| Name | Category | Theorems |
equivProd 📖 | CompOp | 22 mathmath: toIdPUnitEquiv_inverse_map_right, toPUnitIdEquiv_counitIso_hom_app, equivProd_unitIso_hom_app_left, equivProd_counitIso_hom_app, equivProd_inverse_map_left, equivProd_unitIso_hom_app_right, toIdPUnitEquiv_unitIso_inv_app_right, toPUnitIdEquiv_unitIso_inv_app_left, equivProd_counitIso_inv_app, toIdPUnitEquiv_unitIso_hom_app_right, toIdPUnitEquiv_counitIso_hom_app, toPUnitIdEquiv_inverse_map_left, equivProd_inverse_map_right, equivProd_inverse_obj_right, toPUnitIdEquiv_unitIso_hom_app_left, equivProd_unitIso_inv_app_right, equivProd_inverse_obj_left, toPUnitIdEquiv_counitIso_inv_app, toIdPUnitEquiv_counitIso_inv_app, equivProd_functor_map, equivProd_unitIso_inv_app_left, equivProd_functor_obj
|
fromProd 📖 | CompOp | 7 mathmath: fromProd_obj_hom, fromProd_obj_right, equivProd_counitIso_hom_app, fromProd_obj_left, equivProd_counitIso_inv_app, fromProd_map_right, fromProd_map_left
|
fst 📖 | CompOp | 69 mathmath: CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceInverse_obj_left_hom, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceInverse_obj_right_left, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceFunctor_map_right, CategoryTheory.StructuredArrow.ofCommaSndEquivalence_functor, fst_obj, initial_fst, coneOfPreserves_π_app_right, limitAuxiliaryCone_pt, CategoryTheory.CostructuredArrow.ιCompGrothendieckProj_inv_app, CategoryTheory.StructuredArrow.ofCommaSndEquivalence_unitIso, CategoryTheory.StructuredArrow.ofCommaSndEquivalence_counitIso, equivProd_counitIso_hom_app, CategoryTheory.CostructuredArrow.ofCommaFstEquivalence_inverse, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceInverse_map_right_left, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceFunctor_obj_hom, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceFunctor_map_left, natTrans_app, CategoryTheory.CostructuredArrow.ιCompGrothendieckPrecompFunctorToCommaCompFst_inv_app, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceInverse_obj_right_as, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceInverse_obj_left_left, colimitAuxiliaryCocone_pt, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceFunctor_obj_right, CategoryTheory.CostructuredArrow.mapCompιCompGrothendieckProj_inv_app, equivProd_counitIso_inv_app, coconeOfPreserves_ι_app_right, coconeOfPreserves_pt_hom, limitAuxiliaryCone_π_app, CategoryTheory.CostructuredArrow.ofCommaFstEquivalence_functor, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceFunctor_map_right, unopFunctorCompSnd_inv_app, coconeOfPreserves_ι_app_left, toPUnitIdEquiv_functor_iso, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceInverse_map_left_left, preservesColimitsOfShape_fst, opFunctorCompSnd_hom_app, opFunctorCompFst_hom_app, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceInverse_obj_hom, opFunctorCompFst_inv_app, CategoryTheory.CostructuredArrow.ofCommaFstEquivalence_counitIso, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceFunctor_obj_left, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceFunctor_map_left, final_fst, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceInverse_map_right_right, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceFunctor_obj_right, mapFst_hom_app, unopFunctorCompFst_inv_app, opFunctorCompSnd_inv_app, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceInverse_obj_left_right, CategoryTheory.CostructuredArrow.mapCompιCompGrothendieckProj_hom_app, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceFunctor_obj_left, CategoryTheory.CostructuredArrow.ιCompGrothendieckPrecompFunctorToCommaCompFst_hom_app, CategoryTheory.CostructuredArrow.ofCommaFstEquivalence_unitIso, coneOfPreserves_pt_left, CategoryTheory.StructuredArrow.ofCommaSndEquivalence_inverse, coconeOfPreserves_pt_left, CategoryTheory.CostructuredArrow.ιCompGrothendieckProj_hom_app, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceInverse_obj_right_hom, unopFunctorCompSnd_hom_app, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceInverse_obj_left_as, unopFunctorCompFst_hom_app, map_fst, colimitAuxiliaryCocone_ι_app, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceInverse_obj_hom, fst_map, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceFunctor_obj_hom, mapFst_inv_app, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceInverse_obj_right_right, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceInverse_map_left_right, coneOfPreserves_π_app_left
|
hom 📖 | CompOp | 877 mathmath: TopCat.Presheaf.generateEquivalenceOpensLe_functor'_obj_obj, CategoryTheory.Over.associator_hom_left_snd_fst_assoc, CategoryTheory.Limits.coker.π_app, CategoryTheory.CostructuredArrow.homMk'_id, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left_fst, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_hom_right, CategoryTheory.Over.prodLeftIsoPullback_hom_snd_assoc, CategoryTheory.Limits.HasImage.of_arrow_iso, CategoryTheory.Over.μ_pullback_left_snd', CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceInverse_obj_left_hom, CategoryTheory.StructuredArrow.map_map_right, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_snd_fst_assoc, CategoryTheory.Functor.leibnizPullback_obj_map, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceFunctor_map_right, mapLeftIso_inverse_map_right, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_functor_map_left, CategoryTheory.Over.iteratedSliceForwardNaturalityIso_hom_app, CategoryTheory.CostructuredArrow.mk_hom_eq_self, CategoryTheory.Functor.LeftExtension.precomp₂_obj_hom_app, CategoryTheory.Limits.MonoFactorisation.ofArrowIso_e, opFunctor_obj, CategoryTheory.Limits.multicospanIndexEnd_fst, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left_fst, CategoryTheory.CategoryOfElements.fromStructuredArrow_map, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_pullback_map, CategoryTheory.OverPresheafAux.unitAux_hom, CategoryTheory.Over.iteratedSliceBackward_map, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_unitIso, CategoryTheory.CostructuredArrow.ofDiagEquivalence.functor_map_left_left, CategoryTheory.Over.associator_inv_left_snd, CategoryTheory.Functor.mapArrow_obj, CategoryTheory.StructuredArrow.commaMapEquivalenceInverse_map, CategoryTheory.Over.pullback_obj_left, map_obj_hom, TopCat.Presheaf.generateEquivalenceOpensLe_unitIso, CategoryTheory.StructuredArrow.w_prod_fst, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_left_hom, CategoryTheory.StructuredArrow.homMk'_comp, CategoryTheory.CostructuredArrow.w_assoc, CategoryTheory.MonoOver.isIso_left_iff_subobjectMk_eq, CategoryTheory.Functor.PullbackObjObj.mapArrowRight_right, CategoryTheory.Over.rightUnitor_inv_left_fst_assoc, CategoryTheory.Functor.PushoutObjObj.mapArrowRight_id, CategoryTheory.Functor.PullbackObjObj.mapArrowLeft_id, mapLeft_map_left, CategoryTheory.SmallObject.πObj_ιIteration_app_right, CategoryTheory.OverPresheafAux.restrictedYoneda_map, CategoryTheory.toOver_obj_hom, CategoryTheory.Sieve.ofArrows_category', CategoryTheory.Limits.IsImage.ofArrowIso_lift, CategoryTheory.StructuredArrow.mapIso_inverse_obj_hom, CategoryTheory.CostructuredArrow.pre_obj_hom, CategoryTheory.Over.whiskerLeft_left, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorToComma_map_left, CategoryTheory.Limits.image.map_id, CategoryTheory.OverPresheafAux.restrictedYoneda_obj, CategoryTheory.Presheaf.isSheaf_iff_isLimit_coverage, CategoryTheory.MonoOver.isIso_iff_subobjectMk_eq, CategoryTheory.Functor.LeftExtension.postcomp₁_map_right_app, CategoryTheory.CostructuredArrow.IsUniversal.existsUnique, CategoryTheory.Functor.leftKanExtensionUnit_leftKanExtension_map_leftKanExtensionObjIsoColimit_hom, fromProd_obj_hom, CategoryTheory.CostructuredArrow.w_prod_fst, CategoryTheory.SimplicialObject.Augmented.toArrow_map_right, CategoryTheory.Square.fromArrowArrowFunctor_map_τ₃, CategoryTheory.CostructuredArrow.mapIso_functor_obj_hom, CategoryTheory.StructuredArrow.commaMapEquivalenceCounitIso_hom_app_left_right, Profinite.Extend.cone_π_app, CategoryTheory.IsGrothendieckAbelian.IsPresentable.injectivity₀.g_app, mapLeftIso_functor_map_left, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.inverse_obj_left_hom, CategoryTheory.Square.toArrowArrowFunctor_obj_hom_right, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.pullbackGluedIso_inv_snd_assoc, CategoryTheory.MorphismProperty.Over.pullbackComp_hom_app_left, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.isIso_hom_app, CategoryTheory.TwoSquare.EquivalenceJ.inverse_map, CategoryTheory.StructuredArrow.commaMapEquivalenceUnitIso_inv_app_right_right, CategoryTheory.CostructuredArrow.eq_mk, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.isPullback, CategoryTheory.MorphismProperty.Under.mk_hom, CategoryTheory.StructuredArrow.map₂_map_right, CategoryTheory.Limits.Cone.fromCostructuredArrow_map_hom, CategoryTheory.Functor.PullbackObjObj.π_iso_of_iso_left_inv, CategoryTheory.StructuredArrow.preEquivalenceInverse_obj_right_hom, CategoryTheory.Limits.image.map_comp, CategoryTheory.ChosenPullbacksAlong.iso_mapPullbackAdj_unit_app, CategoryTheory.toOverPullbackIsoToOver_inv_app_left, CategoryTheory.Functor.ι_leftKanExtensionObjIsoColimit_inv, CategoryTheory.CostructuredArrow.w_prod_fst_assoc, CategoryTheory.Functor.LeftExtension.precomp_map_right, CategoryTheory.Over.toUnit_left, CategoryTheory.SimplicialObject.Augmented.w₀, CategoryTheory.Functor.RightExtension.coneAt_π_app, mapRightIso_functor_map_left, map_map_right, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_hom_app_comp_snd_assoc, CategoryTheory.CostructuredArrow.mapNatIso_inverse_map_right, CategoryTheory.Limits.multicospanIndexEnd_snd, CategoryTheory.leftAdjointOfStructuredArrowInitialsAux_apply, CategoryTheory.Over.braiding_inv_left, CategoryTheory.CostructuredArrow.post_obj, CategoryTheory.Functor.RightExtension.postcomp₁_map_right, CategoryTheory.Over.prodLeftIsoPullback_inv_snd, CategoryTheory.Functor.LeibnizAdjunction.adj_unit_app_left, CategoryTheory.Over.iteratedSliceForwardIsoPost_inv_app, CategoryTheory.SimplicialObject.Augmented.toArrow_map_left, mapRight_obj_hom, CategoryTheory.MorphismProperty.FunctorialFactorizationData.functorCategory.Z_map_app, mapRightIso_inverse_map_right, CategoryTheory.SimplicialObject.Augmented.ExtraDegeneracy.s'_comp_ε, CategoryTheory.Limits.coker_map, CategoryTheory.Square.toArrowArrowFunctor'_obj_left_hom, CategoryTheory.StructuredArrow.eta_hom_right, CategoryTheory.Square.fromArrowArrowFunctor_obj_f₃₄, CategoryTheory.SmallObject.functorialFactorizationData_i_app, CategoryTheory.CostructuredArrow.prodFunctor_map, CategoryTheory.Abelian.coim_map, CategoryTheory.StructuredArrow.prodInverse_map, CategoryTheory.StructuredArrow.eta_inv_right, CategoryTheory.Over.leftUnitor_hom_left, CategoryTheory.Functor.PullbackObjObj.mapArrowLeft_comp, CategoryTheory.MorphismProperty.Over.pullbackMapHomPullback_app, CategoryTheory.Over.tensorObj_ext_iff, CategoryTheory.CosimplicialObject.augment_hom_app, CategoryTheory.CostructuredArrow.toOver_map_right, CategoryTheory.CostructuredArrow.map_obj_hom, LightProfinite.Extend.cocone_ι_app, CategoryTheory.Under.mk_hom, CategoryTheory.Functor.LeftExtension.precomp_obj_hom_app, CategoryTheory.Functor.LeibnizAdjunction.adj_counit_app_left, CategoryTheory.StructuredArrow.eq_mk, CategoryTheory.MorphismProperty.Over.mk_hom, TopCat.Presheaf.generateEquivalenceOpensLe_inverse'_obj_obj_right_as, CategoryTheory.MorphismProperty.Over.pullback_obj_left, CategoryTheory.NatTrans.instIsClosedUnderLimitsOfShapeOverFunctorEquifiberedHomDiscretePUnitOfHasCoproductsOfShapeHom, opFunctor_map, CategoryTheory.CostructuredArrow.toOver_obj_hom, CategoryTheory.CostructuredArrow.commaToGrothendieckPrecompFunctor_map_fiber, CategoryTheory.ChosenPullbacksAlong.Over.tensorObj_ext_iff, CategoryTheory.OrthogonalReflection.D₁.ι_comp_t_assoc, CategoryTheory.CostructuredArrow.commaToGrothendieckPrecompFunctor_obj_fiber, CategoryTheory.CostructuredArrow.ofDiagEquivalence.functor_obj_hom, CategoryTheory.Over.rightUnitor_inv_left_fst, CategoryTheory.CostructuredArrow.homMk'_mk_id, CategoryTheory.Limits.Cocone.fromCostructuredArrow_ι_app, CategoryTheory.Limits.Cone.fromStructuredArrow_π_app, CategoryTheory.WithTerminal.commaFromOver_map_left, CategoryTheory.Functor.RightExtension.precomp_map_left, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left_snd_assoc, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtension.isLeftKanExtension, CategoryTheory.Limits.Cone.fromCostructuredArrow_obj_π, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_mapPullbackAdj_unit_app, CategoryTheory.MonoOver.isIso_hom_left_iff_subobjectMk_eq, CategoryTheory.Under.pushout_map, CategoryTheory.Sieve.ofArrows_category, CategoryTheory.Limits.image.map_ι, CategoryTheory.Abelian.Pseudoelement.pseudoZero_iff, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_inv_left_snd, CategoryTheory.CostructuredArrow.homMk'_right, CategoryTheory.WithInitial.coconeEquiv_inverse_obj_pt_hom, CategoryTheory.Functor.ι_leftKanExtensionObjIsoColimit_inv_assoc, CategoryTheory.Over.mk_hom, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.inverse_obj_hom, CategoryTheory.OverPresheafAux.counitForward_naturality₁, TopCat.Presheaf.generateEquivalenceOpensLe_inverse'_obj_obj_hom, CategoryTheory.SimplicialObject.Truncated.rightExtensionInclusion_hom_app, CategoryTheory.MorphismProperty.Over.pullbackCongr_hom_app_left_fst, CategoryTheory.Functor.PushoutObjObj.mapArrowRight_left, CategoryTheory.Over.whiskerRight_left_fst, CategoryTheory.MorphismProperty.FunctorialFactorizationData.functorCategory.Z_obj_map, CategoryTheory.CostructuredArrow.w_prod_snd_assoc, CategoryTheory.Over.postAdjunctionLeft_unit_app_left, CommRingCat.pushout_inr_tensorProdObjIsoPushoutObj_inv_right_assoc, CategoryTheory.MorphismProperty.Over.mapPullbackAdj_counit_app, CategoryTheory.CostructuredArrow.costructuredArrowToOverEquivalence.functor_map, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.pullbackGluedIso_inv_fst_assoc, CategoryTheory.Arrow.square_from_iso_invert, CategoryTheory.MonoOver.pullback_obj_arrow, CategoryTheory.Functor.PullbackObjObj.π_iso_of_iso_right_hom, CategoryTheory.Over.prodLeftIsoPullback_inv_fst, CategoryTheory.Functor.PushoutObjObj.mapArrowRight_comp_assoc, CategoryTheory.Abelian.im_map, CategoryTheory.StructuredArrow.map₂_map_left, CategoryTheory.TwoSquare.costructuredArrowRightwards_map, CategoryTheory.Presheaf.isLimit_iff_isSheafFor_presieve, CategoryTheory.WithTerminal.coneEquiv_functor_obj_π_app_star, CategoryTheory.Under.postAdjunctionRight_unit_app_right, CategoryTheory.CostructuredArrow.ofDiagEquivalence.functor_obj_left_hom, CategoryTheory.Functor.PullbackObjObj.mapArrowRight_comp_assoc, CategoryTheory.Over.opEquivOpUnder_inverse_obj, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_inverse_obj_map, CategoryTheory.CostructuredArrow.mapIso_functor_map_left, CategoryTheory.StructuredArrow.prodFunctor_map, CategoryTheory.Arrow.equivSigma_apply_snd_snd, CategoryTheory.Over.prodLeftIsoPullback_inv_snd_assoc, CategoryTheory.Functor.RightExtension.mk_hom, CategoryTheory.Over.rightUnitor_inv_left_snd, CategoryTheory.ChosenPullbacksAlong.Over.tensorObj_hom, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_inverse_map_left, CategoryTheory.Over.post_map, CategoryTheory.regularTopology.equalizerConditionMap_iff_nonempty_isLimit, CategoryTheory.Pseudofunctor.presheafHom_obj, CategoryTheory.Over.mapPullbackAdj_counit_app, CategoryTheory.Over.iteratedSliceBackward_forget, CategoryTheory.Abelian.Pseudoelement.ModuleCat.eq_range_of_pseudoequal, preRight_map_left, CategoryTheory.SimplicialObject.Augmented.const_obj_hom, CategoryTheory.StructuredArrow.ofDiagEquivalence.inverse_obj_hom, CategoryTheory.CostructuredArrow.post_map, CategoryTheory.StructuredArrow.mapNatIso_functor_obj_hom, CategoryTheory.ChosenPullbacksAlong.Over.tensorObj_left, CategoryTheory.CostructuredArrow.commaToGrothendieckPrecompFunctor_map_base, CategoryTheory.Under.post_obj, CategoryTheory.StructuredArrow.ofDiagEquivalence.functor_obj_right_hom, CategoryTheory.StructuredArrow.mapNatIso_inverse_map_right, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_fst, CategoryTheory.Over.prodLeftIsoPullback_hom_snd, CategoryTheory.CostructuredArrow.preEquivalence.functor_obj_hom, CategoryTheory.StructuredArrow.IsUniversal.existsUnique, CategoryTheory.ChosenPullbacksAlong.isoInv_pullback_map_left, CategoryTheory.StructuredArrow.mapNatIso_functor_map_right, CategoryTheory.Over.whiskerRight_left_snd_assoc, CategoryTheory.Arrow.w_mk_right, CategoryTheory.ChosenPullbacksAlong.Over.snd_eq_snd', CategoryTheory.MorphismProperty.Over.mapPullbackAdj_unit_app, CategoryTheory.CostructuredArrow.eta_hom_left, CategoryTheory.Over.associator_inv_left_fst_fst_assoc, CategoryTheory.Square.fromArrowArrowFunctor'_map_τ₃, CategoryTheory.Limits.ker.ι_app, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceFunctor_obj_hom, CategoryTheory.Over.associator_hom_left_fst, CategoryTheory.SmallObject.functor_map, CategoryTheory.StructuredArrow.ofDiagEquivalence.functor_map_right_right, CategoryTheory.ChosenPullbacksAlong.Over.leftUnitor_inv_left_snd, CategoryTheory.CostructuredArrow.toStructuredArrow'_obj, CategoryTheory.Arrow.leftToRight_app, CategoryTheory.Abelian.Pseudoelement.pseudoApply_mk', CategoryTheory.WithInitial.commaFromUnder_map_left, CategoryTheory.StructuredArrow.homMk'_mk_comp, CategoryTheory.NatTrans.instIsClosedUnderColimitsOfShapeUnderFunctorCoequifiberedHomDiscretePUnitOfHasProductsOfShapeHom, CategoryTheory.CostructuredArrow.prodInverse_obj, CategoryTheory.ChosenPullbacksAlong.Over.tensorUnit_hom, CategoryTheory.Over.prodLeftIsoPullback_hom_fst_assoc, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left_snd_assoc, CategoryTheory.SmallObject.objMap_comp_assoc, CategoryTheory.Limits.ker_obj, CategoryTheory.SmallObject.functorialFactorizationData_Z_obj, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_snd_fst, CategoryTheory.MonoOver.image_map, CategoryTheory.Under.mapPushoutAdj_unit_app, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceFunctor_map_left, CategoryTheory.OverPresheafAux.counitForward_val_snd, CategoryTheory.Limits.instHasImageHomMk, CategoryTheory.WithInitial.coconeEquiv_functor_obj_ι_app_star, CategoryTheory.Limits.ImageMap.factor_map_assoc, CategoryTheory.Over.tensorUnit_hom, CategoryTheory.Over.opEquivOpUnder_inverse_map, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.inverse_map_left_left, CategoryTheory.Over.leftUnitor_inv_left_fst, CategoryTheory.Under.post_map, CategoryTheory.ChosenPullbacksAlong.isoInv_mapPullbackAdj_unit_app_left, CategoryTheory.Over.starPullbackIsoStar_hom_app_left, CommRingCat.mkUnder_hom, AlgebraicGeometry.opensDiagram_map, natTrans_app, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left, CategoryTheory.CostructuredArrow.ofDiagEquivalence.inverse_obj_hom, CategoryTheory.Presheaf.isSeparated_iff_subsingleton, CategoryTheory.Functor.leibnizPushout_obj_map, CategoryTheory.Functor.PushoutObjObj.mapArrowLeft_id, CategoryTheory.Over.tensorHom_left_snd_assoc, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.ι_isoColimit_hom, CategoryTheory.SmallObject.ε_app, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_inv_left_snd_assoc, CategoryTheory.Functor.LeftExtension.postcompose₂_map_right_app, CategoryTheory.Limits.kernelSubobjectIso_comp_kernel_map, CategoryTheory.Limits.image.map_homMk'_ι, CategoryTheory.Under.map_obj_hom, CategoryTheory.CommaMorphism.w_assoc, CategoryTheory.WithInitial.mkCommaObject_hom_app, CategoryTheory.CostructuredArrow.map_map_right, CategoryTheory.Over.leftUnitor_inv_left_snd, CategoryTheory.ChosenPullbacksAlong.Over.leftUnitor_inv_left_fst_assoc, AlgebraicGeometry.Scheme.kerAdjunction_counit_app, AlgebraicGeometry.opensDiagramι_app, CategoryTheory.Arrow.w, CategoryTheory.StructuredArrow.homMk'_left, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_snd', CategoryTheory.OverClass.fromOver_over, AlgebraicTopology.AlternatingFaceMapComplex.ε_app_f_zero, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.fst_gluedCocone_ι, CategoryTheory.SmallObject.objMap_id, CategoryTheory.MonoOver.image_obj, preRight_map_right, CategoryTheory.Limits.coker_obj, CategoryTheory.Over.μ_pullback_left_fst_snd', CategoryTheory.Over.mapPullbackAdj_unit_app, CategoryTheory.CostructuredArrow.mapNatIso_functor_obj_hom, map_map_left, CategoryTheory.CostructuredArrow.w_prod_snd, CategoryTheory.MorphismProperty.Over.pullbackComp_inv_app_left, mapRightIso_functor_obj_hom, CategoryTheory.Limits.imageSubobjectIso_comp_image_map, CategoryTheory.SmallObject.SuccStruct.toSuccArrow_hom, post_map_left, CategoryTheory.CommaMorphism.w, CategoryTheory.ChosenPullbacksAlong.Over.leftUnitor_inv_left_fst, CategoryTheory.CostructuredArrow.CreatesConnected.natTransInCostructuredArrow_app, CategoryTheory.Limits.multispanIndexCoend_snd, CategoryTheory.Over.leftUnitor_inv_left_snd_assoc, CategoryTheory.Functor.LeftExtension.postcompose₂_obj_hom_app, CategoryTheory.SimplicialObject.Augmented.ExtraDegeneracy.s₀_comp_δ₁_assoc, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.functor_map_right_right, TopCat.Presheaf.whiskerIsoMapGenerateCocone_inv_hom, CategoryTheory.MorphismProperty.instHasPullbackHomDiscretePUnitOfHasPullbacksAlong, CategoryTheory.ChosenPullbacksAlong.iso_pullback_obj, CategoryTheory.SimplicialObject.augment_hom_zero, CategoryTheory.SmallObject.ιObj_naturality, CategoryTheory.Functor.LeibnizAdjunction.adj_counit_app_right, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_left_app, CategoryTheory.Presieve.ofArrows_category, CategoryTheory.WithInitial.coconeEquiv_functor_map_hom, CategoryTheory.OverPresheafAux.counitAuxAux_inv, CategoryTheory.Functor.LeftExtension.postcomp₁_obj_hom_app, CategoryTheory.CategoryOfElements.fromStructuredArrow_obj, CategoryTheory.Arrow.w_mk_right_assoc, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_mapPullbackAdj_unit_app, CategoryTheory.ComposableArrows.arrowEquiv_symm_apply, CategoryTheory.OverPresheafAux.restrictedYonedaObj_map, CategoryTheory.Over.map_obj_hom, CategoryTheory.Square.fromArrowArrowFunctor_obj_f₁₃, CategoryTheory.CosimplicialObject.Augmented.toArrow_map_right, CategoryTheory.Over.associator_hom_left_snd_fst, CategoryTheory.CostructuredArrow.toOver_map_left, CategoryTheory.RanIsSheafOfIsCocontinuous.fac', CategoryTheory.Functor.mapArrow_map_left, CategoryTheory.CostructuredArrow.eta_inv_left, CategoryTheory.MorphismProperty.over_iso_iff, CategoryTheory.SmallObject.ιFunctorObj_eq, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_inverse_map_right, CategoryTheory.TwoSquare.costructuredArrowDownwardsPrecomp_obj, CategoryTheory.CategoryOfElements.fromCostructuredArrow_obj_snd, CategoryTheory.CostructuredArrow.mapIso_functor_map_right, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.functor_obj_right_hom, CategoryTheory.Over.rightUnitor_inv_left_snd_assoc, CategoryTheory.WithTerminal.equivComma_functor_obj_hom_app, CategoryTheory.Over.toOverSectionsAdj_counit_app, CategoryTheory.StructuredArrow.toCostructuredArrow_map, CategoryTheory.Limits.ImageMap.factor_map, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left_snd, left_hom_inv_right, CategoryTheory.forgetAdjToOver_unit_app, CategoryTheory.OverPresheafAux.counitBackward_counitForward, CategoryTheory.Arrow.isIso_hom_iff_isIso_of_isIso, unopFunctor_obj, CategoryTheory.CostructuredArrow.mapNatIso_inverse_map_left, CategoryTheory.CostructuredArrow.costructuredArrowToOverEquivalence.functor_obj, CategoryTheory.CostructuredArrow.map₂_map_right, CategoryTheory.StructuredArrow.toUnder_map_right, CategoryTheory.regularTopology.parallelPair_pullback_initial, CategoryTheory.overToCoalgebra_map_f, CategoryTheory.CosimplicialObject.Augmented.toArrow_map_left, CategoryTheory.Pseudofunctor.isStackFor_iff, CategoryTheory.SimplicialObject.augment_hom_app, CategoryTheory.StructuredArrow.IsUniversal.hom_desc, CommRingCat.pushout_inl_tensorProdObjIsoPushoutObj_inv_right_assoc, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left_snd_assoc, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left_fst_assoc, coconeOfPreserves_pt_hom, CategoryTheory.TwoSquare.isIso_lanBaseChange_app_iff, CategoryTheory.Over.pullback_map_left, CategoryTheory.CostructuredArrow.CreatesConnected.raiseCone_pt, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_fst_fst, mapRightIso_functor_map_right, limitAuxiliaryCone_π_app, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.fst_gluedCocone_ι_assoc, CategoryTheory.Pseudofunctor.presheafHom_map, CategoryTheory.MorphismProperty.costructuredArrow_iso_iff, CategoryTheory.WithTerminal.coneEquiv_inverse_obj_pt_hom, CategoryTheory.Functor.ranObjObjIsoLimit_inv_π_assoc, CategoryTheory.Over.sections_obj, CategoryTheory.MorphismProperty.Comma.ext_iff, AlgebraicGeometry.opensDiagram_obj, CategoryTheory.Functor.PushoutObjObj.ι_iso_of_iso_right_hom, CategoryTheory.CostructuredArrow.toStructuredArrow'_map, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.ι_isoColimit_hom_assoc, CategoryTheory.Abelian.coim_obj, CategoryTheory.Functor.mapArrow_map_right, CategoryTheory.MorphismProperty.overObj_iff, AlgebraicGeometry.opensCone_π_app, CategoryTheory.Over.tensorHom_left, CategoryTheory.CostructuredArrow.w, CategoryTheory.StructuredArrow.commaMapEquivalenceInverse_obj, CategoryTheory.toOverIteratedSliceForwardIsoPullback_hom_app_left, CategoryTheory.StructuredArrow.homMk'_id, CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtension.isIso_hom, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.ι_isoColimit_inv_assoc, CategoryTheory.StructuredArrow.w_prod_snd, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.inverse_obj_hom, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.functor_obj_left_hom, CategoryTheory.Presheaf.isSheaf_iff_isLimit, CategoryTheory.Under.opEquivOpOver_functor_obj, CategoryTheory.WithInitial.equivComma_functor_obj_hom_app, CategoryTheory.StructuredArrow.mapNatIso_inverse_obj_hom, CategoryTheory.Over.associator_inv_left_fst_snd, CategoryTheory.Square.toArrowArrowFunctor_obj_hom_left, CategoryTheory.WithInitial.commaFromUnder_obj_hom_app, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_obj_left, CategoryTheory.Limits.kernelSubobjectIso_comp_kernel_map_assoc, CategoryTheory.CostructuredArrow.mapNatIso_inverse_obj_hom, CategoryTheory.WithInitial.equivComma_inverse_obj_map, CategoryTheory.MorphismProperty.Over.w_assoc, CategoryTheory.toOverPullbackIsoToOver_hom_app_left, CategoryTheory.Over.star_obj_hom, CategoryTheory.Functor.RightExtension.postcomp₁_map_left_app, CategoryTheory.Arrow.mk_hom, CategoryTheory.SmallObject.πObj_ιIteration_app_right_assoc, CategoryTheory.WithTerminal.ofCommaObject_map, CategoryTheory.Over.associator_hom_left_snd_snd_assoc, CategoryTheory.StructuredArrow.post_map, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_map_left, CategoryTheory.Functor.PullbackObjObj.mapArrowRight_comp, CategoryTheory.Functor.ranObjObjIsoLimit_hom_π_assoc, CategoryTheory.Limits.im_obj, CategoryTheory.SmallObject.πObj_naturality_assoc, CategoryTheory.Functor.PullbackObjObj.π_iso_of_iso_right_inv, CategoryTheory.MorphismProperty.FunctorialFactorizationData.functorCategory.Z_obj_obj, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_inv_app_comp_fst, TopCat.Presheaf.generateEquivalenceOpensLe_functor, CategoryTheory.Bicategory.LeftExtension.ofCompId_hom, CategoryTheory.Over.μ_pullback_left_fst_fst', CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceFunctor_map_right, Types.monoOverEquivalenceSet_functor_map, CategoryTheory.Over.μ_pullback_left_fst_snd, CategoryTheory.Over.whiskerRight_left, CategoryTheory.CostructuredArrow.homMk'_left, CategoryTheory.StructuredArrow.homMk'_right, CategoryTheory.Abelian.coimageImageComparisonFunctor_obj, CategoryTheory.Square.fromArrowArrowFunctor'_obj_f₁₃, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_counitIso, CategoryTheory.Limits.IndObjectPresentation.toCostructuredArrow_obj_hom, CategoryTheory.StructuredArrow.pre_map_left, inv_left_hom_right, CommRingCat.pushout_inl_tensorProdObjIsoPushoutObj_inv_right, CategoryTheory.Over.opEquivOpUnder_counitIso, CategoryTheory.CostructuredArrow.prodFunctor_obj, CategoryTheory.OverPresheafAux.counitAux_hom, CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtensionAt.isIso_hom_app, CategoryTheory.OrthogonalReflection.D₂.multispanIndex_left, CategoryTheory.Limits.ImageFactorisation.ofArrowIso_F, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_left_app, CategoryTheory.Arrow.equivSigma_symm_apply_hom, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_inverse_obj_hom_app, CategoryTheory.CategoryOfElements.fromCostructuredArrow_map_coe, CategoryTheory.StructuredArrow.map_map_left, CategoryTheory.Functor.PullbackObjObj.mapArrowLeft_left, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_inv_app_comp_snd, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_map_left_right, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_hom_app, CategoryTheory.Over.w, CategoryTheory.MorphismProperty.CostructuredArrow.toOver_map, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_pullback_map, CategoryTheory.Functor.PullbackObjObj.mapArrowLeft_comp_assoc, TopCat.Presheaf.generateEquivalenceOpensLe_counitIso, CategoryTheory.Limits.MonoFactorisation.ofArrowIso_m, CategoryTheory.StructuredArrow.prodFunctor_obj, CategoryTheory.Functor.PushoutObjObj.