Documentation Verification Report

ReflQuiv

šŸ“ Source: Mathlib/CategoryTheory/Category/ReflQuiv.lean

Statistics

MetricCount
DefinitionsFreeRefl, homMk, induction, instCategory, instUnique, instUniqueHom, lift', mk, morphismPropertyHomMk, quotientFunctor, FreeReflRel, freeRefl, freeReflMap, freeReflNatTrans, toFreeRefl, toFunctor, ReflQuiv, adj, homEquiv, category, forget, forgetToQuiv, instCoeSortType, instInhabited, instReflQuiverα, isoOfEquiv, isoOfQuivIso, of, toQuiv
29
Theoremsfunctor_ext, homMk_id, hom_induction, instFullPathsQuotientFunctor, instSubsingletonHomOfUnique, lift'_map, lift'_obj, lift_map, lift_obj, lift_spec, lift_unique', morphismPropertyHomMk_homMk, morphismProperty_eq_top, multiplicativeClosure_morphismPropertyHomMk, quotientFunctor_map_cons, quotientFunctor_map_id, quotientFunctor_map_nil, freeReflMap_map, freeReflMap_naturality, freeReflMap_obj, freeRefl_map, freeRefl_obj, toFreeRefl_map, toFreeRefl_obj, comp_app_eq, homEquiv_apply, homEquiv_naturality_left_symm, homEquiv_naturality_right, homEquiv_symm_apply, map_app_eq, adj_counit_app, adj_homEquiv, adj_unit_app, comp_eq_comp, comp_map, comp_obj, forgetToQuiv_faithful, forgetToQuiv_map, forgetToQuiv_obj, forget_faithful, forget_forgetToQuiv, forget_map, forget_obj, id_eq_id, id_map, id_obj, of_val
47
Total76

CategoryTheory

Definitions

NameCategoryTheorems
ReflQuiv šŸ“–CompOp
28 mathmath: SSet.oneTruncationā‚‚_obj, SSet.OneTruncationā‚‚.ofNerveā‚‚.natIso_hom_app_map, ReflQuiv.adj_homEquiv, Cat.freeRefl_map, SSet.oneTruncationā‚‚_map, ReflQuiv.id_map, ReflQuiv.adj_unit_app, ReflQuiv.comp_map, SSet.OneTruncationā‚‚.ofNerveā‚‚.natIso_inv_app_obj_obj, ReflQuiv.comp_eq_comp, ReflQuiv.forget_map, ReflQuiv.adj.unit.map_app_eq, SSet.OneTruncationā‚‚.ofNerveā‚‚.natIso_hom_app_obj, ReflQuiv.forget_obj, ReflQuiv.forgetToQuiv_obj, ReflQuiv.comp_obj, ReflQuiv.forget_forgetToQuiv, SSet.Truncated.hoFunctorā‚‚_naturality, ReflQuiv.adj_counit_app, ReflQuiv.forget.Faithful, ReflQuiv.forgetToQuiv_map, ReflQuiv.id_eq_id, ReflQuiv.id_obj, Cat.freeRefl_obj, ReflQuiv.adj.counit.comp_app_eq, SSet.OneTruncationā‚‚.ofNerveā‚‚.natIso_inv_app_map, SSet.OneTruncationā‚‚.ofNerveā‚‚.natIso_inv_app_obj_map, ReflQuiv.forgetToQuiv.Faithful

