram_map, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctor_obj_pt, TopCat.Presheaf.SheafCondition.instFinalPairwiseOpensLeCoverPairwiseToOpensLeCover, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquiv_inverse, cocone_ι_app, TopCat.Presheaf.IsSheaf.isSheafPreservesLimitPairwiseIntersections, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivUnitIso_inv_app_hom, TopCat.Presheaf.SheafCondition.instNonemptyStructuredArrowPairwiseOpensLeCoverPairwiseToOpensLeCover, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctor_obj_π_app, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctor_map_hom, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverse_obj_pt, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivUnitIso_hom_app_hom, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivUnitIsoApp_hom_hom, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctorObj_pt, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverse_map_hom, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivUnitIsoApp_inv_hom, TopCat.Presheaf.IsSheaf.isSheafPairwiseIntersections, TopCat.Presheaf.isGluing_iff_pairwise, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquiv_functor, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquiv_unitIso, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverseObj_pt
instCategoryStruct 📖CompOp
instDecidableEqHom 📖CompOp
instDecidableEqHom_1 📖CompOp
instFinCategoryOfFintypeOfDecidableEq 📖CompOp
pairwiseCases 📖CompOp
pairwiseInhabited 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
cocone_pt 📖mathematicalCategoryTheory.Limits.Cocone.pt
CategoryTheory.Pairwise
instCategory
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
CompleteLattice.toLattice
diagram
cocone
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
cocone_ι_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Pairwise
instCategory
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
CompleteLattice.toLattice
diagram
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
CategoryTheory.Limits.Cocone.ι
cocone
coconeιApp
diagram_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Pairwise
instCategory
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
diagram
diagramMap
diagram_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Pairwise
instCategory
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
diagram
diagramObj

CategoryTheory.Pairwise.instDecidableEqHom

Definitions

NameCategoryTheorems
decEq 📖CompOp

CategoryTheory.instDecidableEqPairwise

Definitions

NameCategoryTheorems
decEq 📖CompOp

---

← Back to Index