ι_iso_of_iso_left_inv, CategoryTheory.Sieve.yonedaFamily_fromCocone_compatible, CategoryTheory.CosimplicialObject.augment_hom_zero, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left_fst_assoc, CategoryTheory.SimplicialObject.Augmented.ExtraDegeneracy.s₀_comp_δ₁, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtension.isIso_hom, CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtensionAt.isoLimit_inv_π, CategoryTheory.OverPresheafAux.unitAuxAux_inv_app_snd_coe, CategoryTheory.Arrow.mk_eq, CategoryTheory.MorphismProperty.CostructuredArrow.toOver_obj, Types.monoOverEquivalenceSet_functor_obj, CategoryTheory.MorphismProperty.Under.w, CategoryTheory.CosimplicialObject.Augmented.toArrow_obj_hom, CategoryTheory.StructuredArrow.mapIso_functor_map_left, AlgebraicGeometry.Scheme.kerFunctor_map, CategoryTheory.MorphismProperty.Comma.prop, CategoryTheory.Pseudofunctor.IsStack.essSurj_of_sieve, CategoryTheory.CostructuredArrow.homMk'_mk_comp, CategoryTheory.Over.associator_inv_left_fst_fst, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_functor_obj_hom_app, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.inverse_map_right_right, mapLeftIso_inverse_obj_hom, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_map_right, CategoryTheory.Over.snd_left, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.functor_map_left_left, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_hom_app_comp_snd, CategoryTheory.Limits.ImageMap.map_ι, CategoryTheory.CostructuredArrow.prodInverse_map, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left_fst_assoc, CategoryTheory.Functor.leibnizPushout_obj_obj, CategoryTheory.Arrow.isIso_hom_iff_isIso_hom_of_isIso, CategoryTheory.Over.tensorHom_left_fst, CategoryTheory.Over.whiskerRight_left_snd, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryToUnit_mapPullbackAdj_unit_app, CategoryTheory.MorphismProperty.structuredArrowObj_iff, CategoryTheory.SimplicialObject.Augmented.w₀_assoc, TopCat.Presheaf.whiskerIsoMapGenerateCocone_hom_hom, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_fst_snd_assoc, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_fst_snd, CategoryTheory.WithTerminal.commaFromOver_obj_hom_app, CategoryTheory.MorphismProperty.mem_toSet_iff, CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtension.isRightKanExtension, CategoryTheory.underToAlgebra_obj_a, CategoryTheory.CommSq.of_arrow, CategoryTheory.WithInitial.commaFromUnder_map_right, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left_fst, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceInverse_obj_hom, CategoryTheory.CostructuredArrow.toStructuredArrow_obj, preRight_obj_hom, unopFunctor_map, CategoryTheory.Arrow.isIso_of_isIso, CategoryTheory.Over.tensorHom_left_fst_assoc, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_snd_assoc, CategoryTheory.OverPresheafAux.restrictedYonedaObj_obj, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.functor_obj_hom, CategoryTheory.CostructuredArrow.CreatesConnected.raiseCone_π_app, CategoryTheory.Over.prodLeftIsoPullback_inv_fst_assoc, CategoryTheory.Abelian.im_obj, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_hom_left, CategoryTheory.OverClass.asOver_hom, SSet.Augmented.stdSimplex_obj_hom_app, CategoryTheory.ChosenPullbacksAlong.Over.leftUnitor_hom_left, CategoryTheory.OverPresheafAux.restrictedYonedaObjMap₁_app, CategoryTheory.Arrow.iso_w, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_pullback_obj, CategoryTheory.Limits.Cocone.fromStructuredArrow_map_hom, CategoryTheory.Over.whiskerLeft_left_fst, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_mapPullbackAdj_counit_app, CategoryTheory.SmallObject.πFunctorObj_eq, CategoryTheory.MonoOver.inf_map_app, CategoryTheory.TwoSquare.costructuredArrowDownwardsPrecomp_map, CategoryTheory.SmallObject.objMap_comp, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceFunctor_obj_left, CategoryTheory.Functor.LeftExtension.postcompose₂_map_left, CategoryTheory.CosimplicialObject.Augmented.const_obj_hom, CategoryTheory.ChosenPullbacksAlong.isoInv_mapPullbackAdj_counit_app_left, CategoryTheory.Over.post_obj, CategoryTheory.Arrow.inv_left_hom_right, CategoryTheory.Limits.Cone.equivCostructuredArrow_counitIso, CategoryTheory.WithTerminal.mkCommaObject_hom_app, CategoryTheory.StructuredArrow.toUnder_obj_hom, CategoryTheory.Functor.RightExtension.postcompose₂_obj_hom_app, CategoryTheory.Functor.RightExtension.precomp_obj_hom_app, CategoryTheory.StructuredArrow.commaMapEquivalenceCounitIso_hom_app_right_right, CategoryTheory.Pseudofunctor.isPrestackFor_iff, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceFunctor_map_left, CategoryTheory.Functor.RightExtension.precomp_map_right, CategoryTheory.ChosenPullbacksAlong.Over.lift_left, CategoryTheory.Square.fromArrowArrowFunctor_obj_f₁₂, CategoryTheory.Limits.kernel_map_comp_kernelSubobjectIso_inv, CategoryTheory.Abelian.coimageImageComparisonFunctor_map, CategoryTheory.Bicategory.LeftLift.ofIdComp_hom, CategoryTheory.WithTerminal.commaFromOver_map_right, CategoryTheory.CostructuredArrow.map_map_left, CategoryTheory.CostructuredArrow.map₂_map_left, CategoryTheory.SimplicialObject.Augmented.ExtraDegeneracy.s'_comp_ε_assoc, CategoryTheory.Over.isPullback_of_binaryFan_isLimit, CategoryTheory.MorphismProperty.commaObj_iff, CategoryTheory.Pseudofunctor.IsStackFor.isEquivalence, CategoryTheory.Over.whiskerLeft_left_fst_assoc, CategoryTheory.Under.pushout_obj, CategoryTheory.MorphismProperty.Over.w, CategoryTheory.Square.toArrowArrowFunctor_obj_right_hom, CategoryTheory.Functor.RightExtension.postcompose₂_map_left_app, CategoryTheory.Over.coprodObj_obj, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.trans_app_left, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_fst_fst, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_pullback_obj, CategoryTheory.StructuredArrow.preEquivalenceInverse_map_right_right, mapLeft_map_right, coneOfPreserves_pt_hom, CategoryTheory.CostructuredArrow.IsUniversal.fac, CategoryTheory.Square.fromArrowArrowFunctor'_map_τ₄, CategoryTheory.MorphismProperty.FunctorialFactorizationData.fac_app, CategoryTheory.Functor.PushoutObjObj.ι_iso_of_iso_right_inv, CategoryTheory.MonoOver.subobjectMk_le_mk_of_hom, CategoryTheory.Over.whiskerLeft_left_snd_assoc, CategoryTheory.TwoSquare.EquivalenceJ.functor_obj, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_inverse_obj, CategoryTheory.StructuredArrow.w, CategoryTheory.Functor.RightExtension.postcompose₂_map_right, CategoryTheory.Over.leftUnitor_inv_left_fst_assoc, CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtensionAt.isoLimit_inv_π_assoc, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left, CategoryTheory.Sieve.forallYonedaIsSheaf_iff_colimit, CategoryTheory.Functor.PullbackObjObj.mapArrowRight_id, CategoryTheory.WithTerminal.liftFromOver_obj_map, CategoryTheory.Functor.LeftExtension.precomp_map_left, mapLeftIso_functor_obj_hom, CategoryTheory.Abelian.Pseudoelement.pseudoZero_aux, CategoryTheory.StructuredArrow.commaMapEquivalenceUnitIso_hom_app_right_right, CategoryTheory.Limits.MonoFactorisation.ofArrowIso_I, CategoryTheory.MorphismProperty.comma_iso_iff, CategoryTheory.StructuredArrow.pre_map_right, CategoryTheory.StructuredArrow.w_prod_fst_assoc, CategoryTheory.Square.fromArrowArrowFunctor_obj_f₂₄, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.comp_homEquiv_symm, CategoryTheory.StructuredArrow.mapIso_functor_obj_hom, CategoryTheory.Functor.PushoutObjObj.mapArrowLeft_left, CategoryTheory.Functor.ranObjObjIsoLimit_hom_π, CategoryTheory.underToAlgebra_map_f, CategoryTheory.SimplicialObject.Augmented.rightOp_hom_app, Profinite.Extend.cocone_ι_app, CategoryTheory.Limits.ImageFactorisation.ofArrowIso_isImage, CategoryTheory.Pseudofunctor.IsStackFor.essSurj, CategoryTheory.Over.associator_inv_left_fst_snd_assoc, mapRight_map_left, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_mapPullbackAdj_counit_app, CategoryTheory.Functor.LeftExtension.postcomp₁_map_left, CategoryTheory.Square.fromArrowArrowFunctor'_map_τ₂, CategoryTheory.CechNerveTerminalFrom.hasWidePullback, CategoryTheory.MonoOver.forget_obj_hom, CategoryTheory.Over.rightUnitor_hom_left, CategoryTheory.MorphismProperty.Over.pullback_map_left, CategoryTheory.Square.fromArrowArrowFunctor_map_τ₁, CategoryTheory.OrthogonalReflection.D₁.ι_comp_t, CategoryTheory.Limits.HasImageMaps.has_image_map, CategoryTheory.Over.sections_map, mapRightIso_inverse_obj_hom, CategoryTheory.rightAdjointOfCostructuredArrowTerminalsAux_symm_apply, CategoryTheory.StructuredArrow.mapIso_inverse_map_right, CategoryTheory.Over.μ_pullback_left_snd, CategoryTheory.Functor.PushoutObjObj.mapArrowLeft_right, CategoryTheory.Under.mapPushoutAdj_counit_app, CategoryTheory.Over.iteratedSliceBackward_obj, CategoryTheory.PreGaloisCategory.autEmbedding_range, CategoryTheory.CostructuredArrow.homMk'_comp, CategoryTheory.TwoSquare.structuredArrowDownwards_map, CategoryTheory.ChosenPullbacksAlong.Over.toUnit_left, CategoryTheory.Localization.structuredArrowEquiv_symm_apply, CategoryTheory.SimplicialObject.Augmented.toArrow_obj_hom, preLeft_map_left, CategoryTheory.OrthogonalReflection.D₂.multispanIndex_fst, CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtensionAt.isoLimit_hom_π, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceFunctor_obj_left, CategoryTheory.StructuredArrow.ofDiagEquivalence.functor_obj_hom, CategoryTheory.Functor.PushoutObjObj.mapArrowLeft_comp_assoc, CategoryTheory.TwoSquare.structuredArrowDownwards_obj, CategoryTheory.CostructuredArrow.mapNatIso_functor_map_left, CategoryTheory.Over.braiding_hom_left, CategoryTheory.MonoOver.instMonoHomDiscretePUnitObjOverForget, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_snd, CategoryTheory.ChosenPullbacksAlong.isoInv_pullback_obj_hom, CategoryTheory.ChosenPullbacksAlong.iso_mapPullbackAdj_counit_app, CategoryTheory.MorphismProperty.Over.pullback_obj_hom, CategoryTheory.Functor.LeibnizAdjunction.adj_unit_app_right, CategoryTheory.StructuredArrow.projectSubobject_factors, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left_snd, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_snd_snd, CategoryTheory.overToCoalgebra_obj_a, CategoryTheory.FunctorToTypes.mem_fromOverSubfunctor_iff, CategoryTheory.Over.μ_pullback_left_fst_fst, CategoryTheory.Over.starPullbackIsoStar_inv_app_left, CategoryTheory.Over.iteratedSliceForward_map, CategoryTheory.MorphismProperty.underObj_iff, CategoryTheory.Presheaf.tautologicalCocone_ι_app, CategoryTheory.CostructuredArrow.pre_map_right, CategoryTheory.CosimplicialObject.Augmented.leftOp_hom_app, CategoryTheory.StructuredArrow.mk_hom_eq_self, CategoryTheory.Square.fromArrowArrowFunctor'_map_τ₁, CategoryTheory.StructuredArrow.commaMapEquivalenceUnitIso_hom_app_right_left, CategoryTheory.MorphismProperty.Under.w_assoc, CategoryTheory.Arrow.square_to_iso_invert, CategoryTheory.Presheaf.tautologicalCocone'_ι_app, CategoryTheory.StructuredArrow.preEquivalenceFunctor_map_right, CategoryTheory.toOverIteratedSliceForwardIsoPullback_inv_app_left, CategoryTheory.StructuredArrow.preEquivalenceInverse_obj_hom_right, CategoryTheory.Functor.PullbackObjObj.mapArrowRight_left, CategoryTheory.ChosenPullbacksAlong.iso_pullback_map, CategoryTheory.Limits.image_map_comp_imageSubobjectIso_inv, CategoryTheory.Under.opEquivOpOver_inverse_obj, Types.monoOverEquivalenceSet_unitIso, CategoryTheory.Functor.ranObjObjIsoLimit_inv_π, CategoryTheory.TwoSquare.EquivalenceJ.functor_map, CategoryTheory.CostructuredArrow.costructuredArrowToOverEquivalence.inverse_obj, CategoryTheory.Over.coe_hom, TopCat.Presheaf.generateEquivalenceOpensLe_inverse'_obj_obj_left, CategoryTheory.MorphismProperty.instHasPullbackSndHomDiscretePUnitOfHasPullbacksAlongOfIsStableUnderBaseChangeAlong, AlgebraicGeometry.Scheme.kerFunctor_obj, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_hom_app_comp_fst_assoc, CategoryTheory.Over.forgetCocone_ι_app, CategoryTheory.SmallObject.functor_obj, CategoryTheory.StructuredArrow.commaMapEquivalenceUnitIso_inv_app_right_left, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.ι_isoColimit_inv, CategoryTheory.StructuredArrow.mapIso_functor_map_right, CategoryTheory.Over.whiskerRight_left_fst_assoc, post_map_right, CategoryTheory.StructuredArrow.pre_obj_hom, CategoryTheory.Functor.PullbackObjObj.mapArrowLeft_right, CategoryTheory.Over.tensorHom_left_snd, CategoryTheory.WithInitial.ofCommaObject_map, CategoryTheory.Under.opEquivOpOver_counitIso, CategoryTheory.StructuredArrow.toUnder_map_left, CategoryTheory.StructuredArrow.w_prod_snd_assoc, CategoryTheory.WithTerminal.equivComma_inverse_obj_map, CategoryTheory.CostructuredArrow.preEquivalence.inverse_obj_hom_left, CategoryTheory.StructuredArrow.prodInverse_obj, CategoryTheory.CostructuredArrow.preEquivalence.functor_map_left, CategoryTheory.Functor.RightExtension.postcomp₁_obj_hom_app, CategoryTheory.SmallObject.ιObj_naturality_assoc, CategoryTheory.Square.fromArrowArrowFunctor_map_τ₂, CategoryTheory.Functor.ι_leftKanExtensionObjIsoColimit_hom, CategoryTheory.WithInitial.liftFromUnder_obj_map, CategoryTheory.Limits.ImageMap.map_ι_assoc, CategoryTheory.Square.toArrowArrowFunctor'_obj_hom_right, CategoryTheory.Limits.kernel_map_comp_kernelSubobjectIso_inv_assoc, CategoryTheory.Arrow.left_hom_inv_right, CategoryTheory.Functor.PushoutObjObj.mapArrowRight_comp, CategoryTheory.Under.mkIdInitial_to_right, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorToComma_map_right, CategoryTheory.Over.ConstructProducts.conesEquivInverseObj_π_app, CategoryTheory.Under.costar_obj_hom, CategoryTheory.Functor.LeftExtension.coconeAt_ι_app, CategoryTheory.Presheaf.isLimit_iff_isSheafFor, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_inv_app_comp_fst_assoc, CategoryTheory.Over.lift_left, CategoryTheory.Under.postAdjunctionRight_counit_app_right, CategoryTheory.TwoSquare.EquivalenceJ.inverse_obj, mapLeftIso_inverse_map_left, CategoryTheory.Arrow.w_assoc, CategoryTheory.StructuredArrow.map_obj_hom, CategoryTheory.CostructuredArrow.preEquivalence.inverse_map_left_left, CategoryTheory.SmallObject.functorialFactorizationData_p_app, CategoryTheory.Over.opEquivOpUnder_functor_map, CategoryTheory.Functor.PushoutObjObj.mapArrowRight_right, CategoryTheory.OverPresheafAux.counitForward_counitBackward, SSet.Truncated.rightExtensionInclusion_hom_app, CategoryTheory.Limits.multispanIndexCoend_fst, CategoryTheory.StructuredArrow.mapIso_inverse_map_left, mapLeft_obj_hom, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_hom_app_comp_fst, TopCat.Presheaf.generateEquivalenceOpensLe_functor'_map, CategoryTheory.CostructuredArrow.pre_map_left, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceInverse_obj_right_hom, CategoryTheory.Over.mkIdTerminal_from_left, CategoryTheory.ChosenPullbacksAlong.Over.fst_eq_fst', CategoryTheory.CostructuredArrow.mapNatIso_functor_map_right, CategoryTheory.Under.opEquivOpOver_functor_map, CategoryTheory.Square.toArrowArrowFunctor'_obj_hom_left, CategoryTheory.CostructuredArrow.mapIso_inverse_obj_hom, CategoryTheory.CostructuredArrow.projectQuotient_factors, CategoryTheory.Over.fst_left, CategoryTheory.Over.prodLeftIsoPullback_hom_fst, CategoryTheory.Over.associator_hom_left_fst_assoc, CategoryTheory.TwoSquare.lanBaseChange_app, CategoryTheory.Over.isMonHom_pullbackFst_id_right, CategoryTheory.Over.pullback_obj_hom, CategoryTheory.Over.forgetAdjStar_unit_app_left, preLeft_map_right, CategoryTheory.Functor.leibnizPullback_map_app, CategoryTheory.StructuredArrow.toCostructuredArrow'_map, CategoryTheory.Over.tensorObj_left, Types.monoOverEquivalenceSet_counitIso, CategoryTheory.StructuredArrow.post_obj, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.pullbackGluedIso_inv_snd, CategoryTheory.CostructuredArrow.mapIso_inverse_map_right, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.pullbackGluedIso_inv_fst, CategoryTheory.StructuredArrow.toCostructuredArrow'_obj, CategoryTheory.Functor.PushoutObjObj.mapArrowLeft_comp, CategoryTheory.Abelian.app_hom, post_obj_hom, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_fst_snd', CategoryTheory.SmallObject.πObj_naturality, CategoryTheory.Functor.PullbackObjObj.π_iso_of_iso_left_hom, CategoryTheory.Functor.ι_leftKanExtensionObjIsoColimit_hom_assoc, CategoryTheory.CostructuredArrow.mapIso_inverse_map_left, CategoryTheory.StructuredArrow.IsUniversal.fac_assoc, CategoryTheory.StructuredArrow.mapNatIso_inverse_map_left, CategoryTheory.Presheaf.subsingleton_iff_isSeparatedFor, CategoryTheory.Limits.Cocone.fromStructuredArrow_obj_ι, CategoryTheory.CostructuredArrow.map₂_obj_hom, CategoryTheory.Limits.Cocone.equivStructuredArrow_counitIso, CategoryTheory.ChosenPullbacksAlong.Over.leftUnitor_inv_left_snd_assoc, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_inv_left_fst_assoc, TopCat.Presheaf.generateEquivalenceOpensLe_inverse'_map, CategoryTheory.Functor.PushoutObjObj.ι_iso_of_iso_left_hom, CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtensionAt.isoLimit_hom_π_assoc, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_inverse_map, CategoryTheory.TwoSquare.costructuredArrowRightwards_obj, colimitAuxiliaryCocone_ι_app, CategoryTheory.StructuredArrow.IsUniversal.fac, CategoryTheory.Square.fromArrowArrowFunctor'_obj_f₂₄, AlgebraicGeometry.Scheme.restrictFunctor_obj_hom, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.relativeGluingData_natTrans_app, CategoryTheory.MorphismProperty.Over.pullbackComp_left_fst_fst, CategoryTheory.OverPresheafAux.counitAuxAux_hom, ext_iff, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceInverse_obj_hom, CategoryTheory.Over.associator_hom_left_snd_snd, CategoryTheory.Over.associator_inv_left_snd_assoc, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_obj_map, CategoryTheory.Over.coprodObj_map, CategoryTheory.MorphismProperty.arrow_iso_iff, CategoryTheory.Functor.leibnizPullback_obj_obj, CategoryTheory.StructuredArrow.commaMapEquivalenceCounitIso_inv_app_left_right, mapRightIso_inverse_map_left, CategoryTheory.MorphismProperty.FunctorialFactorizationData.fac_app_assoc, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_inv_left_fst, CategoryTheory.Under.w_assoc, CategoryTheory.Limits.image.factor_map, CategoryTheory.StructuredArrow.w_assoc, CategoryTheory.StructuredArrow.mapNatIso_functor_map_left, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_inv_app_comp_snd_assoc, CategoryTheory.Square.toArrowArrowFunctor'_obj_right_hom, CategoryTheory.StructuredArrow.map₂_obj_hom, CategoryTheory.MorphismProperty.homFamily_apply, CategoryTheory.Under.opEquivOpOver_inverse_map, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_obj_right, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_functor_map_right, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_obj_hom_app, CategoryTheory.Under.forgetCone_π_app, CategoryTheory.Over.iteratedSliceForward_obj, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.inverse_obj_right_hom, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorToComma_obj_hom, CategoryTheory.CostructuredArrow.toStructuredArrow_map, CategoryTheory.Over.whiskerLeft_left_snd, CategoryTheory.Functor.leibnizPushout_map_app, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceFunctor_obj_hom, CategoryTheory.Over.w_assoc, CategoryTheory.OverPresheafAux.counitForward_val_fst, mapRight_map_right, CategoryTheory.StructuredArrow.homMk'_mk_id, CategoryTheory.CostructuredArrow.IsUniversal.fac_assoc, CategoryTheory.Pseudofunctor.IsPrestackFor.nonempty_fullyFaithful, CategoryTheory.Square.toArrowArrowFunctor_obj_left_hom, CategoryTheory.Abelian.coimIsoIm_hom_app, CategoryTheory.Limits.diagonal_pullback_fst, CategoryTheory.Over.iteratedSliceForwardNaturalityIso_inv_app, CategoryTheory.Under.w, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_fst_assoc, CategoryTheory.CostructuredArrow.costructuredArrowToOverEquivalence.inverse_map, CategoryTheory.MorphismProperty.Over.pullbackCongr_hom_app_left_fst_assoc, CategoryTheory.Square.fromArrowArrowFunctor'_obj_f₁₂, CategoryTheory.MonoOver.mono_obj_hom, CategoryTheory.Sieve.overEquiv_iff, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left_snd, mapLeftIso_functor_map_right, CategoryTheory.Over.opEquivOpUnder_functor_obj, CategoryTheory.OrthogonalReflection.D₂.multispanIndex_snd, CategoryTheory.StructuredArrow.commaMapEquivalenceCounitIso_inv_app_right_right, CategoryTheory.Functor.costructuredArrowMapCocone_ι_app, CategoryTheory.Over.iteratedSliceForwardIsoPost_hom_app, CategoryTheory.MorphismProperty.CostructuredArrow.mk_hom, CategoryTheory.Over.tensorObj_hom, CategoryTheory.StructuredArrow.toCostructuredArrow_obj, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.comp_homEquiv_symm_assoc, CategoryTheory.toOverUnit_obj_hom, CategoryTheory.Over.postAdjunctionLeft_counit_app_left, CategoryTheory.CostructuredArrow.preEquivalence.inverse_obj_left_hom, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.functor_obj_hom, CategoryTheory.StructuredArrow.preEquivalenceFunctor_obj_hom, TopCat.Presheaf.generateEquivalenceOpensLe_inverse, CategoryTheory.Limits.ker_map, CategoryTheory.Functor.LeftExtension.mk_hom, CategoryTheory.Square.fromArrowArrowFunctor'_obj_f₃₄, CategoryTheory.MorphismProperty.costructuredArrowObj_iff, CategoryTheory.MorphismProperty.Over.map_obj_hom, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_obj_hom, CategoryTheory.CostructuredArrow.IsUniversal.hom_desc, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_fst_fst_assoc, CategoryTheory.Abelian.coimIsoIm_inv_app, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_snd_snd_assoc, preLeft_obj_hom, CategoryTheory.WithTerminal.coneEquiv_functor_map_hom, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left, CategoryTheory.Square.fromArrowArrowFunctor_map_τ₄, CategoryTheory.Presheaf.isSheaf_iff_isLimit_pretopology, CategoryTheory.Functor.structuredArrowMapCone_π_app, CategoryTheory.OverPresheafAux.counitForward_naturality₂, CommRingCat.pushout_inr_tensorProdObjIsoPushoutObj_inv_right, CategoryTheory.Localization.structuredArrowEquiv_apply
|
inhabited 📖 | CompOp | — |
isoMk 📖 | CompOp | 4 mathmath: isoMk_inv_left, isoMk_hom_right, isoMk_inv_right, isoMk_hom_left
|
left 📖 | CompOp | 1218 mathmath: TopCat.Presheaf.generateEquivalenceOpensLe_functor'_obj_obj, CategoryTheory.IsGrothendieckAbelian.subobjectMk_of_isColimit_eq_iSup, CategoryTheory.Over.associator_hom_left_snd_fst_assoc, CategoryTheory.Limits.coker.π_app, CategoryTheory.CostructuredArrow.homMk'_id, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left_fst, CategoryTheory.SimplicialObject.id_left_app, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_hom_right, CategoryTheory.Over.prodLeftIsoPullback_hom_snd_assoc, CategoryTheory.LocalizerMorphism.IsRightDerivabilityStructure.Constructor.fromRightResolution_map, CategoryTheory.CosimplicialObject.Augmented.leftOpRightOpIso_hom_left, CategoryTheory.Limits.HasImage.of_arrow_iso, CategoryTheory.Over.μ_pullback_left_snd', CategoryTheory.WithTerminal.coneEquiv_unitIso_hom_app_hom_left, CategoryTheory.Bicategory.RightExtension.w_assoc, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceInverse_obj_left_hom, CategoryTheory.StructuredArrow.map_map_right, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceInverse_obj_right_left, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_snd_fst_assoc, CategoryTheory.Functor.leibnizPullback_obj_map, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_hom_app_left, CategoryTheory.Arrow.equivSigma_symm_apply_left, AlgebraicGeometry.Scheme.Cover.pullbackCoverOver_X, CategoryTheory.Over.ConstructProducts.conesEquivInverseObj_pt, mapLeftIso_inverse_map_right, CategoryTheory.CategoryOfElements.costructuredArrowYonedaEquivalenceInverseπ_hom_app, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_functor_map_left, CategoryTheory.Over.iteratedSliceForwardNaturalityIso_hom_app, CategoryTheory.Functor.LeftExtension.precomp₂_obj_hom_app, CategoryTheory.CostructuredArrow.toOver_obj_left, CategoryTheory.Limits.MonoFactorisation.ofArrowIso_e, CategoryTheory.MonoOver.mk_coe, opFunctor_obj, CategoryTheory.Limits.multicospanIndexEnd_fst, CategoryTheory.WithTerminal.equivComma_functor_obj_left_obj, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left_fst, CategoryTheory.StructuredArrow.mapIso_functor_obj_left, CategoryTheory.CategoryOfElements.fromStructuredArrow_map, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_pullback_map, CategoryTheory.MonoOver.congr_unitIso, CategoryTheory.WithTerminal.equivComma_counitIso_hom_app_left_app, CategoryTheory.OverPresheafAux.unitAux_hom, CategoryTheory.MorphismProperty.FunctorialFactorizationData.i_mapZ_assoc, CategoryTheory.Over.iteratedSliceBackward_map, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_unitIso, CategoryTheory.CostructuredArrow.ofDiagEquivalence.functor_map_left_left, CategoryTheory.Over.associator_inv_left_snd, CategoryTheory.Functor.mapArrow_obj, CategoryTheory.StructuredArrow.commaMapEquivalenceInverse_map, CategoryTheory.Over.pullback_obj_left, CategoryTheory.Over.inv_left_hom_left_assoc, map_obj_hom, TopCat.Presheaf.generateEquivalenceOpensLe_unitIso, CategoryTheory.StructuredArrow.w_prod_fst, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_left_hom, CategoryTheory.StructuredArrow.homMk'_comp, CategoryTheory.WithTerminal.equivComma_counitIso_inv_app_left_app, CategoryTheory.RetractArrow.retract_left_assoc, CategoryTheory.CostructuredArrow.w_assoc, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_inverse_map_app, CategoryTheory.MonoOver.isIso_left_iff_subobjectMk_eq, CategoryTheory.Functor.PullbackObjObj.mapArrowRight_right, CategoryTheory.Sieve.overEquiv_pullback, CategoryTheory.Over.rightUnitor_inv_left_fst_assoc, CategoryTheory.Functor.PushoutObjObj.mapArrowRight_id, CategoryTheory.Functor.PullbackObjObj.mapArrowLeft_id, mapLeft_map_left, CategoryTheory.OverPresheafAux.restrictedYoneda_map, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.inverse_obj_right_left_as, CategoryTheory.Bicategory.RightLift.w_assoc, CategoryTheory.Sieve.ofArrows_category', CategoryTheory.Over.comp_left_assoc, CategoryTheory.CostructuredArrow.preEquivalence.functor_obj_right_as, CategoryTheory.Limits.IsImage.ofArrowIso_lift, CategoryTheory.Over.hom_left_inv_left, CategoryTheory.StructuredArrow.toUnder_obj_left, CategoryTheory.Functor.RightExtension.postcompose₂_obj_left_map, CategoryTheory.MorphismProperty.Comma.eqToHom_left, CategoryTheory.Over.whiskerLeft_left, CategoryTheory.CosimplicialObject.Augmented.leftOp_right, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorToComma_map_left, CategoryTheory.Over.forgetMapTerminal_hom_app, CategoryTheory.Limits.image.map_id, CategoryTheory.OverPresheafAux.restrictedYoneda_obj, CategoryTheory.Over.mk_left, CategoryTheory.Presheaf.isSheaf_iff_isLimit_coverage, CategoryTheory.MonoOver.isIso_iff_subobjectMk_eq, CategoryTheory.Functor.LeftExtension.postcomp₁_map_right_app, CategoryTheory.CostructuredArrow.IsUniversal.existsUnique, CategoryTheory.Functor.leftKanExtensionUnit_leftKanExtension_map_leftKanExtensionObjIsoColimit_hom, CategoryTheory.ParametrizedAdjunction.inr_arrowHomEquiv_symm_apply_left, CategoryTheory.CostructuredArrow.w_prod_fst, CategoryTheory.CostructuredArrow.mapNatIso_inverse_obj_left, CategoryTheory.SimplicialObject.Augmented.toArrow_map_right, CategoryTheory.Square.fromArrowArrowFunctor_map_τ₃, CategoryTheory.Over.epi_iff_epi_left, CategoryTheory.ParametrizedAdjunction.inl_arrowHomEquiv_symm_apply_left, CategoryTheory.CostructuredArrow.mapIso_functor_obj_hom, CategoryTheory.StructuredArrow.commaMapEquivalenceCounitIso_hom_app_left_right, fst_obj, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_hom_left_comp, AlgebraicGeometry.Scheme.Cover.pullbackCoverOver'_X, mapLeftIso_functor_map_left, CategoryTheory.SimplicialObject.augment_left, CategoryTheory.MorphismProperty.Over.map_obj_left, mapLeftIso_unitIso_inv_app_left, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.inverse_obj_left_hom, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_functor_obj_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_obj_left, CategoryTheory.Arrow.comp_left, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.pullbackGluedIso_inv_snd_assoc, CategoryTheory.MorphismProperty.Over.pullbackComp_hom_app_left, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.isIso_hom_app, mapRightIso_counitIso_inv_app_left, CategoryTheory.TwoSquare.EquivalenceJ.inverse_map, CategoryTheory.StructuredArrow.commaMapEquivalenceUnitIso_inv_app_right_right, CategoryTheory.CostructuredArrow.ofDiagEquivalence.inverse_obj_left, CategoryTheory.Functor.RightExtension.coneAt_pt, CategoryTheory.CostructuredArrow.eq_mk, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.isPullback, CategoryTheory.SimplicialObject.Augmented.ExtraDegeneracy.s_comp_δ₀_assoc, CategoryTheory.Functor.LeftExtension.postcomp₁_obj_left, CategoryTheory.RetractArrow.r_w_assoc, CategoryTheory.StructuredArrow.map₂_map_right, mapLeftEq_hom_app_left, CategoryTheory.Limits.Cone.fromCostructuredArrow_map_hom, AlgebraicGeometry.instIsOpenImmersionLeftSchemeDiscretePUnitMapWalkingSpanOverTopMorphismPropertySpan, CategoryTheory.Functor.PullbackObjObj.