CategoryTheory.Cat

Definitions

NameCategoryTheorems
FreeRefl šŸ“–CompOp
31 mathmath: freeRefl_map, CategoryTheory.ReflQuiv.adj.homEquiv_symm_apply, freeReflMap_obj, FreeRefl.lift_map, FreeRefl.homMk_id, FreeRefl.lift_spec, toFreeRefl_obj, FreeRefl.instFullPathsQuotientFunctor, FreeRefl.multiplicativeClosure_morphismPropertyHomMk, SSet.OneTruncationā‚‚.HoRelā‚‚.mk, SSet.Truncated.HomotopyCategory.instFullFreeReflOneTruncationā‚‚QuotientFunctor, CategoryTheory.ReflQuiv.adj.unit.map_app_eq, FreeRefl.lift'_map, freeReflMap_naturality, FreeRefl.quotientFunctor_map_id, FreeRefl.quotientFunctor_map_nil, toFreeRefl_map, SSet.Truncated.hoFunctorā‚‚_naturality, CategoryTheory.ReflQuiv.adj.homEquiv_naturality_left_symm, CategoryTheory.ReflQuiv.adj_counit_app, CategoryTheory.ReflQuiv.adj.homEquiv_apply, CategoryTheory.ReflQuiv.adj.homEquiv_naturality_right, FreeRefl.lift'_obj, freeRefl_obj, FreeRefl.morphismProperty_eq_top, CategoryTheory.ReflQuiv.adj.counit.comp_app_eq, FreeRefl.instSubsingletonHomOfUnique, SSet.Truncated.HomotopyCategory.morphismPropertyHomMk_eq_strictMap, freeReflMap_map, FreeRefl.lift_obj, FreeRefl.quotientFunctor_map_cons
FreeReflRel šŸ“–CompData—
freeRefl šŸ“–CompOp
8 mathmath: CategoryTheory.ReflQuiv.adj_homEquiv, freeRefl_map, CategoryTheory.ReflQuiv.adj_unit_app, CategoryTheory.ReflQuiv.adj.unit.map_app_eq, SSet.Truncated.hoFunctorā‚‚_naturality, CategoryTheory.ReflQuiv.adj_counit_app, freeRefl_obj, CategoryTheory.ReflQuiv.adj.counit.comp_app_eq
freeReflMap šŸ“–CompOp
5 mathmath: freeRefl_map, freeReflMap_obj, freeReflMap_naturality, CategoryTheory.ReflQuiv.adj.homEquiv_naturality_left_symm, freeReflMap_map
freeReflNatTrans šŸ“–CompOp—
toFreeRefl šŸ“–CompOp
5 mathmath: CategoryTheory.ReflQuiv.adj_unit_app, FreeRefl.lift_spec, toFreeRefl_obj, toFreeRefl_map, CategoryTheory.ReflQuiv.adj.homEquiv_apply

Theorems

NameKindAssumesProvesValidatesDepends On
freeReflMap_map šŸ“–mathematical—CategoryTheory.Functor.map
FreeRefl
FreeRefl.instCategory
freeReflMap
FreeRefl.homMk
Prefunctor.obj
CategoryTheory.ReflQuiver.toQuiver
CategoryTheory.ReflPrefunctor.toPrefunctor
Prefunctor.map
——
freeReflMap_naturality šŸ“–mathematical—CategoryTheory.Functor.comp
CategoryTheory.Paths
CategoryTheory.Paths.categoryPaths
CategoryTheory.ReflQuiver.toQuiver
FreeRefl
FreeRefl.instCategory
FreeRefl.quotientFunctor
freeReflMap
freeMap
CategoryTheory.ReflPrefunctor.toPrefunctor
—CategoryTheory.Paths.ext_functor
freeReflMap_obj šŸ“–mathematical—CategoryTheory.Functor.obj
FreeRefl
FreeRefl.instCategory
freeReflMap
Prefunctor.obj
CategoryTheory.ReflQuiver.toQuiver
CategoryTheory.ReflPrefunctor.toPrefunctor
——
freeRefl_map šŸ“–mathematical—CategoryTheory.Functor.map
CategoryTheory.ReflQuiv
CategoryTheory.ReflQuiv.category
CategoryTheory.Cat
category
freeRefl
CategoryTheory.Functor.toCatHom
FreeRefl
CategoryTheory.Bundled.α
CategoryTheory.ReflQuiver
CategoryTheory.ReflQuiv.instReflQuiverα
FreeRefl.instCategory
freeReflMap
——
freeRefl_obj šŸ“–mathematical—CategoryTheory.Functor.obj
CategoryTheory.ReflQuiv
CategoryTheory.ReflQuiv.category
CategoryTheory.Cat
category
freeRefl
of
FreeRefl
CategoryTheory.Bundled.α
CategoryTheory.ReflQuiver
CategoryTheory.ReflQuiv.instReflQuiverα
FreeRefl.instCategory
——
toFreeRefl_map šŸ“–mathematical—Prefunctor.map
CategoryTheory.ReflQuiver.toQuiver
FreeRefl
CategoryTheory.catToReflQuiver
FreeRefl.instCategory
CategoryTheory.ReflPrefunctor.toPrefunctor
toFreeRefl
FreeRefl.homMk
——
toFreeRefl_obj šŸ“–mathematical—Prefunctor.obj
CategoryTheory.ReflQuiver.toQuiver
FreeRefl
CategoryTheory.catToReflQuiver
FreeRefl.instCategory
CategoryTheory.ReflPrefunctor.toPrefunctor
toFreeRefl
——

