Documentation Verification Report

CommSq

📁 Source: Mathlib/CategoryTheory/CommSq.lean

Statistics

MetricCount
DefinitionsHasLift, LiftStruct, l, op, opEquiv, unop, unopEquiv
7
Theoremsexists_lift, iff, iff_op, iff_unop, mk', ext, ext_iff, fac_left, fac_right, opEquiv_apply, opEquiv_symm_apply, op_l, unop_l, eq_of_epi, eq_of_mono, fac_left, fac_left_assoc, fac_right, fac_right_assoc, flip, horiz_comp, horiz_inv, map, of_arrow, op, subsingleton_liftStruct_of_epi, subsingleton_liftStruct_of_mono, unop, vert_comp, vert_inv, w, w_assoc, map_commSq
33
Total40

CategoryTheory.CommSq

Definitions

NameCategoryTheorems
HasLift 📖CompData
12 mathmath: CategoryTheory.HasLiftingProperty.transfiniteComposition.hasLift, instHasLift, HasLift.over, HasLift.mk', CategoryTheory.sq_hasLift_of_hasLiftingProperty, HasLift.iff_op, right_adjoint_hasLift_iff, left_adjoint_hasLift_iff, CategoryTheory.HasLiftingProperty.sq_hasLift, instHasLift_1, HasLift.iff_unop, HasLift.iff
LiftStruct 📖CompData
6 mathmath: HasLift.exists_lift, LiftStruct.opEquiv_symm_apply, subsingleton_liftStruct_of_mono, subsingleton_liftStruct_of_epi, LiftStruct.opEquiv_apply, HasLift.iff

Theorems

NameKindAssumesProvesValidatesDepends On
eq_of_epi 📖CategoryTheory.CommSqCategoryTheory.cancel_epi
w
eq_of_mono 📖CategoryTheory.CommSqCategoryTheory.cancel_mono
w
fac_left 📖mathematicalCategoryTheory.CommSqCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
lift
LiftStruct.fac_left
HasLift.exists_lift
fac_left_assoc 📖mathematicalCategoryTheory.CommSqCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
lift
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
fac_left
fac_right 📖mathematicalCategoryTheory.CommSqCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
lift
LiftStruct.fac_right
HasLift.exists_lift
fac_right_assoc 📖mathematicalCategoryTheory.CommSqCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
lift
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
fac_right
flip 📖CategoryTheory.CommSqw
horiz_comp 📖mathematicalCategoryTheory.CommSqCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Category.assoc
w
horiz_inv 📖mathematicalCategoryTheory.CommSq
CategoryTheory.Iso.hom
CategoryTheory.Iso.invflip
vert_inv
map 📖mathematicalCategoryTheory.CommSqCategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Functor.map_commSq
of_arrow 📖mathematicalCategoryTheory.CommSq
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.CommaMorphism.left
CategoryTheory.CommaMorphism.right
CategoryTheory.CommaMorphism.w
op 📖mathematicalCategoryTheory.CommSqOpposite
CategoryTheory.Category.opposite
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
w
subsingleton_liftStruct_of_epi 📖mathematicalCategoryTheory.CommSqLiftStructLiftStruct.ext
CategoryTheory.cancel_epi
LiftStruct.fac_left
subsingleton_liftStruct_of_mono 📖mathematicalCategoryTheory.CommSqLiftStructLiftStruct.ext
CategoryTheory.cancel_mono
LiftStruct.fac_right
unop 📖mathematicalCategoryTheory.CommSq
Opposite
CategoryTheory.Category.opposite
Opposite.unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
w
vert_comp 📖mathematicalCategoryTheory.CommSqCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
flip
horiz_comp
vert_inv 📖mathematicalCategoryTheory.CommSq
CategoryTheory.Iso.hom
CategoryTheory.Iso.invCategoryTheory.Iso.comp_inv_eq
CategoryTheory.Category.assoc
CategoryTheory.Iso.eq_inv_comp
w
w 📖mathematicalCategoryTheory.CommSqCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
w_assoc 📖mathematicalCategoryTheory.CommSqCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
w

CategoryTheory.CommSq.HasLift

Theorems

NameKindAssumesProvesValidatesDepends On
exists_lift 📖mathematicalCategoryTheory.CommSqCategoryTheory.CommSq.LiftStruct
iff 📖mathematicalCategoryTheory.CommSqCategoryTheory.CommSq.HasLift
CategoryTheory.CommSq.LiftStruct
exists_lift
iff_op 📖mathematicalCategoryTheory.CommSqCategoryTheory.CommSq.HasLift
Opposite
CategoryTheory.Category.opposite
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CommSq.op
CategoryTheory.CommSq.op
iff
Nonempty.congr
iff_unop 📖mathematicalCategoryTheory.CommSq
Opposite
CategoryTheory.Category.opposite
CategoryTheory.CommSq.HasLift
Opposite.unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CommSq.unop
CategoryTheory.CommSq.unop
iff
Nonempty.congr
mk' 📖mathematicalCategoryTheory.CommSqCategoryTheory.CommSq.HasLift

CategoryTheory.CommSq.LiftStruct

Definitions

NameCategoryTheorems
l 📖CompOp
5 mathmath: op_l, fac_left, fac_right, unop_l, ext_iff
op 📖CompOp
2 mathmath: op_l, opEquiv_apply
opEquiv 📖CompOp
2 mathmath: opEquiv_symm_apply, opEquiv_apply
unop 📖CompOp
2 mathmath: opEquiv_symm_apply, unop_l
unopEquiv 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
ext 📖CategoryTheory.CommSq
l
ext_iff 📖mathematicalCategoryTheory.CommSqlext
fac_left 📖mathematicalCategoryTheory.CommSqCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
l
fac_right 📖mathematicalCategoryTheory.CommSqCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
l
opEquiv_apply 📖mathematicalCategoryTheory.CommSqDFunLike.coe
Equiv
CategoryTheory.CommSq.LiftStruct
Opposite
CategoryTheory.Category.opposite
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CommSq.op
EquivLike.toFunLike
Equiv.instEquivLike
opEquiv
op
CategoryTheory.CommSq.op
opEquiv_symm_apply 📖mathematicalCategoryTheory.CommSqDFunLike.coe
Equiv
CategoryTheory.CommSq.LiftStruct
Opposite
CategoryTheory.Category.opposite
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CommSq.op
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
opEquiv
unop
CategoryTheory.CommSq.op
CategoryTheory.CommSq.unop
op_l 📖mathematicalCategoryTheory.CommSql
Opposite
CategoryTheory.Category.opposite
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CommSq.op
op
CategoryTheory.CommSq.op
unop_l 📖mathematicalCategoryTheory.CommSq
Opposite
CategoryTheory.Category.opposite
l
Opposite.unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CommSq.unop
unop
CategoryTheory.CommSq.unop

CategoryTheory.Functor

Theorems

NameKindAssumesProvesValidatesDepends On
map_commSq 📖mathematicalCategoryTheory.CommSqobj
map
map_comp
CategoryTheory.CommSq.w

---

← Back to Index