π_iso_of_iso_left_inv, CategoryTheory.toOver_obj_left, CategoryTheory.StructuredArrow.preEquivalenceInverse_obj_right_hom, CategoryTheory.Limits.image.map_comp, CategoryTheory.ChosenPullbacksAlong.iso_mapPullbackAdj_unit_app, CategoryTheory.toOverPullbackIsoToOver_inv_app_left, eqToHom_left, CategoryTheory.Functor.ι_leftKanExtensionObjIsoColimit_inv, CategoryTheory.CostructuredArrow.w_prod_fst_assoc, CategoryTheory.WithInitial.ofCommaObject_obj, CategoryTheory.Functor.LeftExtension.precomp_map_right, CategoryTheory.WithTerminal.equivComma_inverse_obj_obj, CategoryTheory.Functor.LeftExtension.precomp₂_obj_left, CategoryTheory.SimplicialObject.Augmented.w₀, CategoryTheory.Functor.RightExtension.coneAt_π_app, mapRightIso_functor_map_left, map_map_right, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_hom_app_comp_snd_assoc, CategoryTheory.Arrow.leftFunc_obj, CategoryTheory.CostructuredArrow.mapNatIso_inverse_map_right, CategoryTheory.CostructuredArrow.unop_left_comp_ofMkLEMk_unop, CategoryTheory.Limits.multicospanIndexEnd_snd, CategoryTheory.Over.braiding_inv_left, CategoryTheory.Functor.RightExtension.postcomp₁_obj_left_map, CategoryTheory.MorphismProperty.Over.mapCongr_inv_app_left, CategoryTheory.CostructuredArrow.post_obj, CategoryTheory.Functor.RightExtension.postcomp₁_map_right, CategoryTheory.Over.prodLeftIsoPullback_inv_snd, CategoryTheory.Functor.LeibnizAdjunction.adj_unit_app_left, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_map_app, CategoryTheory.Over.iteratedSliceForwardIsoPost_inv_app, CategoryTheory.SimplicialObject.Augmented.toArrow_map_left, mapRight_obj_hom, CategoryTheory.MorphismProperty.FunctorialFactorizationData.functorCategory.Z_map_app, mapRightIso_inverse_map_right, CategoryTheory.WithTerminal.equivComma_functor_obj_left_map, CategoryTheory.SimplicialObject.Augmented.ExtraDegeneracy.s'_comp_ε, CategoryTheory.Limits.coker_map, CategoryTheory.CostructuredArrow.mapNatIso_unitIso_inv_app_left, CategoryTheory.instIsContinuousOverLeftDiscretePUnitIteratedSliceForwardOver, inv_left, CategoryTheory.Square.toArrowArrowFunctor'_obj_left_hom, CategoryTheory.Square.fromArrowArrowFunctor_obj_f₃₄, CategoryTheory.SmallObject.functorialFactorizationData_i_app, CategoryTheory.CostructuredArrow.prodFunctor_map, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_left_right, CategoryTheory.SimplicialObject.Augmented.toArrow_obj_left, CategoryTheory.Abelian.coim_map, CategoryTheory.Over.leftUnitor_hom_left, CategoryTheory.CostructuredArrow.mapIso_unitIso_hom_app_left, CategoryTheory.Functor.PullbackObjObj.mapArrowLeft_comp, CategoryTheory.MorphismProperty.Over.pullbackMapHomPullback_app, CategoryTheory.Over.tensorObj_ext_iff, CategoryTheory.RetractArrow.i_w, CategoryTheory.CostructuredArrow.toOver_map_right, CategoryTheory.CostructuredArrow.map_obj_hom, CategoryTheory.Functor.LeftExtension.precomp_obj_hom_app, CategoryTheory.WithTerminal.ofCommaObject_obj, CategoryTheory.Functor.LeibnizAdjunction.adj_counit_app_left, CategoryTheory.Over.iteratedSliceForward_forget, CategoryTheory.StructuredArrow.eq_mk, CategoryTheory.Over.ConstructProducts.conesEquivCounitIso_inv_app_hom_left, TopCat.Presheaf.generateEquivalenceOpensLe_inverse'_obj_obj_right_as, CategoryTheory.MorphismProperty.Over.pullback_obj_left, CategoryTheory.Over.postAdjunctionRight_counit_app, CategoryTheory.Over.conePost_obj_π_app, CategoryTheory.Limits.multicospanIndexEnd_right, CategoryTheory.MonoOver.mkArrowIso_hom_hom_left, CategoryTheory.NatTrans.instIsClosedUnderLimitsOfShapeOverFunctorEquifiberedHomDiscretePUnitOfHasCoproductsOfShapeHom, opFunctor_map, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.functor_obj_left_as, CategoryTheory.CostructuredArrow.commaToGrothendieckPrecompFunctor_map_fiber, CategoryTheory.Sieve.overEquiv_le_overEquiv_iff, CategoryTheory.MonoOver.map_obj_left, CategoryTheory.ChosenPullbacksAlong.Over.tensorObj_ext_iff, CategoryTheory.OrthogonalReflection.D₁.ι_comp_t_assoc, CategoryTheory.CostructuredArrow.commaToGrothendieckPrecompFunctor_obj_fiber, CategoryTheory.Square.fromArrowArrowFunctor'_obj_X₂, CategoryTheory.CostructuredArrow.ofDiagEquivalence.functor_obj_hom, CategoryTheory.Over.rightUnitor_inv_left_fst, CategoryTheory.CostructuredArrow.homMk'_mk_id, preRight_obj_left, CategoryTheory.Functor.RightExtension.precomp_map_left, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left_snd_assoc, CategoryTheory.Bicategory.LeftExtension.ofCompId_left_as, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtension.isLeftKanExtension, CategoryTheory.WithInitial.equivComma_counitIso_hom_app_right_app, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_mapPullbackAdj_unit_app, CategoryTheory.MonoOver.isIso_hom_left_iff_subobjectMk_eq, CategoryTheory.Under.pushout_map, CategoryTheory.Over.mapCongr_inv_app_left, CategoryTheory.StructuredArrow.preEquivalenceFunctor_obj_left_as, CategoryTheory.StructuredArrow.map₂_obj_left, CategoryTheory.Sieve.ofArrows_category, CategoryTheory.MorphismProperty.Comma.comp_left_assoc, CategoryTheory.Limits.image.map_ι, CategoryTheory.Over.mapCongr_hom_app_left, CategoryTheory.Abelian.Pseudoelement.pseudoZero_iff, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_inv_left_snd, CategoryTheory.equivToOverUnit_unitIso, CategoryTheory.CostructuredArrow.homMk'_right, CategoryTheory.Over.postCongr_inv_app_left, CategoryTheory.Square.fromArrowArrowFunctor'_obj_X₃, CategoryTheory.Functor.ι_leftKanExtensionObjIsoColimit_inv_assoc, CategoryTheory.ChosenPullbacksAlong.isoInv_pullback_obj_left, CategoryTheory.CostructuredArrow.ιCompGrothendieckProj_inv_app, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.inverse_obj_hom, CategoryTheory.OverPresheafAux.counitForward_naturality₁, CategoryTheory.Over.mapComp_hom_app_left, mapLeftIso_inverse_obj_left, TopCat.Presheaf.generateEquivalenceOpensLe_inverse'_obj_obj_hom, mapRight_obj_left, equivProd_unitIso_hom_app_left, CategoryTheory.MorphismProperty.Over.pullbackCongr_hom_app_left_fst, CategoryTheory.Functor.PushoutObjObj.mapArrowRight_left, CategoryTheory.Over.whiskerRight_left_fst, CategoryTheory.MorphismProperty.FunctorialFactorizationData.functorCategory.Z_obj_map, CategoryTheory.CostructuredArrow.w_prod_snd_assoc, CategoryTheory.Over.postAdjunctionLeft_unit_app_left, CommRingCat.pushout_inr_tensorProdObjIsoPushoutObj_inv_right_assoc, CategoryTheory.MorphismProperty.Over.mapPullbackAdj_counit_app, CategoryTheory.CostructuredArrow.costructuredArrowToOverEquivalence.functor_map, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.pullbackGluedIso_inv_fst_assoc, CategoryTheory.Arrow.square_from_iso_invert, CategoryTheory.MonoOver.pullback_obj_arrow, CategoryTheory.Over.preservesTerminalIso_pullback, CategoryTheory.Functor.PullbackObjObj.π_iso_of_iso_right_hom, CategoryTheory.Over.prodLeftIsoPullback_inv_fst, CategoryTheory.Functor.PushoutObjObj.mapArrowRight_comp_assoc, CategoryTheory.Abelian.im_map, CategoryTheory.StructuredArrow.map₂_map_left, CategoryTheory.TwoSquare.costructuredArrowRightwards_map, CategoryTheory.Presheaf.isLimit_iff_isSheafFor_presieve, CategoryTheory.CostructuredArrow.ofDiagEquivalence.functor_obj_left_hom, CategoryTheory.Functor.PullbackObjObj.mapArrowRight_comp_assoc, CategoryTheory.Over.opEquivOpUnder_inverse_obj, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_inverse_obj_map, CategoryTheory.Arrow.mono_left, CategoryTheory.CostructuredArrow.mapIso_functor_map_left, CategoryTheory.StructuredArrow.prodFunctor_map, CategoryTheory.Arrow.equivSigma_apply_snd_snd, CategoryTheory.SimplicialObject.Augmented.ExtraDegeneracy.s_comp_δ, CategoryTheory.Over.prodLeftIsoPullback_inv_snd_assoc, CategoryTheory.Over.rightUnitor_inv_left_snd, CategoryTheory.ChosenPullbacksAlong.Over.tensorObj_hom, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_inverse_map_left, AlgebraicGeometry.instIsClosedImmersionLeftSchemeDiscretePUnitOneOverSpecOf, CategoryTheory.Over.post_map, CategoryTheory.Square.toArrowArrowFunctor_obj_left_left, CategoryTheory.regularTopology.equalizerConditionMap_iff_nonempty_isLimit, mapRightId_inv_app_left, CategoryTheory.Pseudofunctor.presheafHom_obj, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_inverse_obj_obj, CategoryTheory.Over.mapPullbackAdj_counit_app, CategoryTheory.CostructuredArrow.pre_obj_left, CategoryTheory.Over.iteratedSliceBackward_forget, CategoryTheory.Abelian.Pseudoelement.ModuleCat.eq_range_of_pseudoequal, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_inverse_obj_left, CategoryTheory.Over.postCongr_hom_app_left, preRight_map_left, CategoryTheory.toOverUnit_obj_left, CategoryTheory.CostructuredArrow.post_map, CategoryTheory.CostructuredArrow.mapIso_unitIso_inv_app_left, CategoryTheory.ChosenPullbacksAlong.Over.tensorObj_left, CategoryTheory.CostructuredArrow.commaToGrothendieckPrecompFunctor_map_base, CategoryTheory.StructuredArrow.mapNatIso_inverse_map_right, CategoryTheory.Over.iteratedSliceBackward_forget_forget, CategoryTheory.Square.fromArrowArrowFunctor_obj_X₃, CategoryTheory.CostructuredArrow.proj_obj, CategoryTheory.RetractArrow.op_r_right, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_fst, CategoryTheory.Over.prodLeftIsoPullback_hom_snd, CategoryTheory.CostructuredArrow.preEquivalence.functor_obj_hom, CategoryTheory.StructuredArrow.IsUniversal.existsUnique, CategoryTheory.Limits.pullbackConeEquivBinaryFan_counitIso, CategoryTheory.ChosenPullbacksAlong.isoInv_pullback_map_left, CategoryTheory.StructuredArrow.mapNatIso_functor_map_right, CategoryTheory.IsGrothendieckAbelian.exists_isIso_of_functor_from_monoOver, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceInverse_map_right_left, CategoryTheory.CostructuredArrow.mapIso_functor_obj_left, CategoryTheory.Over.whiskerRight_left_snd_assoc, CategoryTheory.Arrow.w_mk_right, CategoryTheory.SimplicialObject.Truncated.rightExtensionInclusion_left, CategoryTheory.WithInitial.equivComma_counitIso_inv_app_right_app, CategoryTheory.ChosenPullbacksAlong.Over.snd_eq_snd', CategoryTheory.Limits.IsLimit.pullbackConeEquivBinaryFanFunctor_lift_left, CategoryTheory.CostructuredArrow.map_obj_left, CategoryTheory.MorphismProperty.Over.mapPullbackAdj_unit_app, CategoryTheory.CostructuredArrow.eta_hom_left, CategoryTheory.Over.associator_inv_left_fst_fst_assoc, CategoryTheory.Sieve.overEquiv_symm_iff, CategoryTheory.Square.fromArrowArrowFunctor'_map_τ₃, CategoryTheory.CosimplicialObject.Augmented.leftOpRightOpIso_inv_left, CategoryTheory.Sieve.functorPushforward_over_map, CategoryTheory.Limits.ker.ι_app, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceFunctor_obj_hom, CategoryTheory.Over.associator_hom_left_fst, CategoryTheory.StructuredArrow.mapNatIso_inverse_obj_left, CategoryTheory.SmallObject.functor_map, CategoryTheory.StructuredArrow.ofDiagEquivalence.functor_map_right_right, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.inverse_obj_left_as, CategoryTheory.Subfunctor.equivalenceMonoOver_inverse_map, comp_left, toPUnitIdEquiv_functor_obj, CategoryTheory.Square.fromArrowArrowFunctor_obj_X₂, CategoryTheory.ChosenPullbacksAlong.Over.leftUnitor_inv_left_snd, CategoryTheory.CostructuredArrow.toStructuredArrow'_obj, CategoryTheory.Abelian.Pseudoelement.pseudoApply_mk', CategoryTheory.NatTrans.instIsClosedUnderColimitsOfShapeUnderFunctorCoequifiberedHomDiscretePUnitOfHasProductsOfShapeHom, CategoryTheory.CostructuredArrow.prodInverse_obj, CategoryTheory.Over.prodLeftIsoPullback_hom_fst_assoc, SSet.Augmented.stdSimplex_obj_left, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left_snd_assoc, CategoryTheory.MorphismProperty.Over.mapId_inv_app_left, CategoryTheory.Under.costar_obj_left, CategoryTheory.SmallObject.objMap_comp_assoc, CategoryTheory.CostructuredArrow.ofDiagEquivalence.functor_obj_left_left, CategoryTheory.Limits.ker_obj, CategoryTheory.SmallObject.functorialFactorizationData_Z_obj, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_snd_fst, fromProd_obj_left, CategoryTheory.MonoOver.image_map, CategoryTheory.Arrow.equivSigma_apply_fst, CategoryTheory.Under.under_left, CategoryTheory.Under.mapPushoutAdj_unit_app, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceFunctor_map_left, CategoryTheory.GrothendieckTopology.mem_over_iff, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_obj_obj, CategoryTheory.OverPresheafAux.counitForward_val_snd, mapLeftComp_inv_app_left, CategoryTheory.Limits.instHasImageHomMk, CategoryTheory.Limits.ImageMap.factor_map_assoc, CategoryTheory.Over.opEquivOpUnder_inverse_map, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.inverse_map_left_left, CategoryTheory.StructuredArrow.mkPostcomp_left, CategoryTheory.StructuredArrow.left_eq_id, CategoryTheory.Over.leftUnitor_inv_left_fst, mapLeftIso_functor_obj_left, CategoryTheory.ChosenPullbacksAlong.isoInv_mapPullbackAdj_unit_app_left, CategoryTheory.Over.inv_left_hom_left, AlgebraicGeometry.opensDiagram_map, CategoryTheory.CostructuredArrow.id_left, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left, HomotopicalAlgebra.cofibrations_over_iff, CategoryTheory.CostructuredArrow.ofDiagEquivalence.inverse_obj_hom, CategoryTheory.Over.forgetMapTerminal_inv_app, CategoryTheory.MorphismProperty.Over.mapCongr_hom_app_left, CategoryTheory.Subobject.inf_eq_map_pullback', CategoryTheory.CosimplicialObject.Augmented.leftOp_left_map, CategoryTheory.Presheaf.isSeparated_iff_subsingleton, CategoryTheory.Over.eqToHom_left, CategoryTheory.Sieve.overEquiv_top, CategoryTheory.Functor.leibnizPushout_obj_map, CategoryTheory.Functor.PushoutObjObj.mapArrowLeft_id, CategoryTheory.Over.tensorHom_left_snd_assoc, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.ι_isoColimit_hom, CategoryTheory.SmallObject.ε_app, CategoryTheory.CostructuredArrow.ιCompGrothendieckPrecompFunctorToCommaCompFst_inv_app, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_inv_left_snd_assoc, CategoryTheory.Functor.LeftExtension.postcompose₂_map_right_app, CategoryTheory.Limits.kernelSubobjectIso_comp_kernel_map, CategoryTheory.Limits.image.map_homMk'_ι, CategoryTheory.CommaMorphism.w_assoc, CategoryTheory.CostructuredArrow.map_map_right, CategoryTheory.Over.leftUnitor_inv_left_snd, CategoryTheory.ChosenPullbacksAlong.Over.leftUnitor_inv_left_fst_assoc, AlgebraicGeometry.Scheme.kerAdjunction_counit_app, AlgebraicGeometry.opensDiagramι_app, CategoryTheory.Arrow.w, CategoryTheory.StructuredArrow.homMk'_left, HomotopicalAlgebra.instCofibrationLeftDiscretePUnitOfOver, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_snd', CategoryTheory.OverClass.fromOver_over, AlgebraicTopology.AlternatingFaceMapComplex.ε_app_f_zero, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.fst_gluedCocone_ι, CategoryTheory.SmallObject.objMap_id, CategoryTheory.MonoOver.image_obj, preRight_map_right, TopologicalSpace.Opens.coe_overEquivalence_functor_obj, CategoryTheory.OverClass.asOver_left, CategoryTheory.Limits.coker_obj, CategoryTheory.Over.μ_pullback_left_fst_snd', CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceInverse_obj_left_left, CategoryTheory.Over.comp_left, CategoryTheory.ChosenPullbacksAlong.Over.tensorUnit_left, CategoryTheory.Over.mapPullbackAdj_unit_app, CategoryTheory.Functor.RightExtension.postcomp₁_obj_left_obj, CategoryTheory.CostructuredArrow.mapNatIso_functor_obj_hom, CategoryTheory.Over.mapId_inv_app_left, map_map_left, CategoryTheory.Limits.multicospanShapeEnd_fst, CategoryTheory.ParametrizedAdjunction.inr_arrowHomEquiv_symm_apply_left_assoc, CategoryTheory.CostructuredArrow.w_prod_snd, CategoryTheory.MorphismProperty.Over.pullbackComp_inv_app_left, mapRightIso_functor_obj_hom, CategoryTheory.Limits.imageSubobjectIso_comp_image_map, post_map_left, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorToComma_obj_left, CategoryTheory.CommaMorphism.w, toPUnitIdEquiv_unitIso_inv_app_left, CategoryTheory.ChosenPullbacksAlong.Over.leftUnitor_inv_left_fst, CategoryTheory.Sieve.overEquiv_symm_pullback, CategoryTheory.Limits.multispanIndexCoend_snd, CategoryTheory.Subfunctor.equivalenceMonoOver_inverse_obj, CategoryTheory.Over.leftUnitor_inv_left_snd_assoc, CategoryTheory.MorphismProperty.Comma.Hom.prop_hom_left, CategoryTheory.RetractArrow.r_w, CategoryTheory.Functor.LeftExtension.postcompose₂_obj_hom_app, CategoryTheory.SimplicialObject.Augmented.ExtraDegeneracy.s₀_comp_δ₁_assoc, CategoryTheory.CategoryOfElements.costructuredArrowYonedaEquivalence_counitIso, TopCat.Presheaf.whiskerIsoMapGenerateCocone_inv_hom, CategoryTheory.MorphismProperty.instHasPullbackHomDiscretePUnitOfHasPullbacksAlong, CategoryTheory.ChosenPullbacksAlong.iso_pullback_obj, CategoryTheory.Arrow.inv_left, CategoryTheory.SimplicialObject.augment_hom_zero, CategoryTheory.SmallObject.ιObj_naturality, CategoryTheory.SmallObject.ιFunctorObj_naturality, CategoryTheory.WithTerminal.coneEquiv_inverse_obj_pt_left, CategoryTheory.Functor.LeibnizAdjunction.adj_counit_app_right, CategoryTheory.Over.conePost_map_hom, CategoryTheory.WithTerminal.mkCommaObject_left_map, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_left_app, CategoryTheory.SimplicialObject.Augmented.rightOp_right_map, CategoryTheory.MonoOver.bot_left, CategoryTheory.Presieve.ofArrows_category, CategoryTheory.Functor.RightExtension.coneAtWhiskerRightIso_inv_hom, CategoryTheory.WithTerminal.ofCommaMorphism_app, CategoryTheory.CostructuredArrow.mapNatIso_counitIso_inv_app_left, CategoryTheory.OverPresheafAux.counitAuxAux_inv, CategoryTheory.Functor.LeftExtension.postcomp₁_obj_hom_app, CategoryTheory.SmallObject.functorMapSrc_functorObjTop, CategoryTheory.StructuredArrow.mk_left, TopologicalSpace.Opens.overEquivalence_unitIso_hom_app_left, mapLeftIso_unitIso_hom_app_left, CategoryTheory.MonoOver.map_obj_arrow, CategoryTheory.StructuredArrow.ofDiagEquivalence.functor_obj_right_left_as, CategoryTheory.Arrow.w_mk_right_assoc, CategoryTheory.MorphismProperty.FunctorialFactorizationData.i_mapZ, CategoryTheory.Limits.pullbackConeEquivBinaryFan_inverse_obj, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_mapPullbackAdj_unit_app, CategoryTheory.CostructuredArrow.mapIso_counitIso_hom_app_left, CategoryTheory.ComposableArrows.arrowEquiv_symm_apply, CategoryTheory.OverPresheafAux.restrictedYonedaObj_map, CategoryTheory.WithInitial.coconeEquiv_inverse_obj_pt_left_as, CategoryTheory.Over.map_obj_hom, CategoryTheory.CostructuredArrow.mapCompιCompGrothendieckProj_inv_app, CategoryTheory.Square.fromArrowArrowFunctor_obj_f₁₃, CategoryTheory.CosimplicialObject.Augmented.toArrow_map_right, CategoryTheory.Over.associator_hom_left_snd_fst, CategoryTheory.CostructuredArrow.toOver_map_left, CategoryTheory.Over.postComp_inv_app_left, CategoryTheory.RanIsSheafOfIsCocontinuous.fac', mapRightEq_inv_app_left, CategoryTheory.Functor.mapArrow_map_left, CategoryTheory.subterminalsEquivMonoOverTerminal_inverse_map, CategoryTheory.CostructuredArrow.eta_inv_left, CategoryTheory.MorphismProperty.over_iso_iff, CategoryTheory.SmallObject.ιFunctorObj_eq, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_inverse_map_right, CategoryTheory.RetractArrow.retract_left, CategoryTheory.Functor.toOver_obj_left, CategoryTheory.TwoSquare.costructuredArrowDownwardsPrecomp_obj, CategoryTheory.CategoryOfElements.fromCostructuredArrow_obj_snd, CategoryTheory.Arrow.squareToSnd_left, CategoryTheory.CostructuredArrow.mapIso_functor_map_right, CategoryTheory.Over.rightUnitor_inv_left_snd_assoc, CategoryTheory.Over.toOverSectionsAdj_counit_app, CategoryTheory.StructuredArrow.toCostructuredArrow_map, CategoryTheory.Limits.ImageMap.factor_map, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left_snd, CategoryTheory.MonoOver.w, CategoryTheory.MonoOver.bot_arrow_eq_zero, CategoryTheory.WithInitial.equivComma_inverse_map_app, AlgebraicGeometry.Scheme.Cover.pullbackCoverOverProp'_X, left_hom_inv_right, CategoryTheory.forgetAdjToOver_unit_app, CategoryTheory.Arrow.isIso_left, CategoryTheory.OverPresheafAux.counitBackward_counitForward, CategoryTheory.Arrow.isIso_hom_iff_isIso_of_isIso, unopFunctor_obj, CategoryTheory.SimplicialObject.Augmented.rightOpLeftOpIso_inv_left_app, CategoryTheory.Over.iteratedSliceEquivOverMapIso_inv_app_left_left, CategoryTheory.CostructuredArrow.mapNatIso_inverse_map_left, CategoryTheory.Over.iteratedSliceEquivOverMapIso_hom_app_left_left, CategoryTheory.CostructuredArrow.costructuredArrowToOverEquivalence.functor_obj, CategoryTheory.CostructuredArrow.map₂_map_right, CategoryTheory.WithInitial.equivComma_counitIso_hom_app_left, CategoryTheory.StructuredArrow.toUnder_map_right, CategoryTheory.regularTopology.parallelPair_pullback_initial, CategoryTheory.WithTerminal.liftFromOver_obj_obj, CategoryTheory.overToCoalgebra_map_f, CategoryTheory.Limits.IndObjectPresentation.toCostructuredArrow_obj_left, CategoryTheory.CosimplicialObject.Augmented.toArrow_map_left, CategoryTheory.Pseudofunctor.isStackFor_iff, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.functor_obj_left_right_as, CommRingCat.pushout_inl_tensorProdObjIsoPushoutObj_inv_right_assoc, CategoryTheory.Pseudofunctor.isPrestackFor_iff_isSheafFor, CategoryTheory.SimplicialObject.Augmented.rightOpLeftOpIso_hom_left_app, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left_snd_assoc, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left_fst_assoc, CategoryTheory.Square.fromArrowArrowFunctor_obj_X₁, CategoryTheory.TwoSquare.isIso_lanBaseChange_app_iff, mapLeftIso_counitIso_hom_app_left, CategoryTheory.Over.pullback_map_left, CategoryTheory.instIsContinuousOverLeftDiscretePUnitIteratedSliceBackwardOver, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_fst_fst, mapRightIso_functor_map_right, limitAuxiliaryCone_π_app, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.fst_gluedCocone_ι_assoc, CategoryTheory.Pseudofunctor.presheafHom_map, CategoryTheory.MorphismProperty.costructuredArrow_iso_iff, CategoryTheory.Over.postEquiv_counitIso, CategoryTheory.Limits.multispanIndexCoend_left, CategoryTheory.Over.ConstructProducts.conesEquivCounitIso_hom_app_hom_left, CategoryTheory.Over.sections_obj, CategoryTheory.MorphismProperty.Comma.ext_iff, toIdPUnitEquiv_inverse_obj_left_as, AlgebraicGeometry.opensDiagram_obj, CategoryTheory.Functor.PushoutObjObj.ι_iso_of_iso_right_hom, CategoryTheory.Limits.PreservesFiniteLimitsOfIsFilteredCostructuredArrowYonedaAux.isoAux_hom_app, CategoryTheory.CostructuredArrow.toStructuredArrow'_map, CategoryTheory.RetractArrow.op_i_right, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.ι_isoColimit_hom_assoc, CategoryTheory.Abelian.coim_obj, CategoryTheory.Over.star_obj_left, CategoryTheory.Functor.mapArrow_map_right, CategoryTheory.Over.iteratedSliceEquiv_functor, CategoryTheory.MorphismProperty.overObj_iff, AlgebraicGeometry.opensCone_π_app, CategoryTheory.Over.tensorHom_left, CategoryTheory.CostructuredArrow.w, CategoryTheory.StructuredArrow.commaMapEquivalenceInverse_obj, CategoryTheory.MorphismProperty.Over.mapComp_hom_app_left, CategoryTheory.toOverIteratedSliceForwardIsoPullback_hom_app_left, CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtension.isIso_hom, CategoryTheory.MonoOver.mk'_coe', CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.ι_isoColimit_inv_assoc, CategoryTheory.StructuredArrow.w_prod_snd, CategoryTheory.StructuredArrow.preEquivalenceInverse_obj_right_right, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.functor_obj_left_hom, CategoryTheory.Presheaf.isSheaf_iff_isLimit, CategoryTheory.Under.opEquivOpOver_functor_obj, CategoryTheory.StructuredArrow.preEquivalenceInverse_obj_right_left_as, CategoryTheory.MonoOver.mono, CategoryTheory.Over.associator_inv_left_fst_snd, CategoryTheory.SimplicialObject.comp_left_app, CategoryTheory.MonoOver.forget_obj_left, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_obj_left, CategoryTheory.Limits.kernelSubobjectIso_comp_kernel_map_assoc, CategoryTheory.CostructuredArrow.mapNatIso_inverse_obj_hom, CategoryTheory.WithInitial.equivComma_inverse_obj_map, CategoryTheory.Over.forget_obj, CategoryTheory.MorphismProperty.Over.w_assoc, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_fst_assoc, CategoryTheory.SimplicialObject.Augmented.rightOp_right_obj, CategoryTheory.toOverPullbackIsoToOver_hom_app_left, CategoryTheory.Functor.RightExtension.postcomp₁_map_left_app, CategoryTheory.WithTerminal.ofCommaObject_map, CategoryTheory.MorphismProperty.ofHoms_homFamily, CategoryTheory.Over.associator_hom_left_snd_snd_assoc, mapRightComp_hom_app_left, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_map_left, CategoryTheory.Functor.PullbackObjObj.mapArrowRight_comp, CategoryTheory.Functor.ranObjObjIsoLimit_hom_π_assoc, TopologicalSpace.Opens.overEquivalence_counitIso_inv_app, CategoryTheory.Limits.im_obj, CategoryTheory.SmallObject.πObj_naturality_assoc, CategoryTheory.Functor.PullbackObjObj.π_iso_of_iso_right_inv, CategoryTheory.MorphismProperty.FunctorialFactorizationData.functorCategory.Z_obj_obj, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_inv_app_comp_fst, CategoryTheory.CostructuredArrow.epi_left_of_epi, TopCat.Presheaf.generateEquivalenceOpensLe_functor, CategoryTheory.Limits.multispanShapeCoend_fst, mapRightIso_functor_obj_left, CategoryTheory.Over.μ_pullback_left_fst_fst', CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryToUnit_pullback_obj, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceFunctor_map_right, Types.monoOverEquivalenceSet_functor_map, CategoryTheory.Over.μ_pullback_left_fst_snd, CategoryTheory.Over.whiskerRight_left, CategoryTheory.CosimplicialObject.Augmented.toArrow_obj_left, CategoryTheory.CostructuredArrow.homMk'_left, CategoryTheory.Square.toArrowArrowFunctor'_map_left_right, TopologicalSpace.Opens.overEquivalence_unitIso_inv_app_left, CategoryTheory.Arrow.id_left, CategoryTheory.Abelian.coimageImageComparisonFunctor_obj, CategoryTheory.Square.fromArrowArrowFunctor'_obj_f₁₃, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_counitIso, CategoryTheory.StructuredArrow.pre_map_left, unopFunctorCompSnd_inv_app, inv_left_hom_right, CommRingCat.pushout_inl_tensorProdObjIsoPushoutObj_inv_right, CategoryTheory.Over.opEquivOpUnder_counitIso, CategoryTheory.CostructuredArrow.prodFunctor_obj, CategoryTheory.OverPresheafAux.counitAux_hom, CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtensionAt.isIso_hom_app, CategoryTheory.CostructuredArrow.mapNatIso_unitIso_hom_app_left, CategoryTheory.OrthogonalReflection.D₂.multispanIndex_left, CategoryTheory.SimplicialObject.Augmented.ExtraDegeneracy.s_comp_σ, CategoryTheory.Limits.ImageFactorisation.ofArrowIso_F, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_left_app, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_inverse_obj_hom_app, CategoryTheory.CategoryOfElements.fromCostructuredArrow_map_coe, CategoryTheory.RetractArrow.unop_r_right, CategoryTheory.StructuredArrow.map_map_left, CategoryTheory.Functor.PullbackObjObj.mapArrowLeft_left, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_inv_app_comp_snd, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_map_left_right, CategoryTheory.SmallObject.iterationFunctorMapSuccAppArrowIso_hom_right_right_comp_assoc, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceInverse_map_left_left, CategoryTheory.rightAdjointOfCostructuredArrowTerminalsAux_apply, CategoryTheory.Over.w, CategoryTheory.MorphismProperty.CostructuredArrow.toOver_map, CategoryTheory.SimplicialObject.Augmented.drop_obj, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_pullback_map, CategoryTheory.Functor.PullbackObjObj.mapArrowLeft_comp_assoc, TopCat.Presheaf.generateEquivalenceOpensLe_counitIso, CategoryTheory.Limits.MonoFactorisation.ofArrowIso_m, CategoryTheory.StructuredArrow.prodFunctor_obj, CategoryTheory.MorphismProperty.Comma.Hom.comp_left, CategoryTheory.Functor.PushoutObjObj.