CategoryTheory.Cat.FreeRefl

Definitions

NameCategoryTheorems
homMk šŸ“–CompOp
7 mathmath: lift_map, homMk_id, lift'_map, CategoryTheory.Cat.toFreeRefl_map, morphismPropertyHomMk_homMk, CategoryTheory.Cat.freeReflMap_map, quotientFunctor_map_cons
induction šŸ“–CompOp—
instCategory šŸ“–CompOp
31 mathmath: CategoryTheory.Cat.freeRefl_map, CategoryTheory.ReflQuiv.adj.homEquiv_symm_apply, CategoryTheory.Cat.freeReflMap_obj, lift_map, homMk_id, lift_spec, CategoryTheory.Cat.toFreeRefl_obj, instFullPathsQuotientFunctor, multiplicativeClosure_morphismPropertyHomMk, SSet.OneTruncationā‚‚.HoRelā‚‚.mk, SSet.Truncated.HomotopyCategory.instFullFreeReflOneTruncationā‚‚QuotientFunctor, CategoryTheory.ReflQuiv.adj.unit.map_app_eq, lift'_map, CategoryTheory.Cat.freeReflMap_naturality, quotientFunctor_map_id, quotientFunctor_map_nil, CategoryTheory.Cat.toFreeRefl_map, SSet.Truncated.hoFunctorā‚‚_naturality, CategoryTheory.ReflQuiv.adj.homEquiv_naturality_left_symm, CategoryTheory.ReflQuiv.adj_counit_app, CategoryTheory.ReflQuiv.adj.homEquiv_apply, CategoryTheory.ReflQuiv.adj.homEquiv_naturality_right, lift'_obj, CategoryTheory.Cat.freeRefl_obj, morphismProperty_eq_top, CategoryTheory.ReflQuiv.adj.counit.comp_app_eq, instSubsingletonHomOfUnique, SSet.Truncated.HomotopyCategory.morphismPropertyHomMk_eq_strictMap, CategoryTheory.Cat.freeReflMap_map, lift_obj, quotientFunctor_map_cons
instUnique šŸ“–CompOp—
instUniqueHom šŸ“–CompOp—
lift' šŸ“–CompOp
2 mathmath: lift'_map, lift'_obj
mk šŸ“–CompOp—
morphismPropertyHomMk šŸ“–CompOp
3 mathmath: multiplicativeClosure_morphismPropertyHomMk, morphismPropertyHomMk_homMk, SSet.Truncated.HomotopyCategory.morphismPropertyHomMk_eq_strictMap
quotientFunctor šŸ“–CompOp
8 mathmath: instFullPathsQuotientFunctor, SSet.OneTruncationā‚‚.HoRelā‚‚.mk, CategoryTheory.ReflQuiv.adj.unit.map_app_eq, CategoryTheory.Cat.freeReflMap_naturality, quotientFunctor_map_id, quotientFunctor_map_nil, CategoryTheory.ReflQuiv.adj.counit.comp_app_eq, quotientFunctor_map_cons

