Documentation Verification Report

CodiscreteCategory

📁 Source: Mathlib/CategoryTheory/CodiscreteCategory.lean

Statistics

MetricCount
DefinitionsCodiscrete, adj, as, counitApp, equivFunctorToCodiscrete, functor, functorOfFun, functorToCat, instCategory, invFunctor, natIso, natIsoFunctor, natTrans, oppositeEquivalence, unitApp, codiscreteEquiv, instDecidableEqCodiscrete
17
Theoremsadj_counit_app, adj_unit_app, ext, ext_iff, left_triangle_components, mk_as, natIsoFunctor_hom_app, natIsoFunctor_inv_app, right_triangle_components, codiscreteEquiv_apply, codiscreteEquiv_symm_apply_as
11
Total28

CategoryTheory

Definitions

NameCategoryTheorems
Codiscrete 📖CompData
7 mathmath: Codiscrete.left_triangle_components, Codiscrete.natIsoFunctor_hom_app, Codiscrete.right_triangle_components, Codiscrete.natIsoFunctor_inv_app, codiscreteEquiv_apply, codiscreteEquiv_symm_apply_as, Codiscrete.adj_unit_app
codiscreteEquiv 📖CompOp
2 mathmath: codiscreteEquiv_apply, codiscreteEquiv_symm_apply_as
instDecidableEqCodiscrete 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
codiscreteEquiv_apply 📖mathematicalDFunLike.coe
Equiv
Codiscrete
EquivLike.toFunLike
Equiv.instEquivLike
codiscreteEquiv
Codiscrete.as
codiscreteEquiv_symm_apply_as 📖mathematicalCodiscrete.as
DFunLike.coe
Equiv
Codiscrete
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
codiscreteEquiv

CategoryTheory.Codiscrete

Definitions

NameCategoryTheorems
adj 📖CompOp
2 mathmath: adj_counit_app, adj_unit_app
as 📖CompOp
6 mathmath: natIsoFunctor_hom_app, mk_as, natIsoFunctor_inv_app, CategoryTheory.codiscreteEquiv_apply, CategoryTheory.codiscreteEquiv_symm_apply_as, ext_iff
counitApp 📖CompOp
3 mathmath: left_triangle_components, right_triangle_components, adj_counit_app
equivFunctorToCodiscrete 📖CompOp
functor 📖CompOp
2 mathmath: natIsoFunctor_hom_app, natIsoFunctor_inv_app
functorOfFun 📖CompOp
1 mathmath: right_triangle_components
functorToCat 📖CompOp
2 mathmath: adj_counit_app, adj_unit_app
instCategory 📖CompOp
5 mathmath: left_triangle_components, natIsoFunctor_hom_app, right_triangle_components, natIsoFunctor_inv_app, adj_unit_app
invFunctor 📖CompOp
natIso 📖CompOp
natIsoFunctor 📖CompOp
2 mathmath: natIsoFunctor_hom_app, natIsoFunctor_inv_app
natTrans 📖CompOp
oppositeEquivalence 📖CompOp
unitApp 📖CompOp
3 mathmath: left_triangle_components, right_triangle_components, adj_unit_app

Theorems

NameKindAssumesProvesValidatesDepends On
adj_counit_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.types
CategoryTheory.Functor.comp
CategoryTheory.Cat
CategoryTheory.Cat.category
functorToCat
CategoryTheory.Cat.objects
CategoryTheory.Functor.id
CategoryTheory.Adjunction.counit
adj
counitApp
adj_unit_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.types
CategoryTheory.Cat.objects
functorToCat
CategoryTheory.Adjunction.unit
adj
CategoryTheory.Functor.toCatHom
CategoryTheory.Bundled.α
CategoryTheory.Category
CategoryTheory.Codiscrete
CategoryTheory.Cat.str
instCategory
unitApp
ext 📖as
ext_iff 📖mathematicalasext
left_triangle_components 📖mathematicalCategoryTheory.Codiscrete
counitApp
CategoryTheory.Functor.obj
instCategory
unitApp
mk_as 📖mathematicalas
natIsoFunctor_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Codiscrete
instCategory
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
functor
as
CategoryTheory.Functor.obj
natIsoFunctor
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
natIsoFunctor_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Codiscrete
instCategory
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
functor
as
CategoryTheory.Functor.obj
natIsoFunctor
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
right_triangle_components 📖mathematicalCategoryTheory.Functor.comp
CategoryTheory.Codiscrete
instCategory
unitApp
functorOfFun
counitApp
CategoryTheory.Functor.id

---

← Back to Index