ι_iso_of_iso_left_inv, CategoryTheory.Functor.LeftExtension.postcompose₂_obj_left, CategoryTheory.Sieve.yonedaFamily_fromCocone_compatible, CategoryTheory.subterminalsEquivMonoOverTerminal_inverse_obj_obj, CategoryTheory.CostructuredArrow.comp_left, CategoryTheory.CosimplicialObject.augment_hom_zero, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left_fst_assoc, CategoryTheory.SimplicialObject.Augmented.ExtraDegeneracy.s₀_comp_δ₁, CategoryTheory.coalgebraEquivOver_counitIso, opFunctorCompSnd_hom_app, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtension.isIso_hom, CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtensionAt.isoLimit_inv_π, CategoryTheory.Functor.LeftExtension.precomp_obj_left, CategoryTheory.OverPresheafAux.unitAuxAux_inv_app_snd_coe, CategoryTheory.Arrow.mk_eq, CategoryTheory.MorphismProperty.CostructuredArrow.toOver_obj, Types.monoOverEquivalenceSet_functor_obj, CategoryTheory.MorphismProperty.Under.w, CategoryTheory.CosimplicialObject.Augmented.toArrow_obj_hom, CategoryTheory.StructuredArrow.mapIso_functor_map_left, AlgebraicGeometry.Scheme.kerFunctor_map, CategoryTheory.CostructuredArrow.mk_left, CategoryTheory.MorphismProperty.Comma.prop, SSet.Truncated.rightExtensionInclusion_left, CategoryTheory.Pseudofunctor.IsStack.essSurj_of_sieve, CategoryTheory.CostructuredArrow.homMk'_mk_comp, CategoryTheory.Over.associator_inv_left_fst_fst, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_functor_obj_hom_app, mapLeftIso_inverse_obj_hom, CategoryTheory.MonoOver.isIso_iff_isIso_hom_left, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_map_right, mapLeftId_hom_app_left, post_obj_left, CategoryTheory.Over.snd_left, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.functor_map_left_left, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_hom_app_comp_snd, CategoryTheory.Limits.ImageMap.map_ι, CategoryTheory.CostructuredArrow.prodInverse_map, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left_fst_assoc, CategoryTheory.Functor.leibnizPushout_obj_obj, CategoryTheory.SimplicialObject.Augmented.ExtraDegeneracy.s_comp_δ_assoc, mapLeftId_inv_app_left, CategoryTheory.instIsCocontinuousOverLeftDiscretePUnitIteratedSliceBackwardOver, CategoryTheory.Arrow.isIso_hom_iff_isIso_hom_of_isIso, CategoryTheory.Arrow.inv_hom_id_left_assoc, CategoryTheory.Over.tensorHom_left_fst, CategoryTheory.Sieve.overEquiv_symm_generate, CategoryTheory.MorphismProperty.Over.mk_left, CategoryTheory.Over.whiskerRight_left_snd, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryToUnit_mapPullbackAdj_unit_app, CategoryTheory.MorphismProperty.structuredArrowObj_iff, CategoryTheory.SimplicialObject.Augmented.w₀_assoc, TopCat.Presheaf.whiskerIsoMapGenerateCocone_hom_hom, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_fst_snd_assoc, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_fst_snd, CategoryTheory.StructuredArrow.map_obj_left, AlgebraicGeometry.Scheme.Cover.toPresieveOver_le_arrows_iff, CategoryTheory.MorphismProperty.mem_toSet_iff, CategoryTheory.SimplicialObject.Augmented.ExtraDegeneracy.s_comp_σ_assoc, CategoryTheory.MorphismProperty.CostructuredArrow.mk_left, CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtension.isRightKanExtension, HomotopicalAlgebra.instFibrationLeftDiscretePUnitOfOver, CategoryTheory.Over.iteratedSliceEquiv_unitIso, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_left_π_assoc, toPUnitIdEquiv_unitIso_hom_app_left, CategoryTheory.CommSq.of_arrow, mapRightIso_unitIso_hom_app_left, CategoryTheory.SimplicialObject.Augmented.const_obj_left, CategoryTheory.WithInitial.equivComma_functor_obj_left, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left_fst, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceInverse_obj_hom, CategoryTheory.CostructuredArrow.toStructuredArrow_obj, unopFunctor_map, CategoryTheory.Arrow.isIso_of_isIso, CategoryTheory.Over.tensorHom_left_fst_assoc, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_snd_assoc, CategoryTheory.forgetAdjToOver.homEquiv_symm, AlgebraicGeometry.Scheme.Cover.overEquiv_generate_toPresieveOver_eq_ofArrows, CategoryTheory.OverPresheafAux.restrictedYonedaObj_obj, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.functor_obj_hom, CategoryTheory.Over.prodLeftIsoPullback_inv_fst_assoc, CategoryTheory.Abelian.im_obj, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_hom_left, CategoryTheory.SmallObject.SuccStruct.toSuccArrow_left, CategoryTheory.MorphismProperty.Comma.comp_left, CategoryTheory.Functor.RightExtension.mk_left, CategoryTheory.Over.postAdjunctionRight_unit_app, CategoryTheory.CostructuredArrow.mapNatIso_functor_obj_left, CategoryTheory.SmallObject.iterationFunctorMapSuccAppArrowIso_hom_left, CategoryTheory.Over.id_left, CategoryTheory.ChosenPullbacksAlong.Over.leftUnitor_hom_left, CategoryTheory.OverPresheafAux.restrictedYonedaObjMap₁_app, CategoryTheory.Arrow.iso_w, CategoryTheory.CosimplicialObject.augment_left, CategoryTheory.MorphismProperty.Under.mk_left, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_pullback_obj, CategoryTheory.Arrow.comp_left_assoc, CategoryTheory.Over.postComp_hom_app_left, CategoryTheory.Over.whiskerLeft_left_fst, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_mapPullbackAdj_counit_app, CategoryTheory.SmallObject.πFunctorObj_eq, CategoryTheory.MonoOver.inf_map_app, CategoryTheory.TwoSquare.costructuredArrowDownwardsPrecomp_map, CategoryTheory.SmallObject.objMap_comp, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceFunctor_obj_left, CategoryTheory.Functor.LeftExtension.postcompose₂_map_left, CategoryTheory.ChosenPullbacksAlong.isoInv_mapPullbackAdj_counit_app_left, mapLeftIso_counitIso_inv_app_left, CategoryTheory.Over.post_obj, CategoryTheory.MonoOver.mkArrowIso_inv_hom_left, CategoryTheory.Arrow.inv_left_hom_right, CategoryTheory.Limits.Cone.equivCostructuredArrow_counitIso, CategoryTheory.WithTerminal.mkCommaObject_left_obj, CategoryTheory.Functor.RightExtension.postcompose₂_obj_hom_app, CategoryTheory.ObjectProperty.ColimitOfShape.toCostructuredArrow_map, mapRightIso_counitIso_hom_app_left, CategoryTheory.Functor.RightExtension.precomp_obj_hom_app, CategoryTheory.StructuredArrow.commaMapEquivalenceCounitIso_hom_app_right_right, mapRightId_hom_app_left, CategoryTheory.Pseudofunctor.isPrestackFor_iff, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceFunctor_map_left, CategoryTheory.Functor.RightExtension.precomp_map_right, CategoryTheory.ChosenPullbacksAlong.Over.lift_left, CategoryTheory.Square.fromArrowArrowFunctor_obj_f₁₂, CategoryTheory.Over.mapId_hom_app_left, mapLeftEq_inv_app_left, CategoryTheory.Square.toArrowArrowFunctor_map_left_left, CategoryTheory.Limits.kernel_map_comp_kernelSubobjectIso_inv, CategoryTheory.Abelian.coimageImageComparisonFunctor_map, CategoryTheory.MonoOver.w_assoc, CategoryTheory.CostructuredArrow.map_map_left, CategoryTheory.MorphismProperty.over_iff, CategoryTheory.CostructuredArrow.map₂_map_left, CategoryTheory.SimplicialObject.Augmented.ExtraDegeneracy.s'_comp_ε_assoc, CategoryTheory.WithInitial.equivComma_inverse_obj_obj, CategoryTheory.Square.fromArrowArrowFunctor'_obj_X₁, CategoryTheory.Over.isPullback_of_binaryFan_isLimit, CategoryTheory.MorphismProperty.commaObj_iff, CategoryTheory.Pseudofunctor.IsStackFor.isEquivalence, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_hom_left_comp_assoc, AlgebraicGeometry.Scheme.Cover.pullbackCoverOverProp_X, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceFunctor_obj_right, CategoryTheory.Over.whiskerLeft_left_fst_assoc, CategoryTheory.Functor.RightExtension.postcompose₂ObjMkIso_inv_left_app, CategoryTheory.CostructuredArrow.preEquivalence.inverse_obj_left_left, CategoryTheory.MonoOver.pullback_obj_left, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.functor_obj_left_left, CategoryTheory.Under.pushout_obj, CategoryTheory.MorphismProperty.Over.w, CategoryTheory.SimplicialObject.Augmented.ExtraDegeneracy.s_comp_δ₀, CategoryTheory.Square.toArrowArrowFunctor_obj_right_left, CategoryTheory.Functor.RightExtension.postcompose₂_map_left_app, mapFst_hom_app, CategoryTheory.Over.coprodObj_obj, AlgebraicGeometry.isClosedImmersion_equalizer_ι_left, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.trans_app_left, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_fst_fst, CategoryTheory.Functor.RightExtension.postcompose₂_obj_left_obj, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_pullback_obj, CategoryTheory.CostructuredArrow.ofDiagEquivalence.functor_obj_left_right_as, CategoryTheory.StructuredArrow.preEquivalenceInverse_map_right_right, mapLeft_map_right, mapLeft_obj_left, CategoryTheory.CostructuredArrow.IsUniversal.fac, CategoryTheory.Subfunctor.equivalenceMonoOver_unitIso, CategoryTheory.Square.fromArrowArrowFunctor'_map_τ₄, CategoryTheory.Over.prodComparisonIso_pullback_Spec_inv_left_fst_fst', leftIso_hom, CategoryTheory.Functor.PushoutObjObj.ι_iso_of_iso_right_inv, CategoryTheory.MonoOver.subobjectMk_le_mk_of_hom, CategoryTheory.Over.whiskerLeft_left_snd_assoc, CategoryTheory.WithInitial.commaFromUnder_obj_left, CategoryTheory.ParametrizedAdjunction.inl_arrowHomEquiv_symm_apply_left_assoc, CategoryTheory.CostructuredArrow.grothendieckProj_obj, CategoryTheory.Over.equivalenceOfIsTerminal_unitIso, CategoryTheory.Square.toArrowArrowFunctor_obj_left_right, CategoryTheory.TwoSquare.EquivalenceJ.functor_obj, TopologicalSpace.Opens.coe_overEquivalence_inverse_obj_left, toPUnitIdEquiv_inverse_obj_left, CategoryTheory.Over.iteratedSliceEquiv_counitIso, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_inverse_obj, CategoryTheory.StructuredArrow.w, CategoryTheory.Functor.RightExtension.postcompose₂_map_right, CategoryTheory.Square.toArrowArrowFunctor'_map_left_left, CategoryTheory.Over.leftUnitor_inv_left_fst_assoc, CategoryTheory.Limits.Cone.fromCostructuredArrow_obj_pt, CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtensionAt.isoLimit_inv_π_assoc, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left, CategoryTheory.Sieve.forallYonedaIsSheaf_iff_colimit, CategoryTheory.Functor.PullbackObjObj.mapArrowRight_id, CategoryTheory.WithTerminal.liftFromOver_obj_map, CategoryTheory.Functor.LeftExtension.precomp_map_left, mapLeftIso_functor_obj_hom, CategoryTheory.Abelian.Pseudoelement.pseudoZero_aux, CategoryTheory.StructuredArrow.commaMapEquivalenceUnitIso_hom_app_right_right, CategoryTheory.CostructuredArrow.mapNatIso_counitIso_hom_app_left, CategoryTheory.Limits.MonoFactorisation.ofArrowIso_I, CategoryTheory.MorphismProperty.comma_iso_iff, CategoryTheory.StructuredArrow.pre_map_right, CategoryTheory.Arrow.hom_inv_id_left, CategoryTheory.StructuredArrow.w_prod_fst_assoc, CategoryTheory.WithInitial.coconeEquiv_inverse_map_hom_right, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.comp_homEquiv_symm, leftIso_inv, CategoryTheory.Functor.PushoutObjObj.mapArrowLeft_left, CategoryTheory.Functor.ranObjObjIsoLimit_hom_π, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryToUnit_mapPullbackAdj_counit_app, CategoryTheory.subterminalsEquivMonoOverTerminal_unitIso, CategoryTheory.overToCoalgebra_obj_A, CategoryTheory.SimplicialObject.Augmented.rightOp_hom_app, CategoryTheory.Over.postEquiv_unitIso, CategoryTheory.WithInitial.equivComma_counitIso_inv_app_left, CategoryTheory.Limits.ImageFactorisation.ofArrowIso_isImage, CategoryTheory.Pseudofunctor.IsStackFor.essSurj, CategoryTheory.Over.associator_inv_left_fst_snd_assoc, CategoryTheory.CosimplicialObject.Augmented.leftOp_left_obj, mapRight_map_left, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_mapPullbackAdj_counit_app, CategoryTheory.SimplicialObject.Augmented.rightOp_left, CategoryTheory.Arrow.inv_hom_id_left, CategoryTheory.Functor.LeftExtension.postcomp₁_map_left, CategoryTheory.Square.fromArrowArrowFunctor'_map_τ₂, CategoryTheory.Functor.RightExtension.coneAtFunctor_map_hom, CategoryTheory.CechNerveTerminalFrom.hasWidePullback, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_left_comp, CategoryTheory.Over.rightUnitor_hom_left, CategoryTheory.MorphismProperty.Over.pullback_map_left, opFunctorCompSnd_inv_app, CategoryTheory.Square.fromArrowArrowFunctor_map_τ₁, CategoryTheory.OrthogonalReflection.D₁.ι_comp_t, CategoryTheory.Limits.HasImageMaps.has_image_map, CategoryTheory.Over.sections_map, CategoryTheory.Functor.RightExtension.coneAtWhiskerRightIso_hom_hom, mapRightIso_inverse_obj_hom, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceInverse_obj_left_right, CategoryTheory.MonoOver.commSqOfHasStrongEpiMonoFactorisation, CategoryTheory.rightAdjointOfCostructuredArrowTerminalsAux_symm_apply, CategoryTheory.StructuredArrow.mapIso_inverse_map_right, CategoryTheory.Over.μ_pullback_left_snd, CategoryTheory.Functor.PushoutObjObj.mapArrowLeft_right, CategoryTheory.Over.iteratedSliceBackward_obj, CategoryTheory.PreGaloisCategory.autEmbedding_range, CategoryTheory.subterminalsEquivMonoOverTerminal_counitIso, CategoryTheory.CostructuredArrow.homMk'_comp, id_left, CategoryTheory.CostructuredArrow.ofDiagEquivalence.inverse_map_left, CategoryTheory.WithTerminal.coneEquiv_unitIso_inv_app_hom_left, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_left_π, CategoryTheory.Over.map_obj_left, CategoryTheory.Over.epi_left_of_epi, CategoryTheory.SimplicialObject.Augmented.toArrow_obj_hom, CategoryTheory.CostructuredArrow.mapCompιCompGrothendieckProj_hom_app, preLeft_map_left, CategoryTheory.Sieve.overEquiv_symm_top, CategoryTheory.OrthogonalReflection.D₂.multispanIndex_fst, CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtensionAt.isoLimit_hom_π, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceFunctor_obj_left, CategoryTheory.Functor.PushoutObjObj.mapArrowLeft_comp_assoc, CategoryTheory.CostructuredArrow.eqToHom_left, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_fst, CategoryTheory.CostructuredArrow.mapNatIso_functor_map_left, CategoryTheory.instHomIsOverLeftDiscretePUnit, mapRightIso_unitIso_inv_app_left, CategoryTheory.Over.braiding_hom_left, CategoryTheory.MonoOver.instMonoHomDiscretePUnitObjOverForget, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_snd, CategoryTheory.ChosenPullbacksAlong.isoInv_pullback_obj_hom, CategoryTheory.CostructuredArrow.ιCompGrothendieckPrecompFunctorToCommaCompFst_hom_app, CategoryTheory.ChosenPullbacksAlong.iso_mapPullbackAdj_counit_app, CategoryTheory.MorphismProperty.Over.pullback_obj_hom, CategoryTheory.Functor.LeibnizAdjunction.adj_unit_app_right, equivProd_inverse_obj_left, CategoryTheory.StructuredArrow.projectSubobject_factors, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left_snd, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_snd_snd, CategoryTheory.overToCoalgebra_obj_a, CategoryTheory.MorphismProperty.Over.mapComp_inv_app_left, CategoryTheory.FunctorToTypes.mem_fromOverSubfunctor_iff, CategoryTheory.Over.μ_pullback_left_fst_fst, CategoryTheory.StructuredArrow.ofDiagEquivalence.inverse_obj_left_as, CategoryTheory.Over.iteratedSliceForward_map, CategoryTheory.simplicialToCosimplicialAugmented_map_right, CategoryTheory.MorphismProperty.underObj_iff, CategoryTheory.MonoOver.inf_obj, CategoryTheory.CostructuredArrow.pre_map_right, CategoryTheory.CosimplicialObject.Augmented.leftOp_hom_app, CategoryTheory.Square.fromArrowArrowFunctor'_map_τ₁, CategoryTheory.WithInitial.mkCommaObject_left, CategoryTheory.SmallObject.ιFunctorObj_naturality_assoc, CategoryTheory.StructuredArrow.mapNatIso_functor_obj_left, CategoryTheory.StructuredArrow.commaMapEquivalenceUnitIso_hom_app_right_left, CategoryTheory.MorphismProperty.Under.w_assoc, CategoryTheory.Arrow.square_to_iso_invert, CategoryTheory.MonoOver.top_left, CategoryTheory.Over.tensorUnit_left, CategoryTheory.StructuredArrow.preEquivalenceFunctor_map_right, CategoryTheory.toOverIteratedSliceForwardIsoPullback_inv_app_left, CategoryTheory.Over.hom_left_inv_left_assoc, CategoryTheory.Arrow.mk_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_hom_app_right_app, CategoryTheory.CategoryOfElements.costructuredArrowYonedaEquivalenceInverseπ_inv_app, CategoryTheory.StructuredArrow.preEquivalenceInverse_obj_hom_right, CategoryTheory.Functor.PullbackObjObj.mapArrowRight_left, CategoryTheory.ChosenPullbacksAlong.iso_pullback_map, CategoryTheory.Limits.image_map_comp_imageSubobjectIso_inv, CategoryTheory.Under.opEquivOpOver_inverse_obj, Types.monoOverEquivalenceSet_unitIso, CategoryTheory.TwoSquare.EquivalenceJ.functor_map, CategoryTheory.CostructuredArrow.costructuredArrowToOverEquivalence.inverse_obj, CategoryTheory.Over.iteratedSliceEquiv_inverse, CategoryTheory.MorphismProperty.IsCardinalForSmallObjectArgument.preservesColimit, CategoryTheory.StructuredArrow.mapIso_inverse_obj_left, TopCat.Presheaf.generateEquivalenceOpensLe_inverse'_obj_obj_left, CategoryTheory.MorphismProperty.instHasPullbackSndHomDiscretePUnitOfHasPullbacksAlongOfIsStableUnderBaseChangeAlong, CategoryTheory.cosimplicialToSimplicialAugmented_map, AlgebraicGeometry.Scheme.kerFunctor_obj, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_hom_app_comp_fst_assoc, mapRightEq_hom_app_left, CategoryTheory.SmallObject.functor_obj, CategoryTheory.StructuredArrow.commaMapEquivalenceUnitIso_inv_app_right_left, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.ι_isoColimit_inv, CategoryTheory.StructuredArrow.mapIso_functor_map_right, coneOfPreserves_pt_left, CategoryTheory.Under.costar_map_left, CategoryTheory.Over.whiskerRight_left_fst_assoc, post_map_right, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_left_map, CategoryTheory.WithTerminal.equivComma_inverse_map_app, CategoryTheory.Functor.PullbackObjObj.mapArrowLeft_right, CategoryTheory.Over.tensorHom_left_snd, CategoryTheory.WithInitial.ofCommaObject_map, CategoryTheory.Limits.Cone.overPost_π_app, CategoryTheory.Under.opEquivOpOver_counitIso, CategoryTheory.StructuredArrow.toUnder_map_left, CategoryTheory.StructuredArrow.w_prod_snd_assoc, CategoryTheory.WithTerminal.equivComma_inverse_obj_map, CategoryTheory.CostructuredArrow.preEquivalence.inverse_obj_hom_left, CategoryTheory.Functor.mapArrowFunctor_map_app_left, CategoryTheory.CostructuredArrow.preEquivalence.functor_map_left, CategoryTheory.Functor.RightExtension.postcomp₁_obj_hom_app, CategoryTheory.SmallObject.ιObj_naturality_assoc, CategoryTheory.Subobject.representative_coe, CategoryTheory.Square.fromArrowArrowFunctor_map_τ₂, CategoryTheory.Functor.ι_leftKanExtensionObjIsoColimit_hom, CategoryTheory.RetractArrow.unop_i_right, CategoryTheory.Limits.ImageMap.map_ι_assoc, CategoryTheory.Limits.kernel_map_comp_kernelSubobjectIso_inv_assoc, coconeOfPreserves_pt_left, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.inverse_obj_left_right_as, CategoryTheory.Square.toArrowArrowFunctor_map_left_right, CategoryTheory.WithTerminal.liftFromOver_map_app, CategoryTheory.StructuredArrow.preEquivalenceInverse_obj_left_as, CategoryTheory.Sieve.overEquiv_generate, CategoryTheory.Bicategory.LeftLift.ofIdComp_left_as, CategoryTheory.Arrow.left_hom_inv_right, CategoryTheory.Subobject.inf_eq_map_pullback, CategoryTheory.Over.postMap_app, instIsIsoLeft, CategoryTheory.Square.toArrowArrowFunctor'_obj_left_left, CategoryTheory.Functor.PushoutObjObj.mapArrowRight_comp, CategoryTheory.CostructuredArrow.preEquivalence.inverse_obj_right_as, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorToComma_map_right, CategoryTheory.Over.ConstructProducts.conesEquivInverseObj_π_app, CategoryTheory.RetractArrow.instIsSplitEpiLeftRArrow, CategoryTheory.Functor.LeftExtension.coconeAt_ι_app, equivProd_functor_map, CategoryTheory.Presheaf.isLimit_iff_isSheafFor, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_inv_app_comp_fst_assoc, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.functor_obj_right_left_as, CategoryTheory.Over.lift_left, CategoryTheory.Under.postAdjunctionRight_counit_app_right, CategoryTheory.Functor.LeftExtension.mk_left_as, CategoryTheory.TwoSquare.EquivalenceJ.inverse_obj, AlgebraicGeometry.Scheme.restrictFunctor_obj_left, mapLeftIso_inverse_map_left, CategoryTheory.MonoOver.congr_counitIso, CategoryTheory.Arrow.w_assoc, CategoryTheory.CostructuredArrow.preEquivalence.inverse_map_left_left, preLeft_obj_left, CategoryTheory.SmallObject.functorialFactorizationData_p_app, CategoryTheory.Over.opEquivOpUnder_functor_map, mapLeftComp_hom_app_left, CategoryTheory.Functor.PushoutObjObj.mapArrowRight_right, CategoryTheory.Functor.LeftExtension.precomp₂_map_left, CategoryTheory.OverPresheafAux.counitForward_counitBackward, CategoryTheory.Limits.multispanIndexCoend_fst, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryToUnit_pullback_map, CategoryTheory.StructuredArrow.mapIso_inverse_map_left, mapLeft_obj_hom, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_hom_app_comp_fst, TopCat.Presheaf.generateEquivalenceOpensLe_functor'_map, CategoryTheory.CostructuredArrow.ιCompGrothendieckProj_hom_app, CategoryTheory.CostructuredArrow.pre_map_left, CategoryTheory.SmallObject.iterationFunctorMapSuccAppArrowIso_hom_right_right_comp, HomotopicalAlgebra.weakEquivalences_over_iff, CategoryTheory.ChosenPullbacksAlong.Over.fst_eq_fst', CategoryTheory.CostructuredArrow.mapNatIso_functor_map_right, CategoryTheory.WithTerminal.coneEquiv_functor_obj_pt, CategoryTheory.Under.opEquivOpOver_functor_map, CategoryTheory.CostructuredArrow.mapIso_inverse_obj_hom, CategoryTheory.CostructuredArrow.projectQuotient_factors, CategoryTheory.Functor.essImage_overPost, CategoryTheory.WithTerminal.commaFromOver_obj_left, TopologicalSpace.Opens.overEquivalence_counitIso_hom_app, CategoryTheory.Over.fst_left, CategoryTheory.Over.prodLeftIsoPullback_hom_fst, CategoryTheory.Over.associator_hom_left_fst_assoc, equivProd_unitIso_inv_app_left, CategoryTheory.Limits.pullbackConeEquivBinaryFan_unitIso, CategoryTheory.SmallObject.preservesColimit, CategoryTheory.Over.isMonHom_pullbackFst_id_right, CategoryTheory.Over.pullback_obj_hom, CategoryTheory.Over.forgetAdjStar_unit_app_left, unopFunctorCompSnd_hom_app, HomotopicalAlgebra.instWeakEquivalenceLeftDiscretePUnitOfOver, CategoryTheory.Pseudofunctor.isPrestackFor_iff_isSheafFor', preLeft_map_right, CategoryTheory.Functor.leibnizPullback_map_app, CategoryTheory.CostructuredArrow.epi_iff_epi_left, CategoryTheory.StructuredArrow.toCostructuredArrow'_map, CategoryTheory.Over.tensorObj_left, CategoryTheory.RetractArrow.i_w_assoc, CategoryTheory.CostructuredArrow.preEquivalence.inverse_obj_left_right_as, Types.monoOverEquivalenceSet_counitIso, CategoryTheory.CostructuredArrow.unop_left_comp_underlyingIso_hom_unop, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.pullbackGluedIso_inv_snd, CategoryTheory.instIsCocontinuousOverLeftDiscretePUnitIteratedSliceForwardOver, CategoryTheory.CostructuredArrow.mapIso_inverse_map_right, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.pullbackGluedIso_inv_fst, CategoryTheory.StructuredArrow.toCostructuredArrow'_obj, CategoryTheory.Functor.PushoutObjObj.mapArrowLeft_comp, CategoryTheory.Abelian.app_hom, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceInverse_obj_left_as, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.inverse_obj_left_left, CategoryTheory.SmallObject.hasColimitsOfShape_discrete, post_obj_hom, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_fst_snd', CategoryTheory.SmallObject.πObj_naturality, CategoryTheory.Functor.PullbackObjObj.π_iso_of_iso_left_hom, CategoryTheory.instIsDenseSubsiteOverLeftDiscretePUnitOverInverseIteratedSliceEquiv, CategoryTheory.Over.coprod_map_app, CategoryTheory.Functor.ι_leftKanExtensionObjIsoColimit_hom_assoc, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.functor_obj, CategoryTheory.CostructuredArrow.mapIso_inverse_map_left, CategoryTheory.StructuredArrow.IsUniversal.fac_assoc, CategoryTheory.Arrow.equivSigma_apply_snd_fst, CategoryTheory.StructuredArrow.mapNatIso_inverse_map_left, CategoryTheory.Presheaf.subsingleton_iff_isSeparatedFor, CategoryTheory.WithInitial.ofCommaMorphism_app, CategoryTheory.CostructuredArrow.map₂_obj_hom, CategoryTheory.ChosenPullbacksAlong.Over.leftUnitor_inv_left_snd_assoc, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_inv_left_fst_assoc, CategoryTheory.CosimplicialObject.Augmented.const_obj_left, TopCat.Presheaf.generateEquivalenceOpensLe_inverse'_map, CategoryTheory.Functor.PushoutObjObj.ι_iso_of_iso_left_hom, CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtensionAt.isoLimit_hom_π_assoc, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_inverse_map, CategoryTheory.CostructuredArrow.map₂_obj_left, CategoryTheory.TwoSquare.costructuredArrowRightwards_obj, AlgebraicGeometry.Scheme.mem_toGrothendieck_smallPretopology, colimitAuxiliaryCocone_ι_app, CategoryTheory.Square.toArrowArrowFunctor'_obj_right_left, CategoryTheory.RetractArrow.instIsSplitMonoLeftIArrow, CategoryTheory.MorphismProperty.Over.mapId_hom_app_left, mapRightIso_inverse_obj_left, CategoryTheory.StructuredArrow.IsUniversal.fac, CategoryTheory.Square.fromArrowArrowFunctor'_obj_f₂₄, CategoryTheory.CosimplicialObject.comp_left, CategoryTheory.StructuredArrow.ofDiagEquivalence.functor_obj_left_as, CategoryTheory.MorphismProperty.Over.pullbackComp_left_fst_fst, CategoryTheory.OverPresheafAux.counitAuxAux_hom, ext_iff, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceInverse_obj_hom, CategoryTheory.Limits.kernelSubobjectMap_arrow, CategoryTheory.Over.associator_hom_left_snd_snd, CategoryTheory.Over.associator_inv_left_snd_assoc, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_obj_map, CategoryTheory.Over.coprodObj_map, CategoryTheory.MorphismProperty.arrow_iso_iff, CategoryTheory.Functor.leibnizPullback_obj_obj, CategoryTheory.StructuredArrow.commaMapEquivalenceCounitIso_inv_app_left_right, mapRightIso_inverse_map_left, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_inv_left_fst, CategoryTheory.Under.w_assoc, CategoryTheory.Limits.image.factor_map, CategoryTheory.StructuredArrow.w_assoc, CategoryTheory.Arrow.hom_inv_id_left_assoc, CategoryTheory.StructuredArrow.mapNatIso_functor_map_left, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_inv_app_comp_snd_assoc, CategoryTheory.CosimplicialObject.Augmented.point_obj, CategoryTheory.Under.opEquivOpOver_inverse_map, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_obj_right, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_functor_map_right, CategoryTheory.Over.iteratedSliceForward_obj, CategoryTheory.Functor.essImage.of_overPost, CategoryTheory.Functor.RightExtension.postcompose₂ObjMkIso_hom_left_app, CategoryTheory.CostructuredArrow.projectQuotient_mk, CategoryTheory.CostructuredArrow.preEquivalence.functor_obj_left, CategoryTheory.MorphismProperty.Comma.id_left, CategoryTheory.CostructuredArrow.toStructuredArrow_map, CategoryTheory.Over.whiskerLeft_left_snd, CategoryTheory.Functor.leibnizPushout_map_app, CategoryTheory.Over.w_assoc, CategoryTheory.OverPresheafAux.counitForward_val_fst, mapRight_map_right, CategoryTheory.Square.toArrowArrowFunctor'_obj_left_right, CategoryTheory.CostructuredArrow.IsUniversal.fac_assoc, CategoryTheory.Pseudofunctor.IsPrestackFor.nonempty_fullyFaithful, mapFst_inv_app, CategoryTheory.Subfunctor.equivalenceMonoOver_counitIso, CategoryTheory.Square.toArrowArrowFunctor_obj_left_hom, CategoryTheory.Abelian.coimIsoIm_hom_app, CategoryTheory.Limits.diagonal_pullback_fst, CategoryTheory.Bicategory.RightLift.w, CategoryTheory.Over.iteratedSliceForwardNaturalityIso_inv_app, CategoryTheory.CategoryOfElements.fromCostructuredArrow_obj_fst, CategoryTheory.StructuredArrow.pre_obj_left, CategoryTheory.Under.w, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_fst_assoc, CategoryTheory.CostructuredArrow.costructuredArrowToOverEquivalence.inverse_map, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_left_left_as, CategoryTheory.CostructuredArrow.mapIso_counitIso_inv_app_left, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_left_obj, CategoryTheory.MorphismProperty.Over.pullbackCongr_hom_app_left_fst_assoc, CategoryTheory.Square.fromArrowArrowFunctor'_obj_f₁₂, CategoryTheory.MonoOver.mono_obj_hom, CategoryTheory.Sieve.overEquiv_iff, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left_snd, mapLeftIso_functor_map_right, CategoryTheory.Over.opEquivOpUnder_functor_obj, CategoryTheory.OrthogonalReflection.D₂.multispanIndex_snd, CategoryTheory.Limits.KernelFork.mapOfIsLimit_ι, HomotopicalAlgebra.fibrations_over_iff, CategoryTheory.StructuredArrow.commaMapEquivalenceCounitIso_inv_app_right_right, CategoryTheory.Functor.costructuredArrowMapCocone_ι_app, CategoryTheory.Over.iteratedSliceForwardIsoPost_hom_app, equivProd_functor_obj, CategoryTheory.Bicategory.RightExtension.w, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_inv_app_right_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_inv_app_left, CategoryTheory.Over.tensorObj_hom, CategoryTheory.StructuredArrow.toCostructuredArrow_obj, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.comp_homEquiv_symm_assoc, map_obj_left, CategoryTheory.Over.postAdjunctionLeft_counit_app_left, CategoryTheory.CostructuredArrow.preEquivalence.inverse_obj_left_hom, mapRightComp_inv_app_left, CategoryTheory.Limits.pullbackConeEquivBinaryFan_inverse_map_hom, CategoryTheory.Arrow.iso_w', TopCat.Presheaf.generateEquivalenceOpensLe_inverse, CategoryTheory.Over.mapComp_inv_app_left, CategoryTheory.CosimplicialObject.id_left, CategoryTheory.Limits.ker_map, CategoryTheory.Over.mono_left_of_mono, CategoryTheory.MorphismProperty.costructuredArrowObj_iff, CategoryTheory.MorphismProperty.Over.map_obj_hom, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_obj_hom, CategoryTheory.CostructuredArrow.IsUniversal.hom_desc, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_fst_fst_assoc, CategoryTheory.MonoOver.isIso_iff_isIso_left, CategoryTheory.Abelian.coimIsoIm_inv_app, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_snd_snd_assoc, CategoryTheory.MonoOver.instIsIsoLeftDiscretePUnitHomFullSubcategoryOverIsMono, CategoryTheory.Functor.RightExtension.precomp_obj_left, CategoryTheory.WithTerminal.coneEquiv_functor_map_hom, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left, CategoryTheory.Square.fromArrowArrowFunctor_map_τ₄, CategoryTheory.Presheaf.isSheaf_iff_isLimit_pretopology, CategoryTheory.CostructuredArrow.mapIso_inverse_obj_left, CategoryTheory.OverPresheafAux.counitForward_naturality₂, CommRingCat.pushout_inr_tensorProdObjIsoPushoutObj_inv_right