Theorems

NameKindAssumesProvesValidatesDepends On
functor_ext šŸ“–ā€”CategoryTheory.Functor.obj
CategoryTheory.Cat.FreeRefl
instCategory
CategoryTheory.Functor.map
homMk
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.eqToHom
——lift_unique'
CategoryTheory.Paths.ext_functor
homMk_id šŸ“–mathematical—homMk
CategoryTheory.ReflQuiver.id
CategoryTheory.CategoryStruct.id
CategoryTheory.Cat.FreeRefl
CategoryTheory.Category.toCategoryStruct
instCategory
—CategoryTheory.Quotient.sound
hom_induction šŸ“–ā€”homMk
CategoryTheory.ReflQuiver.id
CategoryTheory.CategoryStruct.comp
CategoryTheory.Cat.FreeRefl
CategoryTheory.Category.toCategoryStruct
instCategory
——CategoryTheory.Functor.map_surjective
instFullPathsQuotientFunctor
quotientFunctor_map_nil
homMk_id
instFullPathsQuotientFunctor šŸ“–mathematical—CategoryTheory.Functor.Full
CategoryTheory.Paths
CategoryTheory.Paths.categoryPaths
CategoryTheory.ReflQuiver.toQuiver
CategoryTheory.Cat.FreeRefl
instCategory
quotientFunctor
—CategoryTheory.Quotient.full_functor
instSubsingletonHomOfUnique šŸ“–mathematicalQuiver.Hom
CategoryTheory.ReflQuiver.toQuiver
CategoryTheory.Cat.FreeRefl
CategoryTheory.catToReflQuiver
instCategory
—Unique.instSubsingleton
unique_iff_subsingleton_and_nonempty
lift'_map šŸ“–mathematicalCategoryTheory.ReflQuiver.id
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.map
CategoryTheory.Cat.FreeRefl
instCategory
lift'
homMk
—lift_map
lift'_obj šŸ“–mathematicalCategoryTheory.ReflQuiver.id
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Cat.FreeRefl
instCategory
lift'
——
lift_map šŸ“–mathematical—CategoryTheory.Functor.map
CategoryTheory.Cat.FreeRefl
instCategory
lift
homMk
Prefunctor.map
CategoryTheory.ReflQuiver.toQuiver
CategoryTheory.catToReflQuiver
CategoryTheory.ReflPrefunctor.toPrefunctor
—CategoryTheory.Category.id_comp
lift_obj šŸ“–mathematical—CategoryTheory.Functor.obj
CategoryTheory.Cat.FreeRefl
instCategory
lift
Prefunctor.obj
CategoryTheory.ReflQuiver.toQuiver
CategoryTheory.catToReflQuiver
CategoryTheory.ReflPrefunctor.toPrefunctor
——
lift_spec šŸ“–mathematical—CategoryTheory.ReflPrefunctor.comp
CategoryTheory.Cat.FreeRefl
CategoryTheory.catToReflQuiver
instCategory
CategoryTheory.Cat.toFreeRefl
CategoryTheory.Functor.toReflPrefunctor
lift
—CategoryTheory.ReflPrefunctor.ext
lift_map
lift_unique' šŸ“–ā€”CategoryTheory.Functor.comp
CategoryTheory.Paths
CategoryTheory.Paths.categoryPaths
CategoryTheory.ReflQuiver.toQuiver
CategoryTheory.Cat.FreeRefl
instCategory
quotientFunctor
——CategoryTheory.Quotient.lift_unique'
morphismPropertyHomMk_homMk šŸ“–mathematical—morphismPropertyHomMk
homMk
—CategoryTheory.MorphismProperty.ofHoms_iff
morphismProperty_eq_top šŸ“–mathematicalhomMkTop.top
CategoryTheory.MorphismProperty
CategoryTheory.Cat.FreeRefl
CategoryTheory.Category.toCategoryStruct
instCategory
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
—le_antisymm
multiplicativeClosure_morphismPropertyHomMk
CategoryTheory.MorphismProperty.multiplicativeClosure_le_iff
multiplicativeClosure_morphismPropertyHomMk šŸ“–mathematical—CategoryTheory.MorphismProperty.multiplicativeClosure
CategoryTheory.Cat.FreeRefl
instCategory
morphismPropertyHomMk
Top.top
CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
—le_antisymm
hom_induction
CategoryTheory.MorphismProperty.le_multiplicativeClosure
morphismPropertyHomMk_homMk
CategoryTheory.MorphismProperty.comp_mem
CategoryTheory.MorphismProperty.IsMultiplicative.toIsStableUnderComposition
CategoryTheory.MorphismProperty.instIsMultiplicativeMultiplicativeClosure
quotientFunctor_map_cons šŸ“–mathematical—CategoryTheory.Functor.map
CategoryTheory.Paths
CategoryTheory.Paths.categoryPaths
CategoryTheory.ReflQuiver.toQuiver
CategoryTheory.Cat.FreeRefl
instCategory
quotientFunctor
Quiver.Path.cons
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
homMk
——
quotientFunctor_map_id šŸ“–mathematical—CategoryTheory.Functor.map
CategoryTheory.Paths
CategoryTheory.Paths.categoryPaths
CategoryTheory.ReflQuiver.toQuiver
CategoryTheory.Cat.FreeRefl
instCategory
quotientFunctor
Quiver.Hom.toPath
CategoryTheory.ReflQuiver.id
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
—CategoryTheory.Quotient.sound
quotientFunctor_map_nil šŸ“–mathematical—CategoryTheory.Functor.map
CategoryTheory.Paths
CategoryTheory.Paths.categoryPaths
CategoryTheory.ReflQuiver.toQuiver
CategoryTheory.Cat.FreeRefl
instCategory
quotientFunctor
Quiver.Path.nil
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
—CategoryTheory.Functor.map_id

