Documentation Verification Report

RelCat

📁 Source: Mathlib/CategoryTheory/Category/RelCat.lean

Statistics

MetricCount
DefinitionsRelCat, rel, graphFunctor, inhabited, instLargeCategory, opEquivalence, opFunctor, unopFunctor
8
Theoremsext, ext_iff, rel_comp, rel_comp_apply₂, rel_id, rel_id_apply₂, graphFunctor_essSurj, graphFunctor_faithful, graphFunctor_obj, instIsEquivalenceOppositeOpFunctor, instIsEquivalenceOppositeUnopFunctor, opEquivalence_counitIso, opEquivalence_functor, opEquivalence_inverse, opEquivalence_unitIso, opFunctor_comp_unopFunctor_eq, rel_graphFunctor_map, rel_iso_iff, unopFunctor_comp_opFunctor_eq
19
Total27

CategoryTheory

Definitions

NameCategoryTheorems
RelCat 📖CompOp
17 mathmath: RelCat.graphFunctor_essSurj, RelCat.rel_graphFunctor_map, RelCat.instIsEquivalenceOppositeUnopFunctor, RelCat.unopFunctor_comp_opFunctor_eq, RelCat.graphFunctor_obj, RelCat.Hom.rel_id_apply₂, RelCat.opEquivalence_functor, RelCat.graphFunctor_faithful, RelCat.opEquivalence_counitIso, RelCat.opEquivalence_inverse, RelCat.Hom.rel_comp_apply₂, RelCat.opFunctor_comp_unopFunctor_eq, RelCat.rel_iso_iff, RelCat.Hom.rel_comp, RelCat.instIsEquivalenceOppositeOpFunctor, RelCat.Hom.rel_id, RelCat.opEquivalence_unitIso

CategoryTheory.RelCat

Definitions

NameCategoryTheorems
graphFunctor 📖CompOp
5 mathmath: graphFunctor_essSurj, rel_graphFunctor_map, graphFunctor_obj, graphFunctor_faithful, rel_iso_iff
inhabited 📖CompOp
instLargeCategory 📖CompOp
17 mathmath: graphFunctor_essSurj, rel_graphFunctor_map, instIsEquivalenceOppositeUnopFunctor, unopFunctor_comp_opFunctor_eq, graphFunctor_obj, Hom.rel_id_apply₂, opEquivalence_functor, graphFunctor_faithful, opEquivalence_counitIso, opEquivalence_inverse, Hom.rel_comp_apply₂, opFunctor_comp_unopFunctor_eq, rel_iso_iff, Hom.rel_comp, instIsEquivalenceOppositeOpFunctor, Hom.rel_id, opEquivalence_unitIso
opEquivalence 📖CompOp
4 mathmath: opEquivalence_functor, opEquivalence_counitIso, opEquivalence_inverse, opEquivalence_unitIso
opFunctor 📖CompOp
5 mathmath: unopFunctor_comp_opFunctor_eq, opEquivalence_functor, opEquivalence_counitIso, opFunctor_comp_unopFunctor_eq, instIsEquivalenceOppositeOpFunctor
unopFunctor 📖CompOp
5 mathmath: instIsEquivalenceOppositeUnopFunctor, unopFunctor_comp_opFunctor_eq, opEquivalence_counitIso, opEquivalence_inverse, opFunctor_comp_unopFunctor_eq