|
leftIso 📖 | CompOp | 2 mathmath: leftIso_hom, leftIso_inv
|
map 📖 | CompOp | 31 mathmath: CategoryTheory.StructuredArrow.commaMapEquivalenceInverse_map, map_obj_hom, map_final, CategoryTheory.StructuredArrow.commaMapEquivalenceCounitIso_hom_app_left_right, CategoryTheory.StructuredArrow.commaMapEquivalenceUnitIso_inv_app_right_right, map_map_right, mapSnd_inv_app, faithful_map, map_obj_right, map_map_left, isEquivalenceMap, CategoryTheory.StructuredArrow.commaMapEquivalenceInverse_obj, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_obj_left, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_map_left, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_map_right, full_map, CategoryTheory.StructuredArrow.commaMapEquivalenceCounitIso_hom_app_right_right, mapFst_hom_app, CategoryTheory.StructuredArrow.commaMapEquivalenceUnitIso_hom_app_right_right, essSurj_map, mapSnd_hom_app, CategoryTheory.StructuredArrow.commaMapEquivalenceUnitIso_hom_app_right_left, CategoryTheory.StructuredArrow.commaMapEquivalenceUnitIso_inv_app_right_left, map_fst, CategoryTheory.StructuredArrow.commaMapEquivalenceCounitIso_inv_app_left_right, map_snd, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_obj_right, mapFst_inv_app, CategoryTheory.StructuredArrow.commaMapEquivalenceCounitIso_inv_app_right_right, map_obj_left, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_obj_hom
|
mapFst 📖 | CompOp | 2 mathmath: mapFst_hom_app, mapFst_inv_app
|
mapLeft 📖 | CompOp | 38 mathmath: CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_hom_right, mapLeftEq_inv_app_right, mapLeft_map_left, mapLeftIso_unitIso_inv_app_left, mapLeftEq_hom_app_left, mapLeftIso_counitIso_inv_app_right, CategoryTheory.CostructuredArrow.mapNatIso_unitIso_inv_app_left, CategoryTheory.TwoSquare.costructuredArrowRightwards_map, mapLeftId_hom_app_right, mapLeftComp_inv_app_left, mapLeftIso_unitIso_inv_app_right, CategoryTheory.CostructuredArrow.mapNatIso_counitIso_inv_app_left, mapLeftIso_unitIso_hom_app_left, mapLeftComp_inv_app_right, mapLeftIso_counitIso_hom_app_left, CategoryTheory.CostructuredArrow.mapNatIso_unitIso_hom_app_left, mapLeftEq_hom_app_right, CategoryTheory.StructuredArrow.mapIso_unitIso_inv_app_right, mapLeft_obj_right, mapLeftId_hom_app_left, mapLeftId_inv_app_left, mapLeftIso_unitIso_hom_app_right, mapLeftIso_counitIso_inv_app_left, mapLeftEq_inv_app_left, mapLeftIso_counitIso_hom_app_right, mapLeft_map_right, mapLeft_obj_left, CategoryTheory.TwoSquare.EquivalenceJ.functor_obj, CategoryTheory.StructuredArrow.mapIso_unitIso_hom_app_right, CategoryTheory.CostructuredArrow.mapNatIso_counitIso_hom_app_left, CategoryTheory.TwoSquare.EquivalenceJ.functor_map, mapLeftComp_hom_app_left, mapLeft_obj_hom, CategoryTheory.TwoSquare.costructuredArrowRightwards_obj, mapLeftId_inv_app_right, mapLeftComp_hom_app_right, CategoryTheory.StructuredArrow.mapIso_counitIso_hom_app_right, CategoryTheory.StructuredArrow.mapIso_counitIso_inv_app_right
|
mapLeftComp 📖 | CompOp | 4 mathmath: mapLeftComp_inv_app_left, mapLeftComp_inv_app_right, mapLeftComp_hom_app_left, mapLeftComp_hom_app_right
|
mapLeftEq 📖 | CompOp | 4 mathmath: mapLeftEq_inv_app_right, mapLeftEq_hom_app_left, mapLeftEq_hom_app_right, mapLeftEq_inv_app_left
|
mapLeftId 📖 | CompOp | 4 mathmath: mapLeftId_hom_app_right, mapLeftId_hom_app_left, mapLeftId_inv_app_left, mapLeftId_inv_app_right
|
mapLeftIso 📖 | CompOp | 18 mathmath: mapLeftIso_inverse_map_right, mapLeftIso_functor_map_left, mapLeftIso_unitIso_inv_app_left, mapLeftIso_counitIso_inv_app_right, mapLeftIso_inverse_obj_left, mapLeftIso_inverse_obj_right, mapLeftIso_functor_obj_left, mapLeftIso_unitIso_inv_app_right, mapLeftIso_unitIso_hom_app_left, mapLeftIso_counitIso_hom_app_left, mapLeftIso_inverse_obj_hom, mapLeftIso_unitIso_hom_app_right, mapLeftIso_counitIso_inv_app_left, mapLeftIso_counitIso_hom_app_right, mapLeftIso_functor_obj_hom, mapLeftIso_inverse_map_left, mapLeftIso_functor_obj_right, mapLeftIso_functor_map_right
|
mapRight 📖 | CompOp | 41 mathmath: mapRightIso_counitIso_inv_app_left, CategoryTheory.TwoSquare.EquivalenceJ.inverse_map, mapRightEq_hom_app_right, mapRightIso_counitIso_inv_app_right, mapRight_obj_hom, CategoryTheory.CostructuredArrow.mapIso_unitIso_hom_app_left, mapRightIso_unitIso_inv_app_right, mapRight_obj_left, mapRightId_inv_app_left, CategoryTheory.CostructuredArrow.mapIso_unitIso_inv_app_left, mapRightComp_inv_app_right, CategoryTheory.StructuredArrow.mapNatIso_unitIso_hom_app_right, CategoryTheory.CostructuredArrow.mapIso_counitIso_hom_app_left, mapRightEq_inv_app_left, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_counitIso_inv_app_right_app, mapRightComp_hom_app_left, mapRightIso_counitIso_hom_app_right, mapRightIso_unitIso_hom_app_left, CategoryTheory.StructuredArrow.mapNatIso_counitIso_hom_app_right, mapRightId_hom_app_right, mapRightIso_counitIso_hom_app_left, mapRightId_hom_app_left, CategoryTheory.StructuredArrow.mapNatIso_unitIso_inv_app_right, mapRight_map_left, mapRightId_inv_app_right, mapRightComp_hom_app_right, CategoryTheory.TwoSquare.structuredArrowDownwards_map, CategoryTheory.TwoSquare.structuredArrowDownwards_obj, mapRightIso_unitIso_inv_app_left, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_unitIso_hom_app_right_app, mapRightEq_hom_app_left, mapRightEq_inv_app_right, CategoryTheory.TwoSquare.EquivalenceJ.inverse_obj, mapRight_obj_right, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_counitIso_hom_app_right_app, CategoryTheory.StructuredArrow.mapNatIso_counitIso_inv_app_right, mapRight_map_right, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_unitIso_inv_app_right_app, CategoryTheory.CostructuredArrow.mapIso_counitIso_inv_app_left, mapRightComp_inv_app_left, mapRightIso_unitIso_hom_app_right
|
mapRightComp 📖 | CompOp | 4 mathmath: mapRightComp_inv_app_right, mapRightComp_hom_app_left, mapRightComp_hom_app_right, mapRightComp_inv_app_left
|
mapRightEq 📖 | CompOp | 4 mathmath: mapRightEq_hom_app_right, mapRightEq_inv_app_left, mapRightEq_hom_app_left, mapRightEq_inv_app_right
|
mapRightId 📖 | CompOp | 4 mathmath: mapRightId_inv_app_left, mapRightId_hom_app_right, mapRightId_hom_app_left, mapRightId_inv_app_right
|
mapRightIso 📖 | CompOp | 18 mathmath: mapRightIso_counitIso_inv_app_left, mapRightIso_counitIso_inv_app_right, mapRightIso_functor_map_left, mapRightIso_inverse_map_right, mapRightIso_unitIso_inv_app_right, mapRightIso_functor_obj_right, mapRightIso_functor_obj_hom, mapRightIso_inverse_obj_right, mapRightIso_functor_map_right, mapRightIso_functor_obj_left, mapRightIso_counitIso_hom_app_right, mapRightIso_unitIso_hom_app_left, mapRightIso_counitIso_hom_app_left, mapRightIso_inverse_obj_hom, mapRightIso_unitIso_inv_app_left, mapRightIso_inverse_obj_left, mapRightIso_inverse_map_left, mapRightIso_unitIso_hom_app_right
|
mapSnd 📖 | CompOp | 2 mathmath: mapSnd_inv_app, mapSnd_hom_app
|
natTrans 📖 | CompOp | 1 mathmath: natTrans_app
|
opEquiv 📖 | CompOp | 4 mathmath: opEquiv_counitIso, opEquiv_functor, opEquiv_unitIso, opEquiv_inverse
|
opFunctor 📖 | CompOp | 9 mathmath: opFunctor_obj, opEquiv_counitIso, opFunctor_map, opFunctorCompSnd_hom_app, opFunctorCompFst_hom_app, opFunctorCompFst_inv_app, opEquiv_functor, opEquiv_unitIso, opFunctorCompSnd_inv_app
|
opFunctorCompFst 📖 | CompOp | 2 mathmath: opFunctorCompFst_hom_app, opFunctorCompFst_inv_app
|
opFunctorCompSnd 📖 | CompOp | 2 mathmath: opFunctorCompSnd_hom_app, opFunctorCompSnd_inv_app
|
post 📖 | CompOp | 9 mathmath: instEssSurjCompPostOfFull, post_obj_right, instFaithfulCompPost, post_map_left, isEquivalence_post, post_obj_left, instFullCompPostOfFaithful, post_map_right, post_obj_hom
|
postIso 📖 | CompOp | — |
preLeft 📖 | CompOp | 13 mathmath: instFaithfulCompPreLeft, preLeft_obj_right, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceInverse_map_right_left, instFullCompPreLeft, isEquivalence_preLeft, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceInverse_map_left_left, instEssSurjCompPreLeft, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceInverse_map_right_right, preLeft_map_left, preLeft_obj_left, preLeft_map_right, preLeft_obj_hom, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceInverse_map_left_right
|
preLeftIso 📖 | CompOp | — |
preRight 📖 | CompOp | 9 mathmath: preRight_obj_left, preRight_map_left, preRight_map_right, preRight_obj_right, preRight_obj_hom, instFullCompPreRight, instFaithfulCompPreRight, isEquivalence_preRight, instEssSurjCompPreRight
|
preRightIso 📖 | CompOp | — |
right 📖 | CompOp | 1014 mathmath: CommRingCat.tensorProd_map_right, CategoryTheory.Over.associator_hom_left_snd_fst_assoc, CategoryTheory.CostructuredArrow.homMk'_id, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left_fst, CategoryTheory.Functor.LeftExtension.coconeAtFunctor_map_hom, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_hom_right, CategoryTheory.Over.prodLeftIsoPullback_hom_snd_assoc, CategoryTheory.LocalizerMorphism.IsRightDerivabilityStructure.Constructor.fromRightResolution_map, CategoryTheory.Limits.HasImage.of_arrow_iso, CategoryTheory.StructuredArrow.projectSubobject_mk, CategoryTheory.Over.μ_pullback_left_snd', CategoryTheory.WithTerminal.mkCommaObject_right, CategoryTheory.StructuredArrow.map_map_right, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceInverse_obj_right_left, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_snd_fst_assoc, CategoryTheory.Functor.leibnizPullback_obj_map, CategoryTheory.MorphismProperty.FunctorialFactorizationData.mapZ_p, CategoryTheory.WithInitial.equivComma_functor_obj_right_obj, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceFunctor_map_right, snd_obj, mapLeftEq_inv_app_right, mapLeftIso_inverse_map_right, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_functor_map_left, CategoryTheory.Functor.LeftExtension.precomp₂_obj_hom_app, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.inverse_obj_right_right, CategoryTheory.Limits.MonoFactorisation.ofArrowIso_e, opFunctor_obj, CategoryTheory.Limits.multicospanIndexEnd_fst, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left_fst, CategoryTheory.StructuredArrow.map_obj_right, CategoryTheory.CategoryOfElements.fromStructuredArrow_map, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_pullback_map, CategoryTheory.WithTerminal.equivComma_counitIso_hom_app_left_app, CategoryTheory.OverPresheafAux.unitAux_hom, CategoryTheory.CosimplicialObject.id_right_app, CategoryTheory.Over.iteratedSliceBackward_map, CategoryTheory.CostructuredArrow.ofDiagEquivalence.functor_map_left_left, CategoryTheory.Over.associator_inv_left_snd, CategoryTheory.Functor.mapArrow_obj, CategoryTheory.StructuredArrow.commaMapEquivalenceInverse_map, CategoryTheory.Under.postComp_inv_app_right, CategoryTheory.Bicategory.LeftExtension.w_assoc, map_obj_hom, CategoryTheory.CosimplicialObject.augment_right, CategoryTheory.StructuredArrow.ofDiagEquivalence.inverse_map_right, CategoryTheory.StructuredArrow.w_prod_fst, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_left_hom, CategoryTheory.SimplicialObject.comp_right, CategoryTheory.StructuredArrow.homMk'_comp, CategoryTheory.WithTerminal.equivComma_counitIso_inv_app_left_app, CategoryTheory.Under.forgetMapInitial_inv_app, CategoryTheory.Arrow.hom_inv_id_right_assoc, CategoryTheory.CostructuredArrow.w_assoc, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_inverse_map_app, CategoryTheory.MonoOver.isIso_left_iff_subobjectMk_eq, CategoryTheory.Functor.PullbackObjObj.mapArrowRight_right, CategoryTheory.Functor.PushoutObjObj.mapArrowRight_id, CategoryTheory.Functor.PullbackObjObj.mapArrowLeft_id, mapLeft_map_left, CategoryTheory.SmallObject.πObj_ιIteration_app_right, CategoryTheory.WithInitial.coconeEquiv_functor_obj_pt, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.inverse_obj_right_left_as, CategoryTheory.Under.epi_right_of_epi, CategoryTheory.CostructuredArrow.preEquivalence.functor_obj_right_as, CategoryTheory.Limits.IsImage.ofArrowIso_lift, CategoryTheory.StructuredArrow.mapIso_inverse_obj_hom, CategoryTheory.Under.postCongr_inv_app_right, CategoryTheory.Under.mono_right_of_mono, CategoryTheory.Over.whiskerLeft_left, CategoryTheory.CosimplicialObject.Augmented.leftOp_right, CategoryTheory.Limits.image.map_id, CategoryTheory.Bicategory.LeftExtension.ofCompId_right, CategoryTheory.MonoOver.isIso_iff_subobjectMk_eq, CategoryTheory.Functor.RightExtension.postcompose₂_obj_right, CategoryTheory.Functor.LeftExtension.postcomp₁_map_right_app, CategoryTheory.CostructuredArrow.IsUniversal.existsUnique, CategoryTheory.Functor.leftKanExtensionUnit_leftKanExtension_map_leftKanExtensionObjIsoColimit_hom, CategoryTheory.ParametrizedAdjunction.inr_arrowHomEquiv_symm_apply_left, CategoryTheory.CostructuredArrow.w_prod_fst, CategoryTheory.SimplicialObject.Augmented.toArrow_map_right, CategoryTheory.Square.fromArrowArrowFunctor_map_τ₃, CategoryTheory.StructuredArrow.map₂_obj_right, CommRingCat.mkUnder_ext_iff, CategoryTheory.StructuredArrow.commaMapEquivalenceCounitIso_hom_app_left_right, mapLeftIso_functor_map_left, CategoryTheory.CostructuredArrow.toOver_obj_right, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.pullbackGluedIso_inv_snd_assoc, CategoryTheory.Bicategory.LeftLift.w_assoc, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.isIso_hom_app, CategoryTheory.TwoSquare.EquivalenceJ.inverse_map, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_inverse_obj, CategoryTheory.StructuredArrow.commaMapEquivalenceUnitIso_inv_app_right_right, mapRightEq_hom_app_right, CategoryTheory.CostructuredArrow.eq_mk, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.isPullback, CategoryTheory.WithInitial.coconeEquiv_inverse_obj_pt_right, mapRightIso_counitIso_inv_app_right, CategoryTheory.MorphismProperty.Comma.comp_right, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_unitIso, CategoryTheory.StructuredArrow.map₂_map_right, CategoryTheory.Functor.PullbackObjObj.π_iso_of_iso_left_inv, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_right_as, CommRingCat.toAlgHom_comp, instIsIsoRight, CategoryTheory.StructuredArrow.preEquivalenceInverse_obj_right_hom, CategoryTheory.Limits.image.map_comp, CategoryTheory.ChosenPullbacksAlong.iso_mapPullbackAdj_unit_app, CategoryTheory.toOverPullbackIsoToOver_inv_app_left, CategoryTheory.Functor.ι_leftKanExtensionObjIsoColimit_inv, CategoryTheory.CostructuredArrow.w_prod_fst_assoc, CategoryTheory.WithInitial.ofCommaObject_obj, CategoryTheory.Functor.LeftExtension.precomp_map_right, CategoryTheory.WithTerminal.equivComma_inverse_obj_obj, CategoryTheory.StructuredArrow.ofDiagEquivalence.functor_obj_right_right, CategoryTheory.SimplicialObject.Augmented.w₀, CategoryTheory.Functor.RightExtension.coneAt_π_app, mapRightIso_functor_map_left, mapLeftIso_counitIso_inv_app_right, CategoryTheory.WithTerminal.equivComma_counitIso_hom_app_right, map_map_right, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_hom_app_comp_snd_assoc, CategoryTheory.CostructuredArrow.mapNatIso_inverse_map_right, CategoryTheory.Limits.Cocone.underPost_ι_app, CategoryTheory.Limits.multicospanIndexEnd_snd, CategoryTheory.leftAdjointOfStructuredArrowInitialsAux_apply, CategoryTheory.Over.braiding_inv_left, CategoryTheory.Functor.RightExtension.postcomp₁_map_right, CategoryTheory.Over.prodLeftIsoPullback_inv_snd, CategoryTheory.StructuredArrow.mapNatIso_functor_obj_right, CategoryTheory.leftAdjointOfStructuredArrowInitialsAux_symm_apply, CategoryTheory.Functor.LeibnizAdjunction.adj_unit_app_left, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_map_app, CategoryTheory.SimplicialObject.Augmented.toArrow_map_left, mapRight_obj_hom, CategoryTheory.MorphismProperty.FunctorialFactorizationData.functorCategory.Z_map_app, mapRightIso_inverse_map_right, CategoryTheory.SimplicialObject.Augmented.ExtraDegeneracy.s'_comp_ε, CategoryTheory.Limits.coker_map, CategoryTheory.StructuredArrow.eta_hom_right, CategoryTheory.Square.fromArrowArrowFunctor_obj_f₃₄, CategoryTheory.SmallObject.functorialFactorizationData_i_app, CategoryTheory.CostructuredArrow.prodFunctor_map, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_left_right, CategoryTheory.Abelian.coim_map, CategoryTheory.CostructuredArrow.map₂_obj_right, CategoryTheory.StructuredArrow.prodInverse_map, CategoryTheory.MorphismProperty.under_iff, CategoryTheory.StructuredArrow.eta_inv_right, CategoryTheory.Over.leftUnitor_hom_left, CategoryTheory.Functor.PullbackObjObj.mapArrowLeft_comp, CategoryTheory.WithTerminal.equivComma_functor_obj_right, CategoryTheory.MorphismProperty.Over.pullbackMapHomPullback_app, CategoryTheory.Over.tensorObj_ext_iff, mapRightIso_unitIso_inv_app_right, CategoryTheory.RetractArrow.i_w, CategoryTheory.CostructuredArrow.toOver_map_right, CategoryTheory.StructuredArrow.ofDiagEquivalence.inverse_obj_right, CategoryTheory.Functor.LeftExtension.precomp_obj_hom_app, CategoryTheory.WithTerminal.ofCommaObject_obj, CategoryTheory.Functor.LeibnizAdjunction.adj_counit_app_left, mapSnd_inv_app, CategoryTheory.StructuredArrow.eq_mk, fromProd_obj_right, TopCat.Presheaf.generateEquivalenceOpensLe_inverse'_obj_obj_right_as, mapRightIso_functor_obj_right, CategoryTheory.Limits.multicospanIndexEnd_right, CategoryTheory.NatTrans.instIsClosedUnderLimitsOfShapeOverFunctorEquifiberedHomDiscretePUnitOfHasCoproductsOfShapeHom, opFunctor_map, CategoryTheory.Limits.CokernelCofork.π_mapOfIsColimit, CategoryTheory.CostructuredArrow.commaToGrothendieckPrecompFunctor_map_fiber, CategoryTheory.ChosenPullbacksAlong.Over.tensorObj_ext_iff, CategoryTheory.OrthogonalReflection.D₁.ι_comp_t_assoc, CategoryTheory.CostructuredArrow.commaToGrothendieckPrecompFunctor_obj_fiber, CategoryTheory.Square.fromArrowArrowFunctor'_obj_X₂, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_snd, CategoryTheory.CostructuredArrow.homMk'_mk_id, CategoryTheory.Functor.LeftExtension.coconeAtWhiskerRightIso_inv_hom, CategoryTheory.WithInitial.equivComma_functor_obj_right_map, CategoryTheory.Functor.RightExtension.precomp_map_left, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left_snd_assoc, CategoryTheory.Limits.multicospanShapeEnd_snd, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtension.isLeftKanExtension, CategoryTheory.StructuredArrow.id_right, CategoryTheory.WithInitial.equivComma_counitIso_hom_app_right_app, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_mapPullbackAdj_unit_app, CategoryTheory.MonoOver.isIso_hom_left_iff_subobjectMk_eq, CategoryTheory.Under.pushout_map, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.functor_obj_right_as, CategoryTheory.StructuredArrow.preEquivalenceFunctor_obj_left_as, rightIso_hom, CategoryTheory.CosimplicialObject.Augmented.const_obj_right, CategoryTheory.Limits.image.map_ι, CategoryTheory.Abelian.Pseudoelement.pseudoZero_iff, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_inv_left_snd, CategoryTheory.CostructuredArrow.homMk'_right, CategoryTheory.Square.fromArrowArrowFunctor'_obj_X₃, CategoryTheory.Functor.ι_leftKanExtensionObjIsoColimit_inv_assoc, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_inverse_map_hom, CategoryTheory.StructuredArrow.preEquivalence_unitIso, CategoryTheory.CostructuredArrow.mapIso_inverse_obj_right, CategoryTheory.MorphismProperty.Over.pullbackCongr_hom_app_left_fst, CategoryTheory.Functor.PushoutObjObj.mapArrowRight_left, CategoryTheory.Over.whiskerRight_left_fst, CategoryTheory.MorphismProperty.FunctorialFactorizationData.functorCategory.Z_obj_map, CategoryTheory.CostructuredArrow.w_prod_snd_assoc, CategoryTheory.Over.postAdjunctionLeft_unit_app_left, CommRingCat.pushout_inr_tensorProdObjIsoPushoutObj_inv_right_assoc, CategoryTheory.MorphismProperty.Over.mapPullbackAdj_counit_app, comp_right, CategoryTheory.CostructuredArrow.costructuredArrowToOverEquivalence.functor_map, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.pullbackGluedIso_inv_fst_assoc, CategoryTheory.Functor.LeftExtension.postcompose₂_obj_right_map, CategoryTheory.Arrow.square_from_iso_invert, CategoryTheory.MonoOver.pullback_obj_arrow, CategoryTheory.Limits.multispanShapeCoend_snd, CategoryTheory.Functor.PullbackObjObj.π_iso_of_iso_right_hom, CategoryTheory.WithTerminal.commaFromOver_obj_right, CategoryTheory.Over.prodLeftIsoPullback_inv_fst, CategoryTheory.Functor.PushoutObjObj.mapArrowRight_comp_assoc, CategoryTheory.Abelian.im_map, CategoryTheory.SimplicialObject.Augmented.rightOpLeftOpIso_inv_right, CategoryTheory.StructuredArrow.map₂_map_left, CategoryTheory.Under.postAdjunctionRight_unit_app_right, CategoryTheory.Functor.PullbackObjObj.mapArrowRight_comp_assoc, CategoryTheory.Bicategory.LeftExtension.whiskering_map, CategoryTheory.Over.opEquivOpUnder_inverse_obj, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_inverse_obj_map, CategoryTheory.CostructuredArrow.mapIso_functor_map_left, CategoryTheory.StructuredArrow.prodFunctor_map, CategoryTheory.SimplicialObject.Augmented.toArrow_obj_right, CategoryTheory.Over.prodLeftIsoPullback_inv_snd_assoc, mapLeftIso_inverse_obj_right, CategoryTheory.ChosenPullbacksAlong.Over.tensorObj_hom, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_inverse_map_left, CategoryTheory.Pseudofunctor.presheafHom_obj, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_inverse_obj_obj, CategoryTheory.Over.mapPullbackAdj_counit_app, CategoryTheory.Over.iteratedSliceBackward_forget, CategoryTheory.Abelian.Pseudoelement.ModuleCat.eq_range_of_pseudoequal, mapLeftId_hom_app_right, post_obj_right, preRight_map_left, CategoryTheory.StructuredArrow.ofDiagEquivalence.inverse_obj_hom, CategoryTheory.StructuredArrow.mapNatIso_functor_obj_hom, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorToComma_obj_right, CategoryTheory.Under.map_obj_right, preLeft_obj_right, CategoryTheory.ChosenPullbacksAlong.Over.tensorObj_left, CategoryTheory.StructuredArrow.mapIso_inverse_obj_right, CategoryTheory.CostructuredArrow.commaToGrothendieckPrecompFunctor_map_base, CategoryTheory.WithInitial.mkCommaObject_right_obj, CategoryTheory.Under.post_obj, mapRightComp_inv_app_right, CategoryTheory.StructuredArrow.ofDiagEquivalence.functor_obj_right_hom, CategoryTheory.StructuredArrow.mapNatIso_inverse_map_right, CategoryTheory.CostructuredArrow.map_obj_right, CategoryTheory.CosimplicialObject.comp_right_app, CategoryTheory.Square.fromArrowArrowFunctor_obj_X₃, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_fst, CategoryTheory.Over.prodLeftIsoPullback_hom_snd, CategoryTheory.CostructuredArrow.mkPrecomp_right, CategoryTheory.StructuredArrow.IsUniversal.existsUnique, CategoryTheory.ChosenPullbacksAlong.isoInv_pullback_map_left, CategoryTheory.StructuredArrow.mapNatIso_functor_map_right, CategoryTheory.IsGrothendieckAbelian.exists_isIso_of_functor_from_monoOver, CategoryTheory.simplicialToCosimplicialAugmented_map_left, CategoryTheory.Over.whiskerRight_left_snd_assoc, CategoryTheory.Arrow.w_mk_right, CategoryTheory.Under.eqToHom_right, CategoryTheory.WithInitial.equivComma_counitIso_inv_app_right_app, CategoryTheory.ChosenPullbacksAlong.Over.snd_eq_snd', CategoryTheory.Over.associator_inv_left_fst_fst_assoc, CategoryTheory.Square.fromArrowArrowFunctor'_map_τ₃, CategoryTheory.Limits.ker.ι_app, CategoryTheory.Over.associator_hom_left_fst, CategoryTheory.SmallObject.functor_map, CategoryTheory.StructuredArrow.ofDiagEquivalence.functor_map_right_right, SSet.Augmented.stdSimplex_map_right, CategoryTheory.StructuredArrow.preEquivalence_inverse, CategoryTheory.Square.fromArrowArrowFunctor_obj_X₂, CategoryTheory.StructuredArrow.preEquivalence_functor, CategoryTheory.CostructuredArrow.toStructuredArrow'_obj, CategoryTheory.Abelian.Pseudoelement.pseudoApply_mk', CategoryTheory.StructuredArrow.homMk'_mk_comp, CategoryTheory.NatTrans.instIsClosedUnderColimitsOfShapeUnderFunctorCoequifiberedHomDiscretePUnitOfHasProductsOfShapeHom, CategoryTheory.Functor.LeftExtension.postcompose₂ObjMkIso_inv_right_app, CategoryTheory.Over.prodLeftIsoPullback_hom_fst_assoc, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left_snd_assoc, CategoryTheory.SmallObject.objMap_comp_assoc, CategoryTheory.Limits.ker_obj, CategoryTheory.SmallObject.functorialFactorizationData_Z_obj, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_snd_fst, CategoryTheory.SimplicialObject.Augmented.const_obj_right, CategoryTheory.MonoOver.image_map, CategoryTheory.Under.mapPushoutAdj_unit_app, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceFunctor_map_left, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_obj_obj, CategoryTheory.Limits.instHasImageHomMk, CategoryTheory.Limits.ImageMap.factor_map_assoc, CategoryTheory.Over.opEquivOpUnder_inverse_map, CategoryTheory.Under.post_map, CategoryTheory.ChosenPullbacksAlong.isoInv_mapPullbackAdj_unit_app_left, CategoryTheory.Square.toArrowArrowFunctor'_obj_right_right, CategoryTheory.StructuredArrow.mapNatIso_unitIso_hom_app_right, AlgebraicGeometry.opensDiagram_map, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left, map_obj_right, CategoryTheory.WithInitial.coconeEquiv_unitIso_hom_app_hom_right, CategoryTheory.Square.toArrowArrowFunctor_map_right_right, coneOfPreserves_pt_right, CategoryTheory.StructuredArrow.eqToHom_right, CategoryTheory.CosimplicialObject.Augmented.leftOp_left_map, CategoryTheory.Functor.leibnizPushout_obj_map, CategoryTheory.Functor.PushoutObjObj.mapArrowLeft_id, CategoryTheory.Functor.essImage_underPost, CategoryTheory.Over.tensorHom_left_snd_assoc, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.ι_isoColimit_hom, CategoryTheory.SmallObject.ε_app, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_inv_left_snd_assoc, CategoryTheory.Functor.LeftExtension.postcompose₂_map_right_app, CategoryTheory.Limits.kernelSubobjectIso_comp_kernel_map, CategoryTheory.Limits.image.map_homMk'_ι, CategoryTheory.Under.map_obj_hom, CategoryTheory.CommaMorphism.w_assoc, CommRingCat.Under.tensorProdEqualizer_ι, CategoryTheory.CostructuredArrow.map_map_right, AlgebraicGeometry.Scheme.kerAdjunction_counit_app, CategoryTheory.Limits.IndObjectPresentation.toCostructuredArrow_obj_right_as, AlgebraicGeometry.opensDiagramι_app, CategoryTheory.Arrow.w, CategoryTheory.StructuredArrow.homMk'_left, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_snd', AlgebraicTopology.AlternatingFaceMapComplex.ε_app_f_zero, CategoryTheory.Functor.essImage.of_underPost, equivProd_unitIso_hom_app_right, CategoryTheory.SmallObject.iterationObjRightIso_hom, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceInverse_obj_right_as, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.fst_gluedCocone_ι, CategoryTheory.SmallObject.objMap_id, preRight_map_right, CategoryTheory.Limits.coker_obj, CategoryTheory.Over.μ_pullback_left_fst_snd', CategoryTheory.Square.toArrowArrowFunctor'_map_right_left, map_map_left, CategoryTheory.ParametrizedAdjunction.inr_arrowHomEquiv_symm_apply_left_assoc, CategoryTheory.CostructuredArrow.w_prod_snd, mapRightIso_functor_obj_hom, CategoryTheory.Limits.imageSubobjectIso_comp_image_map, CommRingCat.toAlgHom_id, toIdPUnitEquiv_unitIso_inv_app_right, post_map_left, CategoryTheory.StructuredArrow.mono_iff_mono_right, CategoryTheory.CommaMorphism.w, CategoryTheory.Limits.multispanIndexCoend_snd, CategoryTheory.RetractArrow.r_w, CategoryTheory.Functor.LeftExtension.postcompose₂_obj_hom_app, CategoryTheory.SimplicialObject.Augmented.ExtraDegeneracy.s₀_comp_δ₁_assoc, CategoryTheory.Under.mono_iff_mono_right, CategoryTheory.WithInitial.liftFromUnder_obj_obj, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.functor_map_right_right, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceFunctor_obj_right, CategoryTheory.MorphismProperty.instHasPullbackHomDiscretePUnitOfHasPullbacksAlong, CategoryTheory.ChosenPullbacksAlong.iso_pullback_obj, CategoryTheory.SimplicialObject.augment_right, CategoryTheory.SimplicialObject.augment_hom_zero, CategoryTheory.SmallObject.