CategoryTheory.ReflPrefunctor

Definitions

NameCategoryTheorems
toFunctor šŸ“–CompOp—

CategoryTheory.ReflQuiv

Definitions

NameCategoryTheorems
adj šŸ“–CompOp
5 mathmath: adj_homEquiv, adj_unit_app, adj.unit.map_app_eq, adj_counit_app, adj.counit.comp_app_eq
category šŸ“–CompOp
28 mathmath: SSet.oneTruncationā‚‚_obj, SSet.OneTruncationā‚‚.ofNerveā‚‚.natIso_hom_app_map, adj_homEquiv, CategoryTheory.Cat.freeRefl_map, SSet.oneTruncationā‚‚_map, id_map, adj_unit_app, comp_map, SSet.OneTruncationā‚‚.ofNerveā‚‚.natIso_inv_app_obj_obj, comp_eq_comp, forget_map, adj.unit.map_app_eq, SSet.OneTruncationā‚‚.ofNerveā‚‚.natIso_hom_app_obj, forget_obj, forgetToQuiv_obj, comp_obj, forget_forgetToQuiv, SSet.Truncated.hoFunctorā‚‚_naturality, adj_counit_app, forget.Faithful, forgetToQuiv_map, id_eq_id, id_obj, CategoryTheory.Cat.freeRefl_obj, adj.counit.comp_app_eq, SSet.OneTruncationā‚‚.ofNerveā‚‚.natIso_inv_app_map, SSet.OneTruncationā‚‚.ofNerveā‚‚.natIso_inv_app_obj_map, forgetToQuiv.Faithful
forget šŸ“–CompOp
14 mathmath: SSet.OneTruncationā‚‚.ofNerveā‚‚.natIso_hom_app_map, adj_homEquiv, adj_unit_app, SSet.OneTruncationā‚‚.ofNerveā‚‚.natIso_inv_app_obj_obj, forget_map, adj.unit.map_app_eq, SSet.OneTruncationā‚‚.ofNerveā‚‚.natIso_hom_app_obj, forget_obj, forget_forgetToQuiv, adj_counit_app, forget.Faithful, adj.counit.comp_app_eq, SSet.OneTruncationā‚‚.ofNerveā‚‚.natIso_inv_app_map, SSet.OneTruncationā‚‚.ofNerveā‚‚.natIso_inv_app_obj_map
forgetToQuiv šŸ“–CompOp
4 mathmath: forgetToQuiv_obj, forget_forgetToQuiv, forgetToQuiv_map, forgetToQuiv.Faithful
instCoeSortType šŸ“–CompOp—
instInhabited šŸ“–CompOp—
instReflQuiverα šŸ“–CompOp
17 mathmath: SSet.OneTruncationā‚‚.ofNerveā‚‚.natIso_hom_app_map, adj_homEquiv, CategoryTheory.Cat.freeRefl_map, id_map, comp_map, SSet.OneTruncationā‚‚.ofNerveā‚‚.natIso_inv_app_obj_obj, comp_eq_comp, adj.unit.map_app_eq, SSet.OneTruncationā‚‚.ofNerveā‚‚.natIso_hom_app_obj, forgetToQuiv_obj, comp_obj, forgetToQuiv_map, id_eq_id, id_obj, CategoryTheory.Cat.freeRefl_obj, SSet.OneTruncationā‚‚.ofNerveā‚‚.natIso_inv_app_map, SSet.OneTruncationā‚‚.ofNerveā‚‚.natIso_inv_app_obj_map
isoOfEquiv šŸ“–CompOp—
isoOfQuivIso šŸ“–CompOp—
of šŸ“–CompOp
6 mathmath: SSet.oneTruncationā‚‚_obj, adj_homEquiv, adj_unit_app, adj.unit.map_app_eq, forget_obj, of_val
toQuiv šŸ“–CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