Theorems

NameKindAssumesProvesValidatesDepends On
graphFunctor_essSurj 📖mathematicalCategoryTheory.Functor.EssSurj
CategoryTheory.RelCat
CategoryTheory.types
instLargeCategory
graphFunctor
CategoryTheory.Functor.essSurj_of_surj
graphFunctor_faithful 📖mathematicalCategoryTheory.Functor.Faithful
CategoryTheory.types
CategoryTheory.RelCat
instLargeCategory
graphFunctor
Function.graph_injective
graphFunctor_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.types
CategoryTheory.RelCat
instLargeCategory
graphFunctor
instIsEquivalenceOppositeOpFunctor 📖mathematicalCategoryTheory.Functor.IsEquivalence
CategoryTheory.RelCat
instLargeCategory
Opposite
CategoryTheory.Category.opposite
opFunctor
CategoryTheory.Equivalence.isEquivalence_functor
instIsEquivalenceOppositeUnopFunctor 📖mathematicalCategoryTheory.Functor.IsEquivalence
Opposite
CategoryTheory.RelCat
CategoryTheory.Category.opposite
instLargeCategory
unopFunctor
CategoryTheory.Equivalence.isEquivalence_inverse
opEquivalence_counitIso 📖mathematicalCategoryTheory.Equivalence.counitIso
CategoryTheory.RelCat
Opposite
instLargeCategory
CategoryTheory.Category.opposite
opEquivalence
CategoryTheory.Iso.refl
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
unopFunctor
opFunctor
opEquivalence_functor 📖mathematicalCategoryTheory.Equivalence.functor
CategoryTheory.RelCat
Opposite
instLargeCategory
CategoryTheory.Category.opposite
opEquivalence
opFunctor
opEquivalence_inverse 📖mathematicalCategoryTheory.Equivalence.inverse
CategoryTheory.RelCat
Opposite
instLargeCategory
CategoryTheory.Category.opposite
opEquivalence
unopFunctor
opEquivalence_unitIso 📖mathematicalCategoryTheory.Equivalence.unitIso
CategoryTheory.RelCat
Opposite
instLargeCategory
CategoryTheory.Category.opposite
opEquivalence
CategoryTheory.Iso.refl
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
opFunctor_comp_unopFunctor_eq 📖mathematicalCategoryTheory.Functor.comp
CategoryTheory.RelCat
instLargeCategory
Opposite
CategoryTheory.Category.opposite
opFunctor
unopFunctor
CategoryTheory.Functor.id
rel_graphFunctor_map 📖mathematicalHom.rel
CategoryTheory.Functor.map
CategoryTheory.types
CategoryTheory.RelCat
instLargeCategory
graphFunctor
Function.graph
rel_iso_iff 📖mathematicalCategoryTheory.IsIso
CategoryTheory.RelCat
instLargeCategory
CategoryTheory.Functor.map
CategoryTheory.types
graphFunctor
CategoryTheory.Iso.hom
CategoryTheory.IsIso.hom_inv_id
CategoryTheory.IsIso.inv_hom_id
CategoryTheory.types_ext
Hom.ext
Set.ext
CategoryTheory.Functor.map_isIso
CategoryTheory.Iso.isIso_hom
unopFunctor_comp_opFunctor_eq 📖mathematicalCategoryTheory.Functor.comp
Opposite
CategoryTheory.RelCat
CategoryTheory.Category.opposite
instLargeCategory
unopFunctor
opFunctor
CategoryTheory.Functor.id

CategoryTheory.RelCat.Hom

Definitions

NameCategoryTheorems
rel 📖CompOp
6 mathmath: CategoryTheory.RelCat.rel_graphFunctor_map, rel_id_apply₂, rel_comp_apply₂, ext_iff, rel_comp, rel_id

Theorems

NameKindAssumesProvesValidatesDepends On
ext 📖rel
ext_iff 📖mathematicalrelext
rel_comp 📖mathematicalrel
CategoryTheory.CategoryStruct.comp
CategoryTheory.RelCat
CategoryTheory.Category.toCategoryStruct
CategoryTheory.RelCat.instLargeCategory
SetRel.comp
rel_comp_apply₂ 📖mathematicalSetRel
Set.instMembership
rel
CategoryTheory.CategoryStruct.comp
CategoryTheory.RelCat
CategoryTheory.Category.toCategoryStruct
CategoryTheory.RelCat.instLargeCategory
rel_id 📖mathematicalrel
CategoryTheory.CategoryStruct.id
CategoryTheory.RelCat
CategoryTheory.Category.toCategoryStruct
CategoryTheory.RelCat.instLargeCategory
SetRel.id
rel_id_apply₂ 📖mathematicalSetRel
Set.instMembership
rel
CategoryTheory.CategoryStruct.id
CategoryTheory.RelCat
CategoryTheory.Category.toCategoryStruct
CategoryTheory.RelCat.instLargeCategory

---

← Back to Index