ιObj_naturality, CategoryTheory.Under.postEquiv_counitIso, coconeOfPreserves_pt_right, CategoryTheory.CosimplicialObject.Augmented.drop_obj, CategoryTheory.Functor.LeibnizAdjunction.adj_counit_app_right, CommRingCat.mkUnder_right, CategoryTheory.Under.postComp_hom_app_right, preRight_obj_right, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_left_app, CategoryTheory.SimplicialObject.Augmented.rightOp_right_map, SSet.Truncated.rightExtensionInclusion_right_as, CategoryTheory.WithInitial.coconeEquiv_functor_map_hom, CategoryTheory.Arrow.comp_right_assoc, mapLeftIso_unitIso_inv_app_right, CategoryTheory.WithTerminal.ofCommaMorphism_app, CategoryTheory.Functor.LeftExtension.postcomp₁_obj_hom_app, CategoryTheory.CategoryOfElements.fromStructuredArrow_obj, CategoryTheory.Arrow.inv_hom_id_right, CategoryTheory.StructuredArrow.ofDiagEquivalence.functor_obj_right_left_as, CategoryTheory.Arrow.w_mk_right_assoc, CategoryTheory.Square.toArrowArrowFunctor_obj_right_right, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_mapPullbackAdj_unit_app, CategoryTheory.CostructuredArrow.mk_right, CategoryTheory.ComposableArrows.arrowEquiv_symm_apply, CategoryTheory.Over.map_obj_hom, CategoryTheory.CosimplicialObject.Augmented.toArrow_map_right, CategoryTheory.Over.associator_hom_left_snd_fst, CategoryTheory.CostructuredArrow.toOver_map_left, CategoryTheory.Arrow.mk_right, CategoryTheory.RanIsSheafOfIsCocontinuous.fac', CategoryTheory.MorphismProperty.Comma.comp_right_assoc, CategoryTheory.Functor.mapArrow_map_left, CategoryTheory.MorphismProperty.over_iso_iff, CategoryTheory.SmallObject.ιFunctorObj_eq, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_inverse_map_right, CategoryTheory.underToAlgebra_obj_A, CategoryTheory.TwoSquare.costructuredArrowDownwardsPrecomp_obj, AlgEquiv.toUnder_inv_right_apply, eqToHom_right, CategoryTheory.Functor.LeftExtension.postcompose₂_obj_right_obj, CategoryTheory.CostructuredArrow.mapIso_functor_map_right, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.functor_obj_right_hom, CategoryTheory.StructuredArrow.toCostructuredArrow_map, CategoryTheory.Limits.ImageMap.factor_map, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left_snd, CategoryTheory.WithInitial.equivComma_inverse_map_app, left_hom_inv_right, CategoryTheory.Arrow.isIso_hom_iff_isIso_of_isIso, unopFunctor_obj, CategoryTheory.CostructuredArrow.mapNatIso_inverse_map_left, CategoryTheory.CostructuredArrow.costructuredArrowToOverEquivalence.functor_obj, mapLeftComp_inv_app_right, CategoryTheory.CostructuredArrow.map₂_map_right, toIdPUnitEquiv_unitIso_hom_app_right, CategoryTheory.RetractArrow.retract_right_assoc, CommRingCat.toAlgHom_apply, CategoryTheory.StructuredArrow.toUnder_map_right, CategoryTheory.CosimplicialObject.Augmented.toArrow_map_left, CategoryTheory.StructuredArrow.IsUniversal.hom_desc, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.functor_obj_left_right_as, mapRightIso_inverse_obj_right, CommRingCat.pushout_inl_tensorProdObjIsoPushoutObj_inv_right_assoc, CategoryTheory.Limits.Cocone.fromStructuredArrow_obj_pt, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left_snd_assoc, CategoryTheory.CostructuredArrow.pre_obj_right, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left_fst_assoc, CategoryTheory.TwoSquare.isIso_lanBaseChange_app_iff, CategoryTheory.Over.pullback_map_left, CategoryTheory.SmallObject.instIsIsoRightAppArrowMapToTypeOrdFunctorIterationFunctor, CategoryTheory.Under.forgetMapInitial_hom_app, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_fst_fst, mapRightIso_functor_map_right, limitAuxiliaryCone_π_app, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.fst_gluedCocone_ι_assoc, CategoryTheory.Pseudofunctor.presheafHom_map, CategoryTheory.MorphismProperty.costructuredArrow_iso_iff, SSet.Augmented.stdSimplex_obj_right, CategoryTheory.Limits.multispanIndexCoend_left, CategoryTheory.Functor.ranObjObjIsoLimit_inv_π_assoc, CategoryTheory.Over.sections_obj, CategoryTheory.Functor.RightExtension.precomp_obj_right, CategoryTheory.MorphismProperty.Comma.ext_iff, AlgebraicGeometry.opensDiagram_obj, CategoryTheory.Functor.PushoutObjObj.ι_iso_of_iso_right_hom, CategoryTheory.CostructuredArrow.toStructuredArrow'_map, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.ι_isoColimit_hom_assoc, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_inverse_obj_right, CategoryTheory.Abelian.coim_obj, CategoryTheory.Functor.mapArrow_map_right, CategoryTheory.MorphismProperty.overObj_iff, AlgebraicGeometry.opensCone_π_app, CategoryTheory.Over.tensorHom_left, CategoryTheory.CostructuredArrow.w, CategoryTheory.RetractArrow.retract_right, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.inverse_obj_right_as, CategoryTheory.StructuredArrow.commaMapEquivalenceInverse_obj, CategoryTheory.StructuredArrow.homMk'_id, CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtension.isIso_hom, CategoryTheory.Functor.RightExtension.mk_right_as, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.ι_isoColimit_inv_assoc, CategoryTheory.StructuredArrow.w_prod_snd, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_counitIso_inv_app_right_app, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.inverse_obj_hom, CategoryTheory.StructuredArrow.preEquivalenceInverse_obj_right_right, CategoryTheory.WithInitial.mkCommaObject_right_map, inv_right, CategoryTheory.Under.opEquivOpOver_functor_obj, CategoryTheory.StructuredArrow.preEquivalenceInverse_obj_right_left_as, toIdPUnitEquiv_functor_obj, CategoryTheory.StructuredArrow.mapNatIso_inverse_obj_hom, CategoryTheory.Over.associator_inv_left_fst_snd, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_right, CategoryTheory.Functor.LeftExtension.postcompose₂ObjMkIso_hom_right_app, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_obj_left, CategoryTheory.Limits.kernelSubobjectIso_comp_kernel_map_assoc, CategoryTheory.WithInitial.commaFromUnder_obj_right, CategoryTheory.WithInitial.equivComma_inverse_obj_map, CategoryTheory.MorphismProperty.Over.w_assoc, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_fst_assoc, CategoryTheory.SimplicialObject.Augmented.rightOp_right_obj, CategoryTheory.Functor.RightExtension.postcomp₁_map_left_app, CategoryTheory.SmallObject.πObj_ιIteration_app_right_assoc, CategoryTheory.SimplicialObject.Augmented.rightOpLeftOpIso_hom_right, CategoryTheory.WithTerminal.ofCommaObject_map, CategoryTheory.MorphismProperty.ofHoms_homFamily, CategoryTheory.Over.associator_hom_left_snd_snd_assoc, commAlgCatEquivUnder_counitIso, CategoryTheory.SimplicialObject.Truncated.rightExtensionInclusion_right_as, CategoryTheory.StructuredArrow.post_map, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_map_left, CategoryTheory.Functor.PullbackObjObj.mapArrowRight_comp, CategoryTheory.Functor.LeftExtension.postcomp₁_obj_right_map, CategoryTheory.Functor.ranObjObjIsoLimit_hom_π_assoc, CategoryTheory.Under.equivalenceOfIsInitial_unitIso, CategoryTheory.Limits.im_obj, CategoryTheory.SmallObject.πObj_naturality_assoc, CategoryTheory.Functor.PullbackObjObj.π_iso_of_iso_right_inv, CategoryTheory.MorphismProperty.FunctorialFactorizationData.functorCategory.Z_obj_obj, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_inv_app_comp_fst, CategoryTheory.CosimplicialObject.Augmented.leftOpRightOpIso_hom_right_app, CategoryTheory.Over.μ_pullback_left_fst_fst', CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceFunctor_map_right, CategoryTheory.Over.μ_pullback_left_fst_snd, CategoryTheory.Over.whiskerRight_left, CategoryTheory.CostructuredArrow.homMk'_left, CategoryTheory.StructuredArrow.homMk'_right, CategoryTheory.Abelian.coimageImageComparisonFunctor_obj, CategoryTheory.Square.fromArrowArrowFunctor'_obj_f₁₃, CategoryTheory.StructuredArrow.pre_map_left, inv_left_hom_right, CommRingCat.pushout_inl_tensorProdObjIsoPushoutObj_inv_right, CategoryTheory.Limits.imageSubobjectMap_arrow, CategoryTheory.CostructuredArrow.ofDiagEquivalence.functor_obj_right_as, CategoryTheory.Over.opEquivOpUnder_counitIso, CategoryTheory.CostructuredArrow.prodFunctor_obj, CategoryTheory.Functor.LeftExtension.coconeAtWhiskerRightIso_hom_hom, CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtensionAt.isIso_hom_app, CategoryTheory.OrthogonalReflection.D₂.multispanIndex_left, commAlgCatEquivUnder_inverse_obj_carrier, CategoryTheory.Limits.ImageFactorisation.ofArrowIso_F, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_left_app, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_inverse_obj_hom_app, CategoryTheory.Bicategory.LeftLift.ofIdComp_right, CategoryTheory.Arrow.id_right, CategoryTheory.StructuredArrow.map_map_left, CategoryTheory.Functor.PullbackObjObj.mapArrowLeft_left, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_inv_app_comp_snd, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_map_left_right, CategoryTheory.SmallObject.iterationFunctorMapSuccAppArrowIso_hom_right_right_comp_assoc, CategoryTheory.Functor.LeftExtension.precomp_obj_right, CategoryTheory.Over.w, CategoryTheory.StructuredArrow.mapIso_functor_obj_right, mapLeftEq_hom_app_right, CategoryTheory.Functor.PullbackObjObj.mapArrowLeft_comp_assoc, CategoryTheory.StructuredArrow.mapIso_unitIso_inv_app_right, CategoryTheory.Limits.MonoFactorisation.ofArrowIso_m, CategoryTheory.StructuredArrow.prodFunctor_obj, AlgHom.toUnder_right, mapLeft_obj_right, CategoryTheory.Functor.PushoutObjObj.ι_iso_of_iso_left_inv, CategoryTheory.CosimplicialObject.augment_hom_zero, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left_fst_assoc, CategoryTheory.CosimplicialObject.Augmented.toArrow_obj_right, CategoryTheory.SimplicialObject.Augmented.ExtraDegeneracy.s₀_comp_δ₁, Alexandrov.lowerCone_π_app, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtension.isIso_hom, CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtensionAt.isoLimit_inv_π, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.functor_obj_right_right, CategoryTheory.Arrow.mk_eq, CategoryTheory.MorphismProperty.Under.w, CategoryTheory.CosimplicialObject.Augmented.toArrow_obj_hom, CategoryTheory.StructuredArrow.mapIso_functor_map_left, CategoryTheory.StructuredArrow.mono_right_of_mono, AlgEquiv.toUnder_hom_right_apply, AlgebraicGeometry.Scheme.kerFunctor_map, CategoryTheory.MorphismProperty.Comma.prop, CategoryTheory.CostructuredArrow.homMk'_mk_comp, CategoryTheory.Over.associator_inv_left_fst_fst, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_functor_obj_hom_app, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.inverse_map_right_right, mapLeftIso_inverse_obj_hom, CategoryTheory.CostructuredArrow.right_eq_id, CategoryTheory.StructuredArrow.comp_right, CategoryTheory.CostructuredArrow.ofDiagEquivalence.inverse_obj_right_as, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_map_right, CategoryTheory.Over.snd_left, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_hom_app_comp_snd, CategoryTheory.Limits.ImageMap.map_ι, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left_fst_assoc, CategoryTheory.Functor.leibnizPushout_obj_obj, CategoryTheory.Over.over_right, mapRightIso_counitIso_hom_app_right, CategoryTheory.Arrow.isIso_hom_iff_isIso_hom_of_isIso, commAlgCatEquivUnder_unitIso, CategoryTheory.Over.tensorHom_left_fst, equivProd_inverse_obj_right, CategoryTheory.Square.fromArrowArrowFunctor_obj_X₄, CategoryTheory.Over.whiskerRight_left_snd, CategoryTheory.MorphismProperty.structuredArrowObj_iff, CategoryTheory.SimplicialObject.Augmented.w₀_assoc, CategoryTheory.Square.fromArrowArrowFunctor'_obj_X₄, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_fst_snd_assoc, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_fst_snd, CategoryTheory.MorphismProperty.mem_toSet_iff, CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtension.isRightKanExtension, opFunctorCompFst_hom_app, CategoryTheory.underToAlgebra_obj_a, CategoryTheory.Limits.CokernelCofork.π_mapOfIsColimit_assoc, CategoryTheory.CommSq.of_arrow, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left_fst, CategoryTheory.Under.mk_right, opFunctorCompFst_inv_app, CategoryTheory.CostructuredArrow.toStructuredArrow_obj, unopFunctor_map, CategoryTheory.Arrow.isIso_of_isIso, CategoryTheory.Arrow.rightFunc_obj, CategoryTheory.Over.tensorHom_left_fst_assoc, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_snd_assoc, CategoryTheory.Under.postMap_app, CategoryTheory.Over.prodLeftIsoPullback_inv_fst_assoc, CategoryTheory.Abelian.im_obj, CategoryTheory.RetractArrow.instIsSplitEpiRightRArrow, CategoryTheory.Functor.toUnder_obj_right, CategoryTheory.Under.hom_right_inv_right, CategoryTheory.SmallObject.iterationFunctorMapSuccAppArrowIso_hom_left, CategoryTheory.ChosenPullbacksAlong.Over.leftUnitor_hom_left, CategoryTheory.Arrow.iso_w, mapLeftIso_unitIso_hom_app_right, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_pullback_obj, CategoryTheory.Limits.Cocone.fromStructuredArrow_map_hom, CategoryTheory.Functor.RightExtension.postcomp₁_obj_right, CategoryTheory.Over.whiskerLeft_left_fst, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_mapPullbackAdj_counit_app, CategoryTheory.SmallObject.πFunctorObj_eq, CategoryTheory.StructuredArrow.mapNatIso_counitIso_hom_app_right, CategoryTheory.MonoOver.inf_map_app, mapRightId_hom_app_right, CategoryTheory.TwoSquare.costructuredArrowDownwardsPrecomp_map, CategoryTheory.SmallObject.objMap_comp, CategoryTheory.Functor.LeftExtension.postcompose₂_map_left, CategoryTheory.ChosenPullbacksAlong.isoInv_mapPullbackAdj_counit_app_left, CategoryTheory.Functor.LeftExtension.postcomp₁_obj_right_obj, CategoryTheory.Arrow.inv_left_hom_right, toPUnitIdEquiv_inverse_obj_right_as, CategoryTheory.Functor.RightExtension.postcompose₂_obj_hom_app, CategoryTheory.Functor.RightExtension.precomp_obj_hom_app, CategoryTheory.CostructuredArrow.mapNatIso_functor_obj_right, CategoryTheory.StructuredArrow.commaMapEquivalenceCounitIso_hom_app_right_right, CategoryTheory.algebraEquivUnder_counitIso, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceFunctor_map_left, CategoryTheory.Functor.RightExtension.precomp_map_right, CategoryTheory.ChosenPullbacksAlong.Over.lift_left, CategoryTheory.Square.fromArrowArrowFunctor_obj_f₁₂, CategoryTheory.Under.postCongr_hom_app_right, CategoryTheory.Limits.kernel_map_comp_kernelSubobjectIso_inv, CategoryTheory.Abelian.coimageImageComparisonFunctor_map, mapLeftIso_counitIso_hom_app_right, CategoryTheory.CostructuredArrow.map_map_left, CategoryTheory.CostructuredArrow.map₂_map_left, CategoryTheory.SimplicialObject.Augmented.ExtraDegeneracy.s'_comp_ε_assoc, CategoryTheory.WithInitial.equivComma_inverse_obj_obj, CategoryTheory.Over.isPullback_of_binaryFan_isLimit, CategoryTheory.MorphismProperty.commaObj_iff, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceFunctor_obj_right, CategoryTheory.Bicategory.LeftLift.whiskerOfIdCompIsoSelf_hom_right, CategoryTheory.Over.whiskerLeft_left_fst_assoc, CategoryTheory.CostructuredArrow.preEquivalence.inverse_obj_left_left, CategoryTheory.Under.pushout_obj, CategoryTheory.MorphismProperty.Over.w, CategoryTheory.Square.toArrowArrowFunctor_obj_right_hom, CategoryTheory.Square.toArrowArrowFunctor_obj_right_left, CategoryTheory.Functor.RightExtension.postcompose₂_map_left_app, CategoryTheory.RetractArrow.op_r_left, CategoryTheory.StructuredArrow.mk_right, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_fst_fst, CategoryTheory.CostructuredArrow.ofDiagEquivalence.functor_obj_left_right_as, CategoryTheory.StructuredArrow.preEquivalenceInverse_map_right_right, mapLeft_map_right, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_right, CategoryTheory.CostructuredArrow.IsUniversal.fac, CategoryTheory.Square.fromArrowArrowFunctor'_map_τ₄, unopFunctorCompFst_inv_app, CategoryTheory.Functor.PushoutObjObj.ι_iso_of_iso_right_inv, CategoryTheory.MonoOver.subobjectMk_le_mk_of_hom, equivProd_unitIso_inv_app_right, CategoryTheory.Over.whiskerLeft_left_snd_assoc, CategoryTheory.SmallObject.SuccStruct.toSuccArrow_right, CategoryTheory.Limits.IsColimit.pushoutCoconeEquivBinaryCofanFunctor_desc_right, CategoryTheory.Square.toArrowArrowFunctor_obj_left_right, CategoryTheory.TwoSquare.EquivalenceJ.functor_obj, CategoryTheory.StructuredArrow.mapIso_unitIso_hom_app_right, CategoryTheory.StructuredArrow.w, CategoryTheory.Functor.RightExtension.postcompose₂_map_right, commAlgCatEquivUnder_inverse_map, CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtensionAt.isoLimit_inv_π_assoc, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left, CategoryTheory.Under.forget_obj, CategoryTheory.Functor.PullbackObjObj.mapArrowRight_id, CategoryTheory.Functor.LeftExtension.precomp_map_left, mapLeftIso_functor_obj_hom, CategoryTheory.Abelian.Pseudoelement.pseudoZero_aux, CategoryTheory.StructuredArrow.commaMapEquivalenceUnitIso_hom_app_right_right, CategoryTheory.Limits.MonoFactorisation.ofArrowIso_I, CategoryTheory.MorphismProperty.comma_iso_iff, CategoryTheory.StructuredArrow.pre_map_right, CategoryTheory.StructuredArrow.w_prod_fst_assoc, CategoryTheory.Square.fromArrowArrowFunctor_obj_f₂₄, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.comp_homEquiv_symm, CategoryTheory.Functor.LeftExtension.precomp₂_obj_right, CategoryTheory.SmallObject.functorMap_π, CategoryTheory.StructuredArrow.mapIso_functor_obj_hom, CategoryTheory.Functor.PushoutObjObj.mapArrowLeft_left, CategoryTheory.StructuredArrow.mapNatIso_unitIso_inv_app_right, CategoryTheory.Functor.ranObjObjIsoLimit_hom_π, Alexandrov.projSup_obj, CategoryTheory.underToAlgebra_map_f, CategoryTheory.SimplicialObject.Augmented.rightOp_hom_app, CategoryTheory.Functor.LeftExtension.coconeAt_pt, CategoryTheory.SimplicialObject.Augmented.point_obj, CategoryTheory.Limits.ImageFactorisation.ofArrowIso_isImage, CategoryTheory.Over.associator_inv_left_fst_snd_assoc, CategoryTheory.CosimplicialObject.Augmented.leftOp_left_obj, mapRight_map_left, CategoryTheory.SimplicialObject.Augmented.rightOp_left, CategoryTheory.CosimplicialObject.Augmented.leftOpRightOpIso_inv_right_app, mapRightId_inv_app_right, CategoryTheory.Functor.LeftExtension.postcomp₁_map_left, CategoryTheory.Square.fromArrowArrowFunctor'_map_τ₂, CategoryTheory.CechNerveTerminalFrom.hasWidePullback, CategoryTheory.MorphismProperty.Over.pullback_map_left, mapRightComp_hom_app_right, CategoryTheory.Square.fromArrowArrowFunctor_map_τ₁, CategoryTheory.RetractArrow.op_i_left, CategoryTheory.OrthogonalReflection.D₁.ι_comp_t, CategoryTheory.Limits.HasImageMaps.has_image_map, CategoryTheory.Over.sections_map, mapRightIso_inverse_obj_hom, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceInverse_obj_left_right, CategoryTheory.Functor.mapArrowFunctor_map_app_right, CategoryTheory.StructuredArrow.mapIso_inverse_map_right, CategoryTheory.Over.μ_pullback_left_snd, CategoryTheory.Functor.PushoutObjObj.mapArrowLeft_right, CategoryTheory.Under.mapPushoutAdj_counit_app, CategoryTheory.Over.iteratedSliceBackward_obj, CategoryTheory.SmallObject.iterationFunctorObjObjRightIso_ιIteration_app_right, CategoryTheory.PreGaloisCategory.autEmbedding_range, CategoryTheory.CostructuredArrow.homMk'_comp, CategoryTheory.TwoSquare.structuredArrowDownwards_map, CategoryTheory.Bicategory.LeftExtension.whiskerOfCompIdIsoSelf_hom_right, CategoryTheory.Localization.structuredArrowEquiv_symm_apply, CategoryTheory.Functor.LeftExtension.mk_right, CategoryTheory.SimplicialObject.Augmented.toArrow_obj_hom, preLeft_map_left, CategoryTheory.Arrow.epi_right, CategoryTheory.OrthogonalReflection.D₂.multispanIndex_fst, CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtensionAt.isoLimit_hom_π, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceFunctor_obj_left, CategoryTheory.StructuredArrow.ofDiagEquivalence.functor_obj_hom, CategoryTheory.Functor.PushoutObjObj.mapArrowLeft_comp_assoc, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_right, CategoryTheory.TwoSquare.structuredArrowDownwards_obj, CommRingCat.Under.equalizerFork_ι, CategoryTheory.CostructuredArrow.mapNatIso_inverse_obj_right, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_fst, id_right, CategoryTheory.Under.postAdjunctionLeft_counit_app, CategoryTheory.Under.inv_right_hom_right, CategoryTheory.CostructuredArrow.mapNatIso_functor_map_left, CategoryTheory.Over.braiding_hom_left, CategoryTheory.MonoOver.instMonoHomDiscretePUnitObjOverForget, CategoryTheory.RetractArrow.instIsSplitMonoRightIArrow, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_snd, CategoryTheory.WithInitial.liftFromUnder_map_app, CategoryTheory.ChosenPullbacksAlong.iso_mapPullbackAdj_counit_app, CategoryTheory.Functor.LeibnizAdjunction.adj_unit_app_right, CategoryTheory.StructuredArrow.projectSubobject_factors, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_unitIso_hom_app_right_app, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left_snd, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_snd_snd, CategoryTheory.ChosenPullbacksAlong.isoInv_pullback_obj_right_as, CategoryTheory.FunctorToTypes.mem_fromOverSubfunctor_iff, CategoryTheory.SimplicialObject.id_right, CategoryTheory.Over.μ_pullback_left_fst_fst, CategoryTheory.Under.hom_right_inv_right_assoc, mapSnd_hom_app, CategoryTheory.Over.iteratedSliceForward_map, CategoryTheory.MorphismProperty.underObj_iff, CategoryTheory.CostructuredArrow.pre_map_right, CategoryTheory.CosimplicialObject.Augmented.leftOp_hom_app, CategoryTheory.Square.fromArrowArrowFunctor'_map_τ₁, CategoryTheory.StructuredArrow.commaMapEquivalenceUnitIso_hom_app_right_left, CategoryTheory.MorphismProperty.Under.w_assoc, CategoryTheory.Arrow.square_to_iso_invert, CategoryTheory.StructuredArrow.preEquivalenceFunctor_map_right, CategoryTheory.toOverIteratedSliceForwardIsoPullback_inv_app_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_hom_app_right_app, CategoryTheory.StructuredArrow.preEquivalenceInverse_obj_hom_right, CategoryTheory.Functor.PullbackObjObj.mapArrowRight_left, CategoryTheory.ChosenPullbacksAlong.iso_pullback_map, CategoryTheory.Limits.image_map_comp_imageSubobjectIso_inv, CategoryTheory.Under.opEquivOpOver_inverse_obj, Types.monoOverEquivalenceSet_unitIso, CategoryTheory.Functor.ranObjObjIsoLimit_inv_π, CategoryTheory.TwoSquare.EquivalenceJ.functor_map, CategoryTheory.CostructuredArrow.costructuredArrowToOverEquivalence.inverse_obj, CategoryTheory.Square.toArrowArrowFunctor'_map_right_right, CategoryTheory.MorphismProperty.IsCardinalForSmallObjectArgument.preservesColimit, CategoryTheory.RetractArrow.unop_i_left, CategoryTheory.MorphismProperty.instHasPullbackSndHomDiscretePUnitOfHasPullbacksAlongOfIsStableUnderBaseChangeAlong, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_obj_right_map, CategoryTheory.cosimplicialToSimplicialAugmented_map, AlgebraicGeometry.Scheme.kerFunctor_obj, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_hom_app_comp_fst_assoc, CategoryTheory.SmallObject.functor_obj, CategoryTheory.StructuredArrow.commaMapEquivalenceUnitIso_inv_app_right_left, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.ι_isoColimit_inv, mapRightEq_inv_app_right, CategoryTheory.StructuredArrow.mapIso_functor_map_right, CategoryTheory.Over.whiskerRight_left_fst_assoc, post_map_right, CategoryTheory.WithTerminal.equivComma_inverse_map_app, CategoryTheory.CostructuredArrow.mapIso_functor_obj_right, CategoryTheory.Functor.PullbackObjObj.mapArrowLeft_right, CategoryTheory.Over.tensorHom_left_snd, CategoryTheory.WithInitial.ofCommaObject_map, CategoryTheory.Bicategory.LeftExtension.whiskerHom_right, CategoryTheory.Under.opEquivOpOver_counitIso, CategoryTheory.StructuredArrow.toUnder_map_left, CategoryTheory.StructuredArrow.w_prod_snd_assoc, CategoryTheory.WithTerminal.equivComma_inverse_obj_map, CategoryTheory.CostructuredArrow.preEquivalence.inverse_obj_hom_left, CategoryTheory.StructuredArrow.prodInverse_obj, CategoryTheory.MorphismProperty.Comma.eqToHom_right, CategoryTheory.CostructuredArrow.preEquivalence.functor_map_left, CategoryTheory.StructuredArrow.preEquivalence_counitIso, CategoryTheory.Functor.RightExtension.postcomp₁_obj_hom_app, CategoryTheory.SmallObject.ιObj_naturality_assoc, CategoryTheory.Square.fromArrowArrowFunctor_map_τ₂, CategoryTheory.Functor.ι_leftKanExtensionObjIsoColimit_hom, CategoryTheory.WithInitial.liftFromUnder_obj_map, CategoryTheory.Limits.ImageMap.map_ι_assoc, CategoryTheory.Arrow.inv_right, CategoryTheory.Limits.kernel_map_comp_kernelSubobjectIso_inv_assoc, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.inverse_obj_left_right_as, CategoryTheory.StructuredArrow.preEquivalenceInverse_obj_left_as, CategoryTheory.WithTerminal.coneEquiv_inverse_map_hom_left, CategoryTheory.Arrow.left_hom_inv_right, CategoryTheory.Bicategory.LeftExtension.whiskerOfCompIdIsoSelf_inv_right, CategoryTheory.Square.toArrowArrowFunctor_map_right_left, CategoryTheory.Arrow.hom_inv_id_right, CategoryTheory.StructuredArrow.preEquivalenceFunctor_obj_right, CategoryTheory.Functor.PushoutObjObj.mapArrowRight_comp, CategoryTheory.CostructuredArrow.preEquivalence.inverse_obj_right_as, CategoryTheory.MorphismProperty.Comma.Hom.prop_hom_right, CategoryTheory.Arrow.inv_hom_id_right_assoc, TopologicalSpace.Opens.overEquivalence_inverse_obj_right_as, CategoryTheory.StructuredArrow.proj_obj, CategoryTheory.Functor.LeftExtension.coconeAt_ι_app, equivProd_functor_map, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_inv_app_comp_fst_assoc, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.functor_obj_right_left_as, CategoryTheory.Over.lift_left, CategoryTheory.Under.postAdjunctionRight_counit_app_right, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_counitIso, CategoryTheory.TwoSquare.EquivalenceJ.inverse_obj, mapLeftIso_inverse_map_left, CategoryTheory.Arrow.w_assoc, CategoryTheory.StructuredArrow.map_obj_hom, CategoryTheory.CostructuredArrow.preEquivalence.inverse_map_left_left, CategoryTheory.SmallObject.functorialFactorizationData_p_app, CategoryTheory.Over.opEquivOpUnder_functor_map, mapRight_obj_right, CategoryTheory.Functor.PushoutObjObj.mapArrowRight_right, CategoryTheory.Limits.multispanIndexCoend_fst, mapLeftIso_functor_obj_right, CategoryTheory.StructuredArrow.mapIso_inverse_map_left, mapLeft_obj_hom, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_hom_app_comp_fst, CategoryTheory.CostructuredArrow.pre_map_left, CategoryTheory.SmallObject.iterationFunctorMapSuccAppArrowIso_hom_right_right_comp, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceInverse_obj_right_hom, CategoryTheory.Under.inv_right_hom_right_assoc, CategoryTheory.LocalizerMorphism.IsRightDerivabilityStructure.Constructor.fromRightResolution_obj, CategoryTheory.ChosenPullbacksAlong.Over.fst_eq_fst', CategoryTheory.CostructuredArrow.mapNatIso_functor_map_right, CategoryTheory.ObjectProperty.LimitOfShape.toStructuredArrow_map, CategoryTheory.Under.opEquivOpOver_functor_map, CategoryTheory.Under.postEquiv_unitIso, CategoryTheory.CostructuredArrow.projectQuotient_factors, CategoryTheory.Over.fst_left, CategoryTheory.Over.prodLeftIsoPullback_hom_fst, CategoryTheory.Over.associator_hom_left_fst_assoc, CategoryTheory.SmallObject.preservesColimit, CategoryTheory.Over.isMonHom_pullbackFst_id_right, CategoryTheory.Over.forgetAdjStar_unit_app_left, preLeft_map_right, CategoryTheory.Functor.leibnizPullback_map_app, CategoryTheory.StructuredArrow.toCostructuredArrow'_map, CategoryTheory.Over.tensorObj_left, CategoryTheory.CostructuredArrow.preEquivalence.inverse_obj_left_right_as, CategoryTheory.RetractArrow.unop_r_left, CategoryTheory.StructuredArrow.post_obj, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.pullbackGluedIso_inv_snd, CategoryTheory.CostructuredArrow.mapIso_inverse_map_right, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.pullbackGluedIso_inv_fst, CategoryTheory.StructuredArrow.toCostructuredArrow'_obj, CategoryTheory.Functor.PushoutObjObj.mapArrowLeft_comp, CategoryTheory.Abelian.app_hom, CategoryTheory.SmallObject.hasColimitsOfShape_discrete, post_obj_hom, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_counitIso_hom_app_right_app, CategoryTheory.SmallObject.iterationFunctorObjObjRightIso_ιIteration_app_right_assoc, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_fst_snd', CategoryTheory.WithTerminal.equivComma_counitIso_inv_app_right, CategoryTheory.Bicategory.LeftExtension.w, CategoryTheory.SmallObject.πObj_naturality, CategoryTheory.Under.id_right, CategoryTheory.Functor.PullbackObjObj.π_iso_of_iso_left_hom, CategoryTheory.Bicategory.LeftLift.whiskerOfIdCompIsoSelf_inv_right, unopFunctorCompFst_hom_app, CategoryTheory.Functor.