adj_counit_app šŸ“–mathematical—CategoryTheory.NatTrans.app
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.Functor.comp
CategoryTheory.ReflQuiv
category
forget
CategoryTheory.Cat.freeRefl
CategoryTheory.Functor.id
CategoryTheory.Adjunction.counit
adj
CategoryTheory.Cat.of
CategoryTheory.Functor.toCatHom
CategoryTheory.Cat.FreeRefl
CategoryTheory.catToReflQuiver
CategoryTheory.Cat.FreeRefl.instCategory
CategoryTheory.Cat.FreeRefl.lift
CategoryTheory.ReflPrefunctor.id
——
adj_homEquiv šŸ“–mathematical—CategoryTheory.Adjunction.homEquiv
CategoryTheory.ReflQuiv
category
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.Cat.freeRefl
forget
adj
of
CategoryTheory.Cat.of
Equiv.trans
Quiver.Hom
CategoryTheory.Cat.instQuiver
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Bundled.α
CategoryTheory.Category
CategoryTheory.Cat.str
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Cat.Hom.equivFunctor
adj.homEquiv
CategoryTheory.ReflQuiver
instReflQuiverα
—Equiv.ext
CategoryTheory.Adjunction.homEquiv_unit
adj_unit_app šŸ“–mathematical—CategoryTheory.NatTrans.app
CategoryTheory.ReflQuiv
category
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.Cat.freeRefl
forget
CategoryTheory.Adjunction.unit
adj
of
CategoryTheory.Cat.toFreeRefl
——
comp_eq_comp šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.ReflQuiv
CategoryTheory.Category.toCategoryStruct
category
CategoryTheory.ReflPrefunctor.comp
CategoryTheory.Bundled.α
CategoryTheory.ReflQuiver
instReflQuiverα
——
comp_map šŸ“–mathematical—Prefunctor.map
CategoryTheory.Bundled.α
CategoryTheory.ReflQuiver
CategoryTheory.ReflQuiver.toQuiver
instReflQuiverα
CategoryTheory.ReflPrefunctor.toPrefunctor
CategoryTheory.CategoryStruct.comp
CategoryTheory.ReflQuiv
CategoryTheory.Category.toCategoryStruct
category
Prefunctor.obj
——
comp_obj šŸ“–mathematical—Prefunctor.obj
CategoryTheory.Bundled.α
CategoryTheory.ReflQuiver
CategoryTheory.ReflQuiver.toQuiver
instReflQuiverα
CategoryTheory.ReflPrefunctor.toPrefunctor
CategoryTheory.CategoryStruct.comp
CategoryTheory.ReflQuiv
CategoryTheory.Category.toCategoryStruct
category
——
forgetToQuiv_faithful šŸ“–ā€”CategoryTheory.Functor.map
CategoryTheory.ReflQuiv
category
CategoryTheory.Quiv
CategoryTheory.Quiv.category
forgetToQuiv
———
forgetToQuiv_map šŸ“–mathematical—CategoryTheory.Functor.map
CategoryTheory.ReflQuiv
category
CategoryTheory.Quiv
CategoryTheory.Quiv.category