ι_leftKanExtensionObjIsoColimit_hom_assoc, CategoryTheory.CostructuredArrow.mapIso_inverse_map_left, CategoryTheory.StructuredArrow.IsUniversal.fac_assoc, CategoryTheory.Arrow.equivSigma_apply_snd_fst, CategoryTheory.StructuredArrow.mapNatIso_inverse_map_left, CategoryTheory.WithInitial.ofCommaMorphism_app, CategoryTheory.Limits.Cocone.equivStructuredArrow_counitIso, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_inv_left_fst_assoc, CategoryTheory.Functor.PushoutObjObj.ι_iso_of_iso_left_hom, CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtensionAt.isoLimit_hom_π_assoc, CategoryTheory.CostructuredArrow.commaToGrothendieckPrecompFunctor_obj_base, CategoryTheory.SmallObject.instIsIsoRightAppArrowιIteration, toIdPUnitEquiv_inverse_obj_right, colimitAuxiliaryCocone_ι_app, CategoryTheory.Arrow.comp_right, CategoryTheory.Square.toArrowArrowFunctor'_obj_right_left, CategoryTheory.Under.postAdjunctionLeft_unit_app, CategoryTheory.StructuredArrow.IsUniversal.fac, CategoryTheory.Square.fromArrowArrowFunctor'_obj_f₂₄, CategoryTheory.MorphismProperty.Over.pullbackComp_left_fst_fst, ext_iff, CategoryTheory.StructuredArrow.toUnder_obj_right, CategoryTheory.Over.associator_hom_left_snd_snd, CategoryTheory.Over.associator_inv_left_snd_assoc, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_obj_map, CategoryTheory.MorphismProperty.arrow_iso_iff, CategoryTheory.Functor.leibnizPullback_obj_obj, CategoryTheory.StructuredArrow.commaMapEquivalenceCounitIso_inv_app_left_right, mapRightIso_inverse_map_left, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_inv_left_fst, CategoryTheory.Under.w_assoc, CategoryTheory.Limits.image.factor_map, mapLeftId_inv_app_right, CategoryTheory.StructuredArrow.w_assoc, CategoryTheory.StructuredArrow.mapNatIso_functor_map_left, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_inv_app_comp_snd_assoc, CategoryTheory.Square.toArrowArrowFunctor'_obj_right_hom, CategoryTheory.StructuredArrow.map₂_obj_hom, CategoryTheory.StructuredArrow.mapNatIso_counitIso_inv_app_right, CategoryTheory.WithInitial.coconeEquiv_unitIso_inv_app_hom_right, CategoryTheory.Under.opEquivOpOver_inverse_map, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_obj_right, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_functor_map_right, CategoryTheory.Over.iteratedSliceForward_obj, CategoryTheory.MorphismProperty.Comma.Hom.comp_right, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.inverse_obj_right_hom, rightIso_inv, mapLeftComp_hom_app_right, CategoryTheory.CostructuredArrow.toStructuredArrow_map, CategoryTheory.Over.whiskerLeft_left_snd, CategoryTheory.Functor.leibnizPushout_map_app, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceFunctor_obj_hom, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_obj_right_obj, CategoryTheory.Over.w_assoc, mapRight_map_right, CategoryTheory.Square.toArrowArrowFunctor'_obj_left_right, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_unitIso_inv_app_right_app, CategoryTheory.StructuredArrow.homMk'_mk_id, CategoryTheory.CostructuredArrow.IsUniversal.fac_assoc, Alexandrov.projSup_map, CategoryTheory.Abelian.coimIsoIm_hom_app, CategoryTheory.Limits.diagonal_pullback_fst, CategoryTheory.Under.w, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_fst_assoc, CategoryTheory.CostructuredArrow.costructuredArrowToOverEquivalence.inverse_map, CategoryTheory.MorphismProperty.Over.pullbackCongr_hom_app_left_fst_assoc, CategoryTheory.MonoOver.mono_obj_hom, CategoryTheory.Sieve.overEquiv_iff, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left_snd, mapLeftIso_functor_map_right, CategoryTheory.Over.opEquivOpUnder_functor_obj, CategoryTheory.OrthogonalReflection.D₂.multispanIndex_snd, CategoryTheory.StructuredArrow.commaMapEquivalenceCounitIso_inv_app_right_right, CategoryTheory.StructuredArrow.mapIso_counitIso_hom_app_right, CommRingCat.Under.equalizer_comp, equivProd_functor_obj, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_inv_app_right_app, CategoryTheory.WithTerminal.coneEquiv_inverse_obj_pt_right_as, CategoryTheory.Over.tensorObj_hom, CategoryTheory.StructuredArrow.toCostructuredArrow_obj, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.comp_homEquiv_symm_assoc, CategoryTheory.CostructuredArrow.preEquivalence.inverse_obj_left_hom, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.functor_obj_hom, CategoryTheory.StructuredArrow.mapNatIso_inverse_obj_right, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceInverse_obj_right_right, CategoryTheory.Arrow.iso_w', CategoryTheory.StructuredArrow.preEquivalenceFunctor_obj_hom, CategoryTheory.StructuredArrow.mapIso_counitIso_inv_app_right, mapRightIso_unitIso_hom_app_right, CategoryTheory.Limits.ker_map, CategoryTheory.Arrow.isIso_right, CategoryTheory.Under.comp_right, CategoryTheory.Square.fromArrowArrowFunctor'_obj_f₃₄, CategoryTheory.MorphismProperty.costructuredArrowObj_iff, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_obj_hom, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_fst_fst_assoc, CategoryTheory.Abelian.coimIsoIm_inv_app, CategoryTheory.StructuredArrow.pre_obj_right, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_snd_snd_assoc, CategoryTheory.MorphismProperty.Comma.id_right, CategoryTheory.Arrow.equivSigma_symm_apply_right, CategoryTheory.Bicategory.LeftLift.w, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_functor_obj_right, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left, CategoryTheory.Square.fromArrowArrowFunctor_map_τ₄, CategoryTheory.Functor.structuredArrowMapCone_π_app, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_snd_assoc, CommRingCat.pushout_inr_tensorProdObjIsoPushoutObj_inv_right, CategoryTheory.Localization.structuredArrowEquiv_apply
|
rightIso 📖 | CompOp | 2 mathmath: rightIso_hom, rightIso_inv
|
snd 📖 | CompOp | 31 mathmath: snd_obj, coneOfPreserves_π_app_right, limitAuxiliaryCone_pt, mapSnd_inv_app, equivProd_counitIso_hom_app, natTrans_app, coneOfPreserves_pt_right, colimitAuxiliaryCocone_pt, coconeOfPreserves_pt_right, preservesColimitsOfShape_snd, snd_map, equivProd_counitIso_inv_app, coconeOfPreserves_ι_app_right, limitAuxiliaryCone_π_app, unopFunctorCompSnd_inv_app, coconeOfPreserves_ι_app_left, opFunctorCompSnd_hom_app, opFunctorCompFst_hom_app, opFunctorCompFst_inv_app, initial_snd, coneOfPreserves_pt_hom, unopFunctorCompFst_inv_app, final_snd, opFunctorCompSnd_inv_app, mapSnd_hom_app, unopFunctorCompSnd_hom_app, toIdPUnitEquiv_functor_iso, unopFunctorCompFst_hom_app, colimitAuxiliaryCocone_ι_app, map_snd, coneOfPreserves_π_app_left
|
toIdPUnitEquiv 📖 | CompOp | 10 mathmath: toIdPUnitEquiv_inverse_map_right, toIdPUnitEquiv_unitIso_inv_app_right, toIdPUnitEquiv_unitIso_hom_app_right, toIdPUnitEquiv_functor_map, toIdPUnitEquiv_inverse_obj_left_as, toIdPUnitEquiv_functor_obj, toIdPUnitEquiv_counitIso_hom_app, toIdPUnitEquiv_counitIso_inv_app, toIdPUnitEquiv_functor_iso, toIdPUnitEquiv_inverse_obj_right
|
toPUnitIdEquiv 📖 | CompOp | 10 mathmath: toPUnitIdEquiv_functor_map, toPUnitIdEquiv_counitIso_hom_app, toPUnitIdEquiv_functor_obj, toPUnitIdEquiv_unitIso_inv_app_left, toPUnitIdEquiv_inverse_map_left, toPUnitIdEquiv_functor_iso, toPUnitIdEquiv_unitIso_hom_app_left, toPUnitIdEquiv_inverse_obj_right_as, toPUnitIdEquiv_inverse_obj_left, toPUnitIdEquiv_counitIso_inv_app
|
unopFunctor 📖 | CompOp | 9 mathmath: opEquiv_counitIso, unopFunctor_obj, unopFunctorCompSnd_inv_app, unopFunctor_map, opEquiv_unitIso, unopFunctorCompFst_inv_app, opEquiv_inverse, unopFunctorCompSnd_hom_app, unopFunctorCompFst_hom_app
|
unopFunctorCompFst 📖 | CompOp | 2 mathmath: unopFunctorCompFst_inv_app, unopFunctorCompFst_hom_app
|
unopFunctorCompSnd 📖 | CompOp | 2 mathmath: unopFunctorCompSnd_inv_app, unopFunctorCompSnd_hom_app
|
| Name | Category | Theorems |
inhabited 📖 | CompOp | — |
left 📖 | CompOp | 664 mathmath: CategoryTheory.Limits.kernelSubobjectMap_arrow_assoc, CategoryTheory.Over.associator_hom_left_snd_fst_assoc, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left_fst, CategoryTheory.SimplicialObject.id_left_app, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_hom_right, CategoryTheory.Over.prodLeftIsoPullback_hom_snd_assoc, CategoryTheory.CosimplicialObject.Augmented.leftOpRightOpIso_hom_left, CategoryTheory.Over.μ_pullback_left_snd', CategoryTheory.WithTerminal.coneEquiv_unitIso_hom_app_hom_left, CategoryTheory.Bicategory.RightExtension.w_assoc, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_snd_fst_assoc, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_hom_app_left, CategoryTheory.SmallObject.SuccStruct.prop.arrowIso_hom_left, CategoryTheory.CostructuredArrow.hom_eq_iff, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_functor_map_left, CategoryTheory.Over.iteratedSliceForwardNaturalityIso_hom_app, CategoryTheory.MorphismProperty.Comma.Hom.ext_iff, CategoryTheory.Limits.MonoFactorisation.ofArrowIso_e, CategoryTheory.SmallObject.SuccStruct.prop.arrowIso_inv_left, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left_fst, CategoryTheory.CategoryOfElements.fromStructuredArrow_map, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_pullback_map, CategoryTheory.WithTerminal.equivComma_counitIso_hom_app_left_app, CategoryTheory.MorphismProperty.FunctorialFactorizationData.i_mapZ_assoc, CategoryTheory.Over.iteratedSliceBackward_map, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_unitIso, CategoryTheory.CostructuredArrow.ofDiagEquivalence.functor_map_left_left, CategoryTheory.Over.associator_inv_left_snd, CategoryTheory.Comma.toPUnitIdEquiv_functor_map, CategoryTheory.StructuredArrow.commaMapEquivalenceInverse_map, CategoryTheory.Over.inv_left_hom_left_assoc, AlgebraicGeometry.Scheme.OpenCover.map_glueMorphismsOverOfLocallyDirected_left_assoc, CategoryTheory.Arrow.mapCechNerve_app, CategoryTheory.WithTerminal.equivComma_counitIso_inv_app_left_app, CategoryTheory.RetractArrow.retract_left_assoc, CategoryTheory.CostructuredArrow.w_assoc, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_inverse_map_app, CategoryTheory.MonoOver.isIso_left_iff_subobjectMk_eq, CategoryTheory.Functor.PullbackObjObj.mapArrowRight_right, CategoryTheory.RetractArrow.left_r, CategoryTheory.Sieve.overEquiv_pullback, CategoryTheory.Over.rightUnitor_inv_left_fst_assoc, CategoryTheory.Comma.mapLeft_map_left, CategoryTheory.OverPresheafAux.restrictedYoneda_map, CategoryTheory.Bicategory.RightLift.w_assoc, CategoryTheory.Over.comp_left_assoc, CategoryTheory.Over.hom_left_inv_left, CategoryTheory.MorphismProperty.Comma.eqToHom_left, CategoryTheory.Abelian.PreservesCoimageImageComparison.iso_inv_left, CategoryTheory.Over.whiskerLeft_left, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorToComma_map_left, CategoryTheory.ParametrizedAdjunction.inr_arrowHomEquiv_symm_apply_left, CategoryTheory.CostructuredArrow.w_prod_fst, CategoryTheory.Square.fromArrowArrowFunctor_map_τ₃, CategoryTheory.Over.epi_iff_epi_left, CategoryTheory.ParametrizedAdjunction.inl_arrowHomEquiv_symm_apply_left, CategoryTheory.Over.OverMorphism.ext_iff, CategoryTheory.StructuredArrow.commaMapEquivalenceCounitIso_hom_app_left_right, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_hom_left_comp, CategoryTheory.Comma.mapLeftIso_functor_map_left, CategoryTheory.Comma.mapLeftIso_unitIso_inv_app_left, CategoryTheory.WithTerminal.coneEquiv_inverse_obj_π_app_left, CategoryTheory.Limits.KernelFork.mapOfIsLimit_ι_assoc, CategoryTheory.Arrow.comp_left, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.pullbackGluedIso_inv_snd_assoc, CategoryTheory.MorphismProperty.Over.pullbackComp_hom_app_left, CategoryTheory.Comma.mapRightIso_counitIso_inv_app_left, CategoryTheory.TwoSquare.EquivalenceJ.inverse_map, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.isPullback, CategoryTheory.RetractArrow.r_w_assoc, CategoryTheory.Comma.mapLeftEq_hom_app_left, CategoryTheory.Limits.Cone.fromCostructuredArrow_map_hom, AlgebraicGeometry.instIsOpenImmersionLeftSchemeDiscretePUnitMapWalkingSpanOverTopMorphismPropertySpan, CategoryTheory.Arrow.mapAugmentedCechNerve_left, CategoryTheory.MorphismProperty.CostructuredArrow.homMk_left, CategoryTheory.ChosenPullbacksAlong.iso_mapPullbackAdj_unit_app, CategoryTheory.toOverPullbackIsoToOver_inv_app_left, CategoryTheory.Comma.eqToHom_left, CategoryTheory.CostructuredArrow.w_prod_fst_assoc, CategoryTheory.Over.toUnit_left, CategoryTheory.Comma.mapRightIso_functor_map_left, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_hom_app_comp_snd_assoc, CategoryTheory.CostructuredArrow.unop_left_comp_ofMkLEMk_unop, CategoryTheory.Over.braiding_inv_left, CategoryTheory.MorphismProperty.Over.mapCongr_inv_app_left, CategoryTheory.Over.prodLeftIsoPullback_inv_snd, CategoryTheory.Functor.LeibnizAdjunction.adj_unit_app_left, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_map_app, CategoryTheory.Over.iteratedSliceForwardIsoPost_inv_app, CategoryTheory.SimplicialObject.Augmented.toArrow_map_left, CategoryTheory.MorphismProperty.FunctorialFactorizationData.functorCategory.Z_map_app, CategoryTheory.toOverUnit_map_left, CategoryTheory.CostructuredArrow.mapNatIso_unitIso_inv_app_left, CategoryTheory.Comma.inv_left, CategoryTheory.WithTerminal.mkCommaMorphism_left_app, CategoryTheory.CostructuredArrow.prodFunctor_map, CategoryTheory.Abelian.coim_map, CategoryTheory.Over.leftUnitor_hom_left, CategoryTheory.CostructuredArrow.mapIso_unitIso_hom_app_left, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_left, CategoryTheory.RetractArrow.i_w, CategoryTheory.Functor.LeibnizAdjunction.adj_counit_app_left, CategoryTheory.toOverIsoToOverUnit_inv_app_left, CategoryTheory.Over.ConstructProducts.conesEquivCounitIso_inv_app_hom_left, CategoryTheory.MorphismProperty.Over.map_map_left, groupHomology.d₁₀ArrowIso_hom_left, CategoryTheory.MonoOver.mkArrowIso_hom_hom_left, CategoryTheory.Comma.opFunctor_map, CategoryTheory.CostructuredArrow.commaToGrothendieckPrecompFunctor_map_fiber, CategoryTheory.ChosenPullbacksAlong.snd'_left, CategoryTheory.MorphismProperty.Comma.isoMk_hom_left, AlgebraicGeometry.Scheme.OpenCover.map_glueMorphismsOverOfLocallyDirected_left, CategoryTheory.Over.rightUnitor_inv_left_fst, CategoryTheory.WithTerminal.commaFromOver_map_left, CategoryTheory.Functor.RightExtension.precomp_map_left, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left_snd_assoc, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_mapPullbackAdj_unit_app, CategoryTheory.MonoOver.isIso_hom_left_iff_subobjectMk_eq, CategoryTheory.Over.mapCongr_inv_app_left, CategoryTheory.MorphismProperty.Over.Hom.ext_iff, CategoryTheory.MorphismProperty.Comma.comp_left_assoc, CategoryTheory.Over.mapCongr_hom_app_left, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_inv_left_snd, CategoryTheory.Over.postCongr_inv_app_left, CategoryTheory.Over.mapComp_hom_app_left, CategoryTheory.Comma.equivProd_unitIso_hom_app_left, CategoryTheory.MorphismProperty.Over.pullbackCongr_hom_app_left_fst, CategoryTheory.Functor.PushoutObjObj.mapArrowRight_left, CategoryTheory.Over.whiskerRight_left_fst, CategoryTheory.CostructuredArrow.w_prod_snd_assoc, CategoryTheory.Over.postAdjunctionLeft_unit_app_left, CategoryTheory.CostructuredArrow.costructuredArrowToOverEquivalence.functor_map, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.pullbackGluedIso_inv_fst_assoc, AlgebraicGeometry.Scheme.Cover.pullbackCoverOverProp_f, CategoryTheory.Abelian.PreservesCoimageImageComparison.iso_hom_left, CategoryTheory.Arrow.square_from_iso_invert, CategoryTheory.Over.prodLeftIsoPullback_inv_fst, CategoryTheory.StructuredArrow.map₂_map_left, CategoryTheory.TwoSquare.costructuredArrowRightwards_map, CategoryTheory.CostructuredArrow.mkPrecomp_left, CategoryTheory.Arrow.mono_left, CategoryTheory.CostructuredArrow.mapIso_functor_map_left, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_inv_app_left, CategoryTheory.Over.prodLeftIsoPullback_inv_snd_assoc, CategoryTheory.Over.rightUnitor_inv_left_snd, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_inverse_map_left, AlgebraicGeometry.instIsClosedImmersionLeftSchemeDiscretePUnitOneOverSpecOf, CategoryTheory.Over.post_map, CategoryTheory.Comma.mapRightId_inv_app_left, CategoryTheory.Over.postCongr_hom_app_left, CategoryTheory.Comma.preRight_map_left, CategoryTheory.CostructuredArrow.post_map, CategoryTheory.CostructuredArrow.mapIso_unitIso_inv_app_left, CategoryTheory.RetractArrow.op_r_right, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_fst, CategoryTheory.Over.prodLeftIsoPullback_hom_snd, CategoryTheory.CostructuredArrow.preEquivalence.functor_obj_hom, CategoryTheory.MorphismProperty.Over.isoMk_inv_left, CategoryTheory.Limits.pullbackConeEquivBinaryFan_counitIso, CategoryTheory.ChosenPullbacksAlong.isoInv_pullback_map_left, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceInverse_map_right_left, CategoryTheory.simplicialToCosimplicialAugmented_map_left, CategoryTheory.Over.whiskerRight_left_snd_assoc, CategoryTheory.Arrow.w_mk_right, CategoryTheory.Limits.IsLimit.pullbackConeEquivBinaryFanFunctor_lift_left, CategoryTheory.CostructuredArrow.eta_hom_left, CategoryTheory.Over.associator_inv_left_fst_fst_assoc, CategoryTheory.Sieve.overEquiv_symm_iff, CategoryTheory.Square.fromArrowArrowFunctor'_map_τ₃, CategoryTheory.CosimplicialObject.Augmented.leftOpRightOpIso_inv_left, CategoryTheory.Over.associator_hom_left_fst, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_map_left, CategoryTheory.Comma.comp_left, CategoryTheory.ChosenPullbacksAlong.Over.leftUnitor_inv_left_snd, CategoryTheory.WithInitial.mkCommaMorphism_left, CategoryTheory.WithInitial.commaFromUnder_map_left, CategoryTheory.SimplicialObject.Augmented.const_map_left, CategoryTheory.Over.prodLeftIsoPullback_hom_fst_assoc, CategoryTheory.Over.map_map_left, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left_snd_assoc, CategoryTheory.MorphismProperty.Over.mapId_inv_app_left, groupCohomology.dArrowIso₀₁_inv_left, CategoryTheory.CosimplicialObject.Augmented.whiskering_map_app_left, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_snd_fst, CategoryTheory.MonoOver.image_map, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceFunctor_map_left, CategoryTheory.Comma.mapLeftComp_inv_app_left, CategoryTheory.Limits.ImageMap.factor_map_assoc, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.inverse_map_left_left, CategoryTheory.StructuredArrow.mkPostcomp_left, CategoryTheory.StructuredArrow.left_eq_id, CategoryTheory.Over.leftUnitor_inv_left_fst, CategoryTheory.ChosenPullbacksAlong.isoInv_mapPullbackAdj_unit_app_left, CategoryTheory.Over.inv_left_hom_left, CategoryTheory.Over.starPullbackIsoStar_hom_app_left, AlgebraicGeometry.opensDiagram_map, CategoryTheory.CostructuredArrow.id_left, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left, HomotopicalAlgebra.cofibrations_over_iff, CategoryTheory.WithTerminal.coneEquiv_functor_obj_π_app_of, CategoryTheory.MorphismProperty.Over.mapCongr_hom_app_left, CategoryTheory.Over.isoMk_inv_left, CategoryTheory.Over.eqToHom_left, CategoryTheory.Comma.equivProd_inverse_map_left, CategoryTheory.MorphismProperty.Comma.isoMk_inv_left, CategoryTheory.Arrow.isoMk_inv_left, CategoryTheory.Over.tensorHom_left_snd_assoc, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_inv_left_snd_assoc, CategoryTheory.Limits.kernelSubobjectIso_comp_kernel_map, w_assoc, CategoryTheory.Over.leftUnitor_inv_left_snd, CategoryTheory.ChosenPullbacksAlong.Over.leftUnitor_inv_left_fst_assoc, CategoryTheory.Arrow.w, CategoryTheory.StructuredArrow.homMk'_left, HomotopicalAlgebra.instCofibrationLeftDiscretePUnitOfOver, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_snd', AlgebraicGeometry.Scheme.Cover.ColimitGluingData.fst_gluedCocone_ι, CategoryTheory.Over.μ_pullback_left_fst_snd', CategoryTheory.Over.comp_left, CategoryTheory.MorphismProperty.Over.forget_comp_forget_map, CategoryTheory.Square.toArrowArrowFunctor'_map_right_left, CategoryTheory.Over.mapId_inv_app_left, CategoryTheory.Comma.map_map_left, CategoryTheory.ParametrizedAdjunction.inr_arrowHomEquiv_symm_apply_left_assoc, CategoryTheory.CostructuredArrow.w_prod_snd, CategoryTheory.MorphismProperty.Over.pullbackComp_inv_app_left, CategoryTheory.Comma.post_map_left, w, CategoryTheory.Comma.toPUnitIdEquiv_unitIso_inv_app_left, CategoryTheory.ChosenPullbacksAlong.Over.leftUnitor_inv_left_fst, CategoryTheory.Sieve.overEquiv_symm_pullback, CategoryTheory.Over.leftUnitor_inv_left_snd_assoc, CategoryTheory.MorphismProperty.Comma.Hom.prop_hom_left, groupCohomology.dArrowIso₀₁_hom_left, CategoryTheory.RetractArrow.r_w, CategoryTheory.Arrow.inv_left, CategoryTheory.SmallObject.ιObj_naturality, CategoryTheory.SmallObject.ιFunctorObj_naturality, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_left_app, CategoryTheory.WithTerminal.ofCommaMorphism_app, CategoryTheory.CostructuredArrow.mapNatIso_counitIso_inv_app_left, CategoryTheory.SmallObject.functorMapSrc_functorObjTop, TopologicalSpace.Opens.overEquivalence_unitIso_hom_app_left, CategoryTheory.Comma.mapLeftIso_unitIso_hom_app_left, CategoryTheory.Arrow.w_mk_right_assoc, CategoryTheory.MorphismProperty.FunctorialFactorizationData.i_mapZ, CategoryTheory.Limits.pullbackConeEquivBinaryFan_inverse_obj, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_mapPullbackAdj_unit_app, CategoryTheory.CostructuredArrow.mapIso_counitIso_hom_app_left, CategoryTheory.WithInitial.equivComma_functor_map_left, CategoryTheory.OverPresheafAux.restrictedYonedaObj_map, CategoryTheory.Over.associator_hom_left_snd_fst, CategoryTheory.CostructuredArrow.toOver_map_left, CategoryTheory.Over.postComp_inv_app_left, CategoryTheory.Comma.mapRightEq_inv_app_left, CategoryTheory.Functor.mapArrow_map_left, CategoryTheory.subterminalsEquivMonoOverTerminal_inverse_map, CategoryTheory.CostructuredArrow.eta_inv_left, CategoryTheory.Comma.hom_ext_iff, CategoryTheory.RetractArrow.retract_left, CategoryTheory.Arrow.squareToSnd_left, CategoryTheory.Over.rightUnitor_inv_left_snd_assoc, CategoryTheory.SimplicialObject.Augmented.hom_ext_iff, CategoryTheory.Limits.ImageMap.factor_map, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left_snd, CategoryTheory.MonoOver.w, CategoryTheory.WithInitial.equivComma_inverse_map_app, CategoryTheory.Comma.left_hom_inv_right, CategoryTheory.Arrow.isIso_left, CategoryTheory.SimplicialObject.Augmented.rightOpLeftOpIso_inv_left_app, CategoryTheory.Over.iteratedSliceEquivOverMapIso_inv_app_left_left, CategoryTheory.CostructuredArrow.mapNatIso_inverse_map_left, CategoryTheory.Over.iteratedSliceEquivOverMapIso_hom_app_left_left, CategoryTheory.CostructuredArrow.costructuredArrowToOverEquivalence.functor_obj, CategoryTheory.WithInitial.equivComma_counitIso_hom_app_left, CategoryTheory.overToCoalgebra_map_f, CategoryTheory.CosimplicialObject.Augmented.toArrow_map_left, CategoryTheory.Over.homMk_left, CategoryTheory.SimplicialObject.Augmented.rightOpLeftOpIso_hom_left_app, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left_snd_assoc, AlgebraicGeometry.Scheme.Cover.pullbackCoverOverProp'_f, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left_fst_assoc, CategoryTheory.Comma.mapLeftIso_counitIso_hom_app_left, CategoryTheory.Over.pullback_map_left, CategoryTheory.Arrow.mapAugmentedCechConerve_left, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_fst_fst, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.fst_gluedCocone_ι_assoc, CategoryTheory.Pseudofunctor.presheafHom_map, CategoryTheory.Limits.IndObjectPresentation.toCostructuredArrow_map_left, CategoryTheory.Over.ConstructProducts.conesEquivCounitIso_hom_app_hom_left, CategoryTheory.CostructuredArrow.toStructuredArrow'_map, CategoryTheory.RetractArrow.op_i_right, CategoryTheory.Over.tensorHom_left, CategoryTheory.CostructuredArrow.w, CategoryTheory.MorphismProperty.Over.mapComp_hom_app_left, CategoryTheory.toOverIteratedSliceForwardIsoPullback_hom_app_left, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_map_left_app, CategoryTheory.Over.associator_inv_left_fst_snd, CategoryTheory.SimplicialObject.comp_left_app, CategoryTheory.Square.toArrowArrowFunctor_obj_hom_left, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_obj_left, CategoryTheory.Limits.kernelSubobjectIso_comp_kernel_map_assoc, CategoryTheory.CostructuredArrow.grothendieckProj_map, CategoryTheory.MorphismProperty.Over.w_assoc, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_fst_assoc, CategoryTheory.toOverPullbackIsoToOver_hom_app_left, CategoryTheory.Functor.RightExtension.postcomp₁_map_left_app, CategoryTheory.Over.associator_hom_left_snd_snd_assoc, CategoryTheory.Comma.mapRightComp_hom_app_left, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_hom_app_left, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_map_left, CategoryTheory.RetractArrow.map_r_left, CategoryTheory.Arrow.mapCechConerve_app, CategoryTheory.Comma.toPUnitIdEquiv_inverse_map_left, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_inv_app_comp_fst, CategoryTheory.CostructuredArrow.epi_left_of_epi, CategoryTheory.Over.μ_pullback_left_fst_fst', CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceFunctor_map_right, CategoryTheory.Over.μ_pullback_left_fst_snd, CategoryTheory.Over.whiskerRight_left, CategoryTheory.CostructuredArrow.homMk'_left, CategoryTheory.Square.toArrowArrowFunctor'_map_left_right, TopologicalSpace.Opens.overEquivalence_unitIso_inv_app_left, CategoryTheory.Arrow.id_left, CategoryTheory.Square.fromArrowArrowFunctor'_obj_f₁₃, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_counitIso, CategoryTheory.StructuredArrow.pre_map_left, CategoryTheory.Comma.inv_left_hom_right, CategoryTheory.Over.opEquivOpUnder_counitIso, CategoryTheory.SimplicialObject.Augmented.whiskering_map_app_left, CategoryTheory.Comma.coconeOfPreserves_ι_app_left, ext_iff, CategoryTheory.CostructuredArrow.mapNatIso_unitIso_hom_app_left, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_left_app, CategoryTheory.CategoryOfElements.fromCostructuredArrow_map_coe, CategoryTheory.Comma.isoMk_inv_left, CategoryTheory.CostructuredArrow.proj_map, CategoryTheory.RetractArrow.unop_r_right, CategoryTheory.StructuredArrow.map_map_left, CategoryTheory.Functor.PullbackObjObj.mapArrowLeft_left, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_inv_app_comp_snd, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_map_left_right, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceInverse_map_left_left, CategoryTheory.toOverIsoToOverUnit_hom_app_left, CategoryTheory.rightAdjointOfCostructuredArrowTerminalsAux_apply, CategoryTheory.Over.w, CategoryTheory.MorphismProperty.CostructuredArrow.toOver_map, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_pullback_map, CategoryTheory.MorphismProperty.Comma.Hom.comp_left, CategoryTheory.OverClass.asOverHom_left, CategoryTheory.CostructuredArrow.comp_left, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left_fst_assoc, CategoryTheory.StructuredArrow.mapIso_functor_map_left, CategoryTheory.CostructuredArrow.homMk_left, CategoryTheory.Over.associator_inv_left_fst_fst, CategoryTheory.MonoOver.isIso_iff_isIso_hom_left, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_map_right, CategoryTheory.Comma.mapLeftId_hom_app_left, CategoryTheory.Over.snd_left, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.functor_map_left_left, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_hom_app_comp_snd, CategoryTheory.CostructuredArrow.prodInverse_map, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left_fst_assoc, CategoryTheory.Comma.mapLeftId_inv_app_left, CategoryTheory.Arrow.inv_hom_id_left_assoc, CategoryTheory.Over.tensorHom_left_fst, CategoryTheory.Over.whiskerRight_left_snd, AlgebraicGeometry.Scheme.Cover.pullbackCoverOver_f, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryToUnit_mapPullbackAdj_unit_app, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_fst_snd_assoc, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_fst_snd, HomotopicalAlgebra.instFibrationLeftDiscretePUnitOfOver, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_left_π_assoc, CategoryTheory.Over.isoMk_hom_left, CategoryTheory.Comma.toPUnitIdEquiv_unitIso_hom_app_left, CategoryTheory.CommSq.of_arrow, CategoryTheory.Comma.mapRightIso_unitIso_hom_app_left, CategoryTheory.Comma.fromProd_map_left, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left_fst, CategoryTheory.SmallObject.functorMapSrc_functorObjTop_assoc, CategoryTheory.Functor.toOver_map_left, CategoryTheory.Over.star_map_left, CategoryTheory.Comma.unopFunctor_map, CategoryTheory.Over.tensorHom_left_fst_assoc, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_snd_assoc, CategoryTheory.forgetAdjToOver.homEquiv_symm, CategoryTheory.Over.prodLeftIsoPullback_inv_fst_assoc, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_hom_left, CategoryTheory.CosimplicialObject.Augmented.const_map_left, CategoryTheory.Over.η_pullback_left, CategoryTheory.MorphismProperty.Comma.comp_left, CategoryTheory.SmallObject.iterationFunctorMapSuccAppArrowIso_hom_left, CategoryTheory.Over.id_left, CategoryTheory.ChosenPullbacksAlong.Over.leftUnitor_hom_left, CategoryTheory.CostructuredArrow.isoMk_inv_left, CategoryTheory.Arrow.iso_w, CategoryTheory.Arrow.comp_left_assoc, CategoryTheory.Over.postComp_hom_app_left, CategoryTheory.CosimplicialObject.Augmented.hom_ext_iff, CategoryTheory.Over.whiskerLeft_left_fst, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_mapPullbackAdj_counit_app, CategoryTheory.MonoOver.inf_map_app, CategoryTheory.TwoSquare.costructuredArrowDownwardsPrecomp_map, CategoryTheory.Functor.LeftExtension.postcompose₂_map_left, CategoryTheory.ChosenPullbacksAlong.isoInv_mapPullbackAdj_counit_app_left, CategoryTheory.Comma.mapLeftIso_counitIso_inv_app_left, CategoryTheory.MonoOver.mkArrowIso_inv_hom_left, CategoryTheory.Arrow.inv_left_hom_right, CategoryTheory.Comma.mapRightIso_counitIso_hom_app_left, CategoryTheory.Comma.mapRightId_hom_app_left, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceFunctor_map_left, CategoryTheory.ChosenPullbacksAlong.Over.lift_left, CategoryTheory.Square.fromArrowArrowFunctor_obj_f₁₂, CategoryTheory.Over.mapId_hom_app_left, CategoryTheory.Comma.mapLeftEq_inv_app_left, CategoryTheory.Square.toArrowArrowFunctor_map_left_left, CategoryTheory.Limits.kernel_map_comp_kernelSubobjectIso_inv, CategoryTheory.Abelian.coimageImageComparisonFunctor_map, CategoryTheory.MonoOver.w_assoc, CategoryTheory.CostructuredArrow.map_map_left, CategoryTheory.RetractArrow.map_i_left, CategoryTheory.MorphismProperty.over_iff, CategoryTheory.CostructuredArrow.map₂_map_left, CategoryTheory.MorphismProperty.Comma.mapRight_map_left, CategoryTheory.Over.isPullback_of_binaryFan_isLimit, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_hom_left_comp_assoc, CategoryTheory.Arrow.isoMk_hom_left, CategoryTheory.SimplicialObject.equivalenceRightToLeft_left, CategoryTheory.CosimplicialObject.Augmented.point_map, CategoryTheory.Over.whiskerLeft_left_fst_assoc, CategoryTheory.Functor.RightExtension.postcompose₂ObjMkIso_inv_left_app, CategoryTheory.MorphismProperty.Over.w, CategoryTheory.Functor.RightExtension.postcompose₂_map_left_app, AlgebraicGeometry.isClosedImmersion_equalizer_ι_left, CategoryTheory.RetractArrow.op_r_left, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.trans_app_left, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_fst_fst, CategoryTheory.Square.fromArrowArrowFunctor'_map_τ₄, CategoryTheory.Over.prodComparisonIso_pullback_Spec_inv_left_fst_fst', CategoryTheory.Comma.leftIso_hom, CategoryTheory.Over.whiskerLeft_left_snd_assoc, CategoryTheory.ParametrizedAdjunction.inl_arrowHomEquiv_symm_apply_left_assoc, CategoryTheory.TwoSquare.EquivalenceJ.functor_obj, CategoryTheory.CosimplicialObject.equivalenceRightToLeft_right_app, CategoryTheory.Square.toArrowArrowFunctor'_map_left_left, CategoryTheory.Over.leftUnitor_inv_left_fst_assoc, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left, CategoryTheory.WithTerminal.liftFromOver_obj_map, CategoryTheory.Functor.LeftExtension.precomp_map_left, CategoryTheory.CostructuredArrow.mapNatIso_counitIso_hom_app_left, HomologicalComplex.Hom.sqFrom_left, CategoryTheory.Arrow.hom_inv_id_left, CategoryTheory.Comma.leftIso_inv, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompToArrowIso_inv_app_left, CategoryTheory.Functor.PushoutObjObj.mapArrowLeft_left, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryToUnit_mapPullbackAdj_counit_app, CategoryTheory.WithTerminal.isLimitEquiv_apply_lift_left, CategoryTheory.subterminalsEquivMonoOverTerminal_unitIso, CategoryTheory.MorphismProperty.CostructuredArrow.Hom.ext_iff, CategoryTheory.WithInitial.equivComma_counitIso_inv_app_left, CategoryTheory.Over.associator_inv_left_fst_snd_assoc, CategoryTheory.Comma.mapRight_map_left, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_mapPullbackAdj_counit_app, CategoryTheory.Arrow.inv_hom_id_left, CategoryTheory.Functor.LeftExtension.postcomp₁_map_left, CategoryTheory.Square.fromArrowArrowFunctor'_map_τ₂, CategoryTheory.Functor.RightExtension.coneAtFunctor_map_hom, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_left_comp, CategoryTheory.Over.rightUnitor_hom_left, CategoryTheory.MorphismProperty.Over.pullback_map_left, CategoryTheory.Square.fromArrowArrowFunctor_map_τ₁, CategoryTheory.RetractArrow.op_i_left, SSet.Augmented.stdSimplex_map_left, CategoryTheory.toOver_map_left, CategoryTheory.Over.sections_map, CategoryTheory.ChosenPullbacksAlong.fst'_left, CategoryTheory.CosimplicialObject.equivalenceLeftToRight_left, CategoryTheory.MonoOver.commSqOfHasStrongEpiMonoFactorisation, CategoryTheory.Over.μ_pullback_left_snd, CategoryTheory.subterminalsEquivMonoOverTerminal_counitIso, CategoryTheory.Comma.id_left, CategoryTheory.CostructuredArrow.ofDiagEquivalence.inverse_map_left, CategoryTheory.ChosenPullbacksAlong.Over.toUnit_left, CategoryTheory.WithTerminal.coneEquiv_unitIso_inv_app_hom_left, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_left_π, CategoryTheory.Over.epi_left_of_epi, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompToArrowIso_hom_app_left, CategoryTheory.WithTerminal.equivComma_functor_map_left_app, CategoryTheory.Comma.preLeft_map_left, CategoryTheory.CostructuredArrow.eqToHom_left, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_fst, CategoryTheory.MorphismProperty.Comma.Hom.hom_left, CategoryTheory.CostructuredArrow.mapNatIso_functor_map_left, CategoryTheory.instHomIsOverLeftDiscretePUnit, CategoryTheory.Comma.mapRightIso_unitIso_inv_app_left, CategoryTheory.Over.braiding_hom_left, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_snd, CategoryTheory.ChosenPullbacksAlong.iso_mapPullbackAdj_counit_app, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left_snd, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_snd_snd, CategoryTheory.MorphismProperty.Over.mapComp_inv_app_left, CategoryTheory.CostructuredArrow.hom_ext_iff, CategoryTheory.Over.μ_pullback_left_fst_fst, CategoryTheory.Over.starPullbackIsoStar_inv_app_left, CategoryTheory.Over.iteratedSliceForward_map, CategoryTheory.simplicialToCosimplicialAugmented_map_right, AlgebraicGeometry.Scheme.Cover.pullbackCoverOver'_f, HomologicalComplex.Hom.sqTo_left, CategoryTheory.Square.fromArrowArrowFunctor'_map_τ₁, CategoryTheory.SmallObject.ιFunctorObj_naturality_assoc, CategoryTheory.StructuredArrow.commaMapEquivalenceUnitIso_hom_app_right_left, CategoryTheory.Arrow.square_to_iso_invert, CategoryTheory.toOverIteratedSliceForwardIsoPullback_inv_app_left, CategoryTheory.Over.hom_left_inv_left_assoc, CategoryTheory.Functor.PullbackObjObj.mapArrowRight_left, CategoryTheory.ChosenPullbacksAlong.iso_pullback_map, CategoryTheory.TwoSquare.EquivalenceJ.functor_map, CategoryTheory.RetractArrow.unop_i_left, CategoryTheory.cosimplicialToSimplicialAugmented_map, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_hom_app_comp_fst_assoc, CategoryTheory.Comma.mapRightEq_hom_app_left, CategoryTheory.StructuredArrow.commaMapEquivalenceUnitIso_inv_app_right_left, CategoryTheory.CosimplicialObject.equivalenceRightToLeft_left, CategoryTheory.Arrow.leftFunc_map, CategoryTheory.Under.costar_map_left, CategoryTheory.Over.whiskerRight_left_fst_assoc, CategoryTheory.WithTerminal.equivComma_inverse_map_app, CategoryTheory.Functor.PullbackObjObj.mapArrowLeft_right, CategoryTheory.Over.tensorHom_left_snd, CategoryTheory.Under.opEquivOpOver_counitIso, CategoryTheory.MorphismProperty.Over.isoMk_hom_left, CategoryTheory.StructuredArrow.toUnder_map_left, CategoryTheory.CostructuredArrow.preEquivalence.inverse_obj_hom_left, CategoryTheory.SimplicialObject.Augmented.drop_map, CategoryTheory.Functor.mapArrowFunctor_map_app_left, CategoryTheory.Pretriangulated.exists_iso_of_arrow_iso, CategoryTheory.CostructuredArrow.preEquivalence.functor_map_left, CategoryTheory.SmallObject.ιObj_naturality_assoc, CategoryTheory.Over.forget_map, CategoryTheory.Square.fromArrowArrowFunctor_map_τ₂, CategoryTheory.RetractArrow.unop_i_right, CategoryTheory.Limits.kernel_map_comp_kernelSubobjectIso_inv_assoc, CategoryTheory.Square.toArrowArrowFunctor_map_left_right, CategoryTheory.WithTerminal.liftFromOver_map_app, CategoryTheory.WithTerminal.coneEquiv_inverse_map_hom_left, CategoryTheory.Arrow.left_hom_inv_right, CategoryTheory.Square.toArrowArrowFunctor_map_right_left, CategoryTheory.Comma.instIsIsoLeft, CategoryTheory.RetractArrow.left_i, CategoryTheory.Over.ConstructProducts.conesEquivInverseObj_π_app, CategoryTheory.RetractArrow.instIsSplitEpiLeftRArrow, CategoryTheory.Comma.equivProd_functor_map, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_inv_app_comp_fst_assoc, CategoryTheory.Over.lift_left, CategoryTheory.Comma.mapLeftIso_inverse_map_left, CategoryTheory.Arrow.w_assoc, CategoryTheory.CostructuredArrow.preEquivalence.inverse_map_left_left, CategoryTheory.Over.opEquivOpUnder_functor_map, CategoryTheory.Comma.mapLeftComp_hom_app_left, CategoryTheory.Functor.LeftExtension.precomp₂_map_left, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryToUnit_pullback_map, CategoryTheory.StructuredArrow.mapIso_inverse_map_left, CategoryTheory.SimplicialObject.augmentedCechNerve_map_left_app, AlgebraicGeometry.Scheme.restrictFunctor_map_left, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_hom_app_comp_fst, TopCat.Presheaf.generateEquivalenceOpensLe_functor'_map, CategoryTheory.CostructuredArrow.pre_map_left, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.functor_map, HomotopicalAlgebra.weakEquivalences_over_iff, CategoryTheory.CostructuredArrow.ext_iff, CategoryTheory.Over.mkIdTerminal_from_left, CategoryTheory.Square.toArrowArrowFunctor'_obj_hom_left, CategoryTheory.Over.fst_left, CategoryTheory.Over.prodLeftIsoPullback_hom_fst, CategoryTheory.Arrow.hom_ext_iff, CategoryTheory.Over.associator_hom_left_fst_assoc, CategoryTheory.Comma.equivProd_unitIso_inv_app_left, CategoryTheory.Limits.pullbackConeEquivBinaryFan_unitIso, CategoryTheory.Over.forgetAdjStar_unit_app_left, HomotopicalAlgebra.instWeakEquivalenceLeftDiscretePUnitOfOver, CategoryTheory.CostructuredArrow.epi_iff_epi_left, CategoryTheory.Arrow.homMk_left, CategoryTheory.MorphismProperty.Comma.mapLeft_map_left, CategoryTheory.RetractArrow.i_w_assoc, CategoryTheory.RetractArrow.unop_r_left, CategoryTheory.CostructuredArrow.unop_left_comp_underlyingIso_hom_unop, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.pullbackGluedIso_inv_snd, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.pullbackGluedIso_inv_fst, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_fst_snd', CategoryTheory.toOverUnitPullback_hom_app_left, CategoryTheory.Arrow.hom.congr_left, CategoryTheory.Over.ε_pullback_left, groupHomology.d₁₀ArrowIso_inv_left, CategoryTheory.Over.coprod_map_app, CategoryTheory.CostructuredArrow.mapIso_inverse_map_left, CategoryTheory.StructuredArrow.mapNatIso_inverse_map_left, CategoryTheory.WithInitial.ofCommaMorphism_app, CategoryTheory.ChosenPullbacksAlong.Over.leftUnitor_inv_left_snd_assoc, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_inv_left_fst_assoc, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_inverse_map, AlgebraicGeometry.Scheme.mem_toGrothendieck_smallPretopology, CategoryTheory.RetractArrow.instIsSplitMonoLeftIArrow, CategoryTheory.MorphismProperty.Over.mapId_hom_app_left, CategoryTheory.CosimplicialObject.comp_left, CategoryTheory.MorphismProperty.Over.pullbackComp_left_fst_fst, CategoryTheory.Limits.kernelSubobjectMap_arrow, CategoryTheory.Over.associator_hom_left_snd_snd, CategoryTheory.Over.associator_inv_left_snd_assoc, CategoryTheory.Over.coprodObj_map, CategoryTheory.Comma.fst_map, CategoryTheory.StructuredArrow.commaMapEquivalenceCounitIso_inv_app_left_right, CategoryTheory.toOverUnitPullback_inv_app_left, CategoryTheory.Comma.mapRightIso_inverse_map_left, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_inv_left_fst, CategoryTheory.Limits.image.factor_map, CategoryTheory.Arrow.hom_inv_id_left_assoc, CategoryTheory.StructuredArrow.mapNatIso_functor_map_left, CategoryTheory.Arrow.homMk'_left, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_inv_app_comp_snd_assoc, CategoryTheory.Under.opEquivOpOver_inverse_map, CategoryTheory.Over.iteratedSliceForward_obj, CategoryTheory.Functor.RightExtension.postcompose₂ObjMkIso_hom_left_app, CategoryTheory.CostructuredArrow.projectQuotient_mk, CategoryTheory.MorphismProperty.Comma.id_left, CategoryTheory.CostructuredArrow.toStructuredArrow_map, CategoryTheory.Over.whiskerLeft_left_snd, CategoryTheory.Over.w_assoc, CategoryTheory.Comma.isoMk_hom_left, CategoryTheory.SimplicialObject.equivalenceLeftToRight_left_app, CategoryTheory.Limits.diagonal_pullback_fst, CategoryTheory.Bicategory.RightLift.w, CategoryTheory.Over.iteratedSliceForwardNaturalityIso_inv_app, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_fst_assoc, CategoryTheory.CostructuredArrow.costructuredArrowToOverEquivalence.inverse_map, CategoryTheory.CostructuredArrow.mapIso_counitIso_inv_app_left, CategoryTheory.MorphismProperty.Over.pullbackCongr_hom_app_left_fst_assoc, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left_snd, CategoryTheory.CostructuredArrow.isoMk_hom_left, CategoryTheory.Limits.KernelFork.mapOfIsLimit_ι, HomotopicalAlgebra.fibrations_over_iff, CategoryTheory.Over.ConstructProducts.conesEquivInverse_map_hom, CategoryTheory.Over.iteratedSliceForwardIsoPost_hom_app, CategoryTheory.Bicategory.RightExtension.w, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_inv_app_left, CategoryTheory.Over.postAdjunctionLeft_counit_app_left, CategoryTheory.Comma.mapRightComp_inv_app_left, CategoryTheory.Limits.pullbackConeEquivBinaryFan_inverse_map_hom, CategoryTheory.Arrow.iso_w', CategoryTheory.Limits.kernelSubobjectMap_arrow_apply, CategoryTheory.Over.mapComp_inv_app_left, CategoryTheory.CosimplicialObject.id_left, CategoryTheory.Limits.ker_map, CategoryTheory.Over.mono_left_of_mono, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_obj_hom, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_fst_fst_assoc, CategoryTheory.MonoOver.isIso_iff_isIso_left, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_snd_snd_assoc, CategoryTheory.MonoOver.instIsIsoLeftDiscretePUnitHomFullSubcategoryOverIsMono, CategoryTheory.WithTerminal.coneEquiv_functor_map_hom, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left, CategoryTheory.Square.fromArrowArrowFunctor_map_τ₄, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceInverse_map_left_right, CategoryTheory.OverPresheafAux.counitForward_naturality₂, CategoryTheory.Comma.coneOfPreserves_π_app_left
|
right 📖 | CompOp | 462 mathmath: CommRingCat.tensorProd_map_right, CategoryTheory.Functor.LeftExtension.coconeAtFunctor_map_hom, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_hom_right, CategoryTheory.StructuredArrow.projectSubobject_mk, CategoryTheory.StructuredArrow.map_map_right, CategoryTheory.MorphismProperty.FunctorialFactorizationData.mapZ_p, CategoryTheory.StructuredArrow.isoMk_inv_right, CategoryTheory.RetractArrow.right_r, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceFunctor_map_right, CategoryTheory.Comma.mapLeftEq_inv_app_right, CategoryTheory.Comma.mapLeftIso_inverse_map_right, CategoryTheory.MorphismProperty.Comma.Hom.ext_iff, CategoryTheory.CategoryOfElements.fromStructuredArrow_map, CategoryTheory.Bicategory.LeftLift.whiskering_map, CategoryTheory.CosimplicialObject.id_right_app, CategoryTheory.Functor.LeftExtension.precomp₂_map_right, CategoryTheory.StructuredArrow.commaMapEquivalenceInverse_map, CategoryTheory.Under.postComp_inv_app_right, CategoryTheory.Bicategory.LeftExtension.w_assoc, CategoryTheory.StructuredArrow.ofDiagEquivalence.inverse_map_right, CategoryTheory.StructuredArrow.w_prod_fst, CategoryTheory.Arrow.mapCechNerve_app, CategoryTheory.SimplicialObject.comp_right, CategoryTheory.SimplicialObject.Augmented.point_map, CategoryTheory.Arrow.hom_inv_id_right_assoc, CategoryTheory.Comma.toIdPUnitEquiv_inverse_map_right, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_inverse_map_app, CategoryTheory.WithInitial.isColimitEquiv_apply_desc_right, CategoryTheory.Functor.PullbackObjObj.mapArrowRight_right, CategoryTheory.SmallObject.πObj_ιIteration_app_right, CategoryTheory.Under.epi_right_of_epi, CategoryTheory.Under.postCongr_inv_app_right, CategoryTheory.Under.mono_right_of_mono, CategoryTheory.Functor.LeftExtension.postcomp₁_map_right_app, CategoryTheory.ParametrizedAdjunction.inr_arrowHomEquiv_symm_apply_left, CategoryTheory.SimplicialObject.Augmented.toArrow_map_right, CategoryTheory.Square.fromArrowArrowFunctor_map_τ₃, CategoryTheory.Arrow.mapAugmentedCechConerve_right, CommRingCat.mkUnder_ext_iff, CategoryTheory.StructuredArrow.commaMapEquivalenceCounitIso_hom_app_left_right, CategoryTheory.Square.toArrowArrowFunctor_obj_hom_right, CategoryTheory.Bicategory.LeftLift.w_assoc, CategoryTheory.TwoSquare.EquivalenceJ.inverse_map, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_inverse_obj, CategoryTheory.StructuredArrow.commaMapEquivalenceUnitIso_inv_app_right_right, CategoryTheory.Comma.mapRightEq_hom_app_right, CategoryTheory.RetractArrow.r_w_assoc, CategoryTheory.Comma.mapRightIso_counitIso_inv_app_right, CategoryTheory.MorphismProperty.Comma.comp_right, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_unitIso, CategoryTheory.StructuredArrow.map₂_map_right, CategoryTheory.Comma.instIsIsoRight, CategoryTheory.Comma.coneOfPreserves_π_app_right, CategoryTheory.Functor.LeftExtension.precomp_map_right, CategoryTheory.Comma.mapLeftIso_counitIso_inv_app_right, CategoryTheory.WithTerminal.equivComma_counitIso_hom_app_right, CategoryTheory.Comma.map_map_right, groupCohomology.dArrowIso₀₁_inv_right, CategoryTheory.CostructuredArrow.mapNatIso_inverse_map_right, CategoryTheory.Functor.RightExtension.postcomp₁_map_right, CategoryTheory.leftAdjointOfStructuredArrowInitialsAux_symm_apply, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_map_app, CategoryTheory.MorphismProperty.FunctorialFactorizationData.functorCategory.Z_map_app, CategoryTheory.Comma.mapRightIso_inverse_map_right, CategoryTheory.Limits.coker_map, CategoryTheory.StructuredArrow.eta_hom_right, CategoryTheory.Square.fromArrowArrowFunctor_obj_f₃₄, CategoryTheory.RetractArrow.map_r_right, CategoryTheory.StructuredArrow.prodInverse_map, CategoryTheory.MorphismProperty.under_iff, CategoryTheory.StructuredArrow.eta_inv_right, CategoryTheory.Comma.mapRightIso_unitIso_inv_app_right, CategoryTheory.RetractArrow.i_w, CategoryTheory.CostructuredArrow.toOver_map_right, CategoryTheory.CategoryOfElements.to_comma_map_right, CategoryTheory.Comma.opFunctor_map, CategoryTheory.Limits.CokernelCofork.π_mapOfIsColimit, CategoryTheory.CostructuredArrow.commaToGrothendieckPrecompFunctor_map_fiber, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_snd, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_symm_apply_right, CategoryTheory.Under.homMk_right, CategoryTheory.StructuredArrow.id_right, CategoryTheory.WithInitial.equivComma_counitIso_hom_app_right_app, CategoryTheory.Under.pushout_map, CategoryTheory.Comma.rightIso_hom, CategoryTheory.Limits.image.map_ι, CategoryTheory.CostructuredArrow.homMk'_right, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_inverse_map_hom, CategoryTheory.Functor.PushoutObjObj.mapArrowRight_left, CommRingCat.pushout_inr_tensorProdObjIsoPushoutObj_inv_right_assoc, groupCohomology.dArrowIso₀₁_hom_right, CategoryTheory.Comma.comp_right, CategoryTheory.Arrow.square_from_iso_invert, CategoryTheory.Abelian.im_map, CategoryTheory.SimplicialObject.Augmented.rightOpLeftOpIso_inv_right, CategoryTheory.Under.postAdjunctionRight_unit_app_right, CategoryTheory.Bicategory.LeftExtension.whiskering_map, CategoryTheory.Under.map_map_right, CategoryTheory.WithInitial.mkCommaMorphism_right_app, CategoryTheory.StructuredArrow.prodFunctor_map, CategoryTheory.Comma.mapLeftId_hom_app_right, CategoryTheory.CostructuredArrow.commaToGrothendieckPrecompFunctor_map_base, CategoryTheory.Comma.mapRightComp_inv_app_right, CategoryTheory.StructuredArrow.mapNatIso_inverse_map_right, CategoryTheory.CosimplicialObject.comp_right_app, CategoryTheory.SimplicialObject.Augmented.whiskering_map_app_right, CategoryTheory.RetractArrow.op_r_right, CategoryTheory.CostructuredArrow.mkPrecomp_right, CategoryTheory.Abelian.PreservesCoimageImageComparison.iso_hom_right, CategoryTheory.StructuredArrow.mapNatIso_functor_map_right, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceInverse_map_right_left, CategoryTheory.simplicialToCosimplicialAugmented_map_left, CategoryTheory.Arrow.w_mk_right, CategoryTheory.Under.eqToHom_right, CategoryTheory.WithInitial.equivComma_counitIso_inv_app_right_app, CategoryTheory.SmallObject.SuccStruct.prop.arrowIso_inv_right, CategoryTheory.Square.fromArrowArrowFunctor'_map_τ₃, CategoryTheory.SmallObject.functor_map, CategoryTheory.StructuredArrow.ofDiagEquivalence.functor_map_right_right, SSet.Augmented.stdSimplex_map_right, CategoryTheory.WithTerminal.equivComma_functor_map_right, CategoryTheory.MorphismProperty.Under.isoMk_inv_right, CategoryTheory.Functor.LeftExtension.postcompose₂ObjMkIso_inv_right_app, CategoryTheory.MorphismProperty.Comma.isoMk_hom_right, CategoryTheory.Under.isoMk_inv_right, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceFunctor_map_left, CategoryTheory.Over.opEquivOpUnder_inverse_map, CategoryTheory.MorphismProperty.Under.isoMk_hom_right, CategoryTheory.Under.post_map, CategoryTheory.StructuredArrow.mapNatIso_unitIso_hom_app_right, CategoryTheory.WithInitial.coconeEquiv_unitIso_hom_app_hom_right, CategoryTheory.Square.toArrowArrowFunctor_map_right_right, CategoryTheory.StructuredArrow.eqToHom_right, CategoryTheory.Bicategory.Lan.CommuteWith.lanCompIsoWhisker_hom_right, CategoryTheory.Functor.LeftExtension.postcompose₂_map_right_app, CategoryTheory.Limits.kernelSubobjectIso_comp_kernel_map, w_assoc, CategoryTheory.CostructuredArrow.map_map_right, AlgebraicGeometry.AffineTargetMorphismProperty.arrow_mk_iso_iff, CategoryTheory.Arrow.w, CategoryTheory.Comma.equivProd_unitIso_hom_app_right, CategoryTheory.SmallObject.iterationObjRightIso_hom, CategoryTheory.Comma.preRight_map_right, CategoryTheory.SmallObject.SuccStruct.prop.arrowIso_hom_right, CategoryTheory.Square.toArrowArrowFunctor'_map_right_left, CategoryTheory.ParametrizedAdjunction.inr_arrowHomEquiv_symm_apply_left_assoc, CategoryTheory.Comma.toIdPUnitEquiv_unitIso_inv_app_right, CategoryTheory.StructuredArrow.mono_iff_mono_right, w, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_hom_app_right, CategoryTheory.RetractArrow.r_w, CategoryTheory.Under.mono_iff_mono_right, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.functor_map_right_right, CategoryTheory.StructuredArrow.hom_eq_iff, CategoryTheory.Functor.LeibnizAdjunction.adj_counit_app_right, CategoryTheory.Under.postComp_hom_app_right, CategoryTheory.Comma.snd_map, CategoryTheory.WithInitial.coconeEquiv_functor_map_hom, CategoryTheory.Arrow.comp_right_assoc, CategoryTheory.Comma.mapLeftIso_unitIso_inv_app_right, CategoryTheory.WithTerminal.ofCommaMorphism_app, CategoryTheory.Under.isoMk_hom_right, CategoryTheory.WithTerminal.mkCommaMorphism_right, CategoryTheory.RetractArrow.right_i, CategoryTheory.Arrow.inv_hom_id_right, CategoryTheory.Arrow.isoMk_inv_right, CategoryTheory.Arrow.w_mk_right_assoc, CategoryTheory.SmallObject.functorMap_π_assoc, CategoryTheory.CosimplicialObject.Augmented.toArrow_map_right, CategoryTheory.CosimplicialObject.Augmented.const_map_right, CategoryTheory.Bicategory.LeftExtension.whiskerIdCancel_right, groupHomology.d₁₀ArrowIso_inv_right, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompToArrowIso_inv_app_right, CategoryTheory.MorphismProperty.Comma.comp_right_assoc, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_inverse_map_right, CategoryTheory.StructuredArrow.isoMk_hom_right, CategoryTheory.Comma.hom_ext_iff, CategoryTheory.TwoSquare.costructuredArrowDownwardsPrecomp_obj, AlgEquiv.toUnder_inv_right_apply, CategoryTheory.Comma.eqToHom_right, CategoryTheory.CostructuredArrow.mapIso_functor_map_right, CategoryTheory.SimplicialObject.Augmented.hom_ext_iff, CategoryTheory.StructuredArrow.toCostructuredArrow_map, CategoryTheory.WithInitial.equivComma_inverse_map_app, CategoryTheory.Comma.left_hom_inv_right, CategoryTheory.Comma.mapLeftComp_inv_app_right, CategoryTheory.CostructuredArrow.map₂_map_right, CategoryTheory.Comma.coconeOfPreserves_ι_app_right, CategoryTheory.Comma.toIdPUnitEquiv_unitIso_hom_app_right, CategoryTheory.RetractArrow.retract_right_assoc, CommRingCat.toAlgHom_apply, CategoryTheory.StructuredArrow.toUnder_map_right, CommRingCat.pushout_inl_tensorProdObjIsoPushoutObj_inv_right_assoc, CategoryTheory.Bicategory.LeftExtension.IsKan.uniqueUpToIso_hom_right, CategoryTheory.SmallObject.instIsIsoRightAppArrowMapToTypeOrdFunctorIterationFunctor, CategoryTheory.MorphismProperty.Comma.mapLeft_map_right, CategoryTheory.Comma.mapRightIso_functor_map_right, CategoryTheory.WithInitial.equivComma_functor_map_right_app, CategoryTheory.WithInitial.coconeEquiv_inverse_obj_ι_app_right, CategoryTheory.Comma.toIdPUnitEquiv_functor_map, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_map_right, CategoryTheory.MorphismProperty.Comma.Hom.hom_right, CategoryTheory.StructuredArrow.homMk_right, CategoryTheory.RetractArrow.op_i_right, CategoryTheory.SimplicialObject.Augmented.const_map_right, CategoryTheory.Functor.mapArrow_map_right, CategoryTheory.WithInitial.coconeEquiv_functor_obj_ι_app_of, CategoryTheory.RetractArrow.retract_right, CategoryTheory.StructuredArrow.commaMapEquivalenceInverse_obj, CategoryTheory.StructuredArrow.w_prod_snd, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_counitIso_inv_app_right_app, CategoryTheory.Comma.inv_right, CategoryTheory.Bicategory.Lan.CommuteWith.lanCompIsoWhisker_inv_right, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_right, CategoryTheory.Functor.LeftExtension.postcompose₂ObjMkIso_hom_right_app, CategoryTheory.Limits.kernelSubobjectIso_comp_kernel_map_assoc, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_fst_assoc, CategoryTheory.SmallObject.πObj_ιIteration_app_right_assoc, CategoryTheory.SimplicialObject.Augmented.rightOpLeftOpIso_hom_right, CategoryTheory.Under.forget_map, CategoryTheory.StructuredArrow.post_map, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_map_left, CategoryTheory.Arrow.mapCechConerve_app, CategoryTheory.SmallObject.πObj_naturality_assoc, CategoryTheory.Bicategory.LeftLift.whiskerHom_right, CategoryTheory.CosimplicialObject.Augmented.leftOpRightOpIso_hom_right_app, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceFunctor_map_right, CategoryTheory.Square.toArrowArrowFunctor'_map_left_right, CategoryTheory.StructuredArrow.homMk'_right, CategoryTheory.Comma.inv_left_hom_right, CommRingCat.pushout_inl_tensorProdObjIsoPushoutObj_inv_right, CategoryTheory.Limits.imageSubobjectMap_arrow, CategoryTheory.Limits.imageSubobjectMap_arrow_assoc, CategoryTheory.Over.opEquivOpUnder_counitIso, ext_iff, CategoryTheory.Comma.equivProd_inverse_map_right, CategoryTheory.MorphismProperty.FunctorialFactorizationData.mapZ_p_assoc, CategoryTheory.RetractArrow.unop_r_right, CategoryTheory.Arrow.id_right, CategoryTheory.Functor.PullbackObjObj.mapArrowLeft_left, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_map_left_right, CategoryTheory.SmallObject.iterationFunctorMapSuccAppArrowIso_hom_right_right_comp_assoc, CategoryTheory.StructuredArrow.mkPostcomp_right, CategoryTheory.Comma.mapLeftEq_hom_app_right, CategoryTheory.SimplicialObject.equivalenceRightToLeft_right, CategoryTheory.StructuredArrow.mapIso_unitIso_inv_app_right, CategoryTheory.Limits.MonoFactorisation.ofArrowIso_m, AlgHom.toUnder_right, CategoryTheory.StructuredArrow.proj_map, CategoryTheory.MorphismProperty.Under.w, CategoryTheory.StructuredArrow.mono_right_of_mono, AlgEquiv.toUnder_hom_right_apply, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.inverse_map_right_right, CategoryTheory.CostructuredArrow.right_eq_id, CategoryTheory.StructuredArrow.comp_right, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_map_right, CategoryTheory.Limits.ImageMap.map_ι, CategoryTheory.Comma.mapRightIso_counitIso_hom_app_right, CategoryTheory.MorphismProperty.Comma.mapRight_map_right, CategoryTheory.Comma.fromProd_map_right, CategoryTheory.Limits.CokernelCofork.π_mapOfIsColimit_assoc, CategoryTheory.CommSq.of_arrow, CategoryTheory.TransfiniteCompositionOfShape.ofArrowIso_incl, CategoryTheory.WithInitial.commaFromUnder_map_right, CategoryTheory.Comma.unopFunctor_map, CategoryTheory.Abelian.PreservesCoimageImageComparison.iso_inv_right, CategoryTheory.Bicategory.LeftExtension.IsKan.uniqueUpToIso_inv_