forgetToQuiv
CategoryTheory.ReflPrefunctor.toPrefunctor
CategoryTheory.Bundled.α
CategoryTheory.ReflQuiver
instReflQuiverα
——
forgetToQuiv_obj šŸ“–mathematical—CategoryTheory.Functor.obj
CategoryTheory.ReflQuiv
category
CategoryTheory.Quiv
CategoryTheory.Quiv.category
forgetToQuiv
CategoryTheory.Quiv.of
CategoryTheory.Bundled.α
CategoryTheory.ReflQuiver
CategoryTheory.ReflQuiver.toQuiver
instReflQuiverα
——
forget_faithful šŸ“–ā€”CategoryTheory.Functor.map
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.ReflQuiv
category
forget
CategoryTheory.Cat.of
CategoryTheory.Bundled.α
CategoryTheory.Category
CategoryTheory.Cat.str
CategoryTheory.Functor.toCatHom
——CategoryTheory.Functor.map_id
forget_forgetToQuiv šŸ“–mathematical—CategoryTheory.Functor.comp
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.ReflQuiv
category
CategoryTheory.Quiv
CategoryTheory.Quiv.category
forget
forgetToQuiv
CategoryTheory.Quiv.forget
——
forget_map šŸ“–mathematical—CategoryTheory.Functor.map
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.ReflQuiv
category
forget
CategoryTheory.Functor.toReflPrefunctor
CategoryTheory.Bundled.α
CategoryTheory.Category
CategoryTheory.Cat.str
CategoryTheory.Cat.Hom.toFunctor
——
forget_obj šŸ“–mathematical—CategoryTheory.Functor.obj
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.ReflQuiv
category
forget
of
CategoryTheory.Bundled.α
CategoryTheory.Category
CategoryTheory.catToReflQuiver
CategoryTheory.Cat.str
——
id_eq_id šŸ“–mathematical—CategoryTheory.CategoryStruct.id
CategoryTheory.ReflQuiv
CategoryTheory.Category.toCategoryStruct
category
CategoryTheory.ReflPrefunctor.id
CategoryTheory.Bundled.α
CategoryTheory.ReflQuiver
instReflQuiverα
——
id_map šŸ“–mathematical—Prefunctor.map
CategoryTheory.Bundled.α
CategoryTheory.ReflQuiver
CategoryTheory.ReflQuiver.toQuiver
instReflQuiverα
CategoryTheory.ReflPrefunctor.toPrefunctor
CategoryTheory.CategoryStruct.id
CategoryTheory.ReflQuiv
CategoryTheory.Category.toCategoryStruct
category
——
id_obj šŸ“–mathematical—Prefunctor.obj
CategoryTheory.Bundled.α
CategoryTheory.ReflQuiver
CategoryTheory.ReflQuiver.toQuiver
instReflQuiverα
CategoryTheory.ReflPrefunctor.toPrefunctor
CategoryTheory.CategoryStruct.id
CategoryTheory.ReflQuiv
CategoryTheory.Category.toCategoryStruct
category
——
of_val šŸ“–mathematical—CategoryTheory.Bundled.α
CategoryTheory.ReflQuiver
of
——

CategoryTheory.ReflQuiv.adj

Definitions

NameCategoryTheorems
homEquiv šŸ“–CompOp
5 mathmath: CategoryTheory.ReflQuiv.adj_homEquiv, homEquiv_symm_apply, homEquiv_naturality_left_symm, homEquiv_apply, homEquiv_naturality_right

Theorems

NameKindAssumesProvesValidatesDepends On
homEquiv_apply šŸ“–mathematical—DFunLike.coe
Equiv
CategoryTheory.Functor
CategoryTheory.Cat.FreeRefl
CategoryTheory.Cat.FreeRefl.instCategory
CategoryTheory.ReflPrefunctor
CategoryTheory.catToReflQuiver
EquivLike.toFunLike
Equiv.instEquivLike
homEquiv
CategoryTheory.ReflPrefunctor.comp
CategoryTheory.Cat.toFreeRefl
CategoryTheory.Functor.toReflPrefunctor
——
homEquiv_naturality_left_symm šŸ“–mathematical—DFunLike.coe
Equiv
CategoryTheory.ReflPrefunctor
CategoryTheory.catToReflQuiver
CategoryTheory.Functor
CategoryTheory.Cat.FreeRefl
CategoryTheory.Cat.FreeRefl.instCategory
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
homEquiv
CategoryTheory.ReflPrefunctor.comp
CategoryTheory.Functor.comp
CategoryTheory.Cat.freeReflMap
—CategoryTheory.Cat.FreeRefl.functor_ext
CategoryTheory.Cat.FreeRefl.lift_map
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
homEquiv_naturality_right šŸ“–mathematical—DFunLike.coe
Equiv
CategoryTheory.Functor
CategoryTheory.Cat.FreeRefl
CategoryTheory.Cat.FreeRefl.instCategory
CategoryTheory.ReflPrefunctor
CategoryTheory.catToReflQuiver
EquivLike.toFunLike
Equiv.instEquivLike
homEquiv
CategoryTheory.Functor.comp
CategoryTheory.ReflPrefunctor.comp
CategoryTheory.Functor.toReflPrefunctor
——
homEquiv_symm_apply šŸ“–mathematical—DFunLike.coe
Equiv
CategoryTheory.ReflPrefunctor
CategoryTheory.catToReflQuiver
CategoryTheory.Functor
CategoryTheory.Cat.FreeRefl
CategoryTheory.Cat.FreeRefl.instCategory
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
homEquiv
CategoryTheory.Cat.FreeRefl.lift
——

CategoryTheory.ReflQuiv.adj.counit

Theorems

NameKindAssumesProvesValidatesDepends On
comp_app_eq šŸ“–mathematical—CategoryTheory.Functor.comp
CategoryTheory.Paths
CategoryTheory.Paths.categoryPaths
CategoryTheory.ReflQuiver.toQuiver
CategoryTheory.catToReflQuiver
CategoryTheory.Cat.FreeRefl
CategoryTheory.Cat.FreeRefl.instCategory
CategoryTheory.Bundled.α
CategoryTheory.Category
CategoryTheory.Functor.obj
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.Functor.id
CategoryTheory.Cat.of
CategoryTheory.Cat.str
CategoryTheory.Cat.FreeRefl.quotientFunctor
CategoryTheory.Cat.Hom.toFunctor
CategoryTheory.ReflQuiv
CategoryTheory.ReflQuiv.category
CategoryTheory.ReflQuiv.forget
CategoryTheory.Cat.freeRefl
CategoryTheory.NatTrans.app
CategoryTheory.Adjunction.counit
CategoryTheory.ReflQuiv.adj
CategoryTheory.pathComposition
—CategoryTheory.Paths.ext_functor
CategoryTheory.composePath_toPath
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.Cat.FreeRefl.lift_map

CategoryTheory.ReflQuiv.adj.unit

Theorems

NameKindAssumesProvesValidatesDepends On
map_app_eq šŸ“–mathematical—CategoryTheory.ReflPrefunctor.toPrefunctor
CategoryTheory.Bundled.α
CategoryTheory.ReflQuiver
CategoryTheory.Functor.obj
CategoryTheory.ReflQuiv
CategoryTheory.ReflQuiv.category
CategoryTheory.Functor.id
CategoryTheory.ReflQuiv.of
CategoryTheory.ReflQuiv.instReflQuiverα
CategoryTheory.Functor.comp
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.Cat.freeRefl
CategoryTheory.ReflQuiv.forget
CategoryTheory.NatTrans.app
CategoryTheory.Adjunction.unit
CategoryTheory.ReflQuiv.adj
Prefunctor.comp
Quiver
CategoryTheory.Quiv
CategoryTheory.Quiv.category
CategoryTheory.Quiv.of
CategoryTheory.ReflQuiver.toQuiver
CategoryTheory.Quiv.str'
CategoryTheory.Cat.free
CategoryTheory.Quiv.forget
CategoryTheory.Cat.FreeRefl
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Cat.FreeRefl.instCategory
CategoryTheory.Quiv.adj
CategoryTheory.Functor.toPrefunctor
CategoryTheory.Paths
CategoryTheory.Paths.categoryPaths
CategoryTheory.Cat.FreeRefl.quotientFunctor
——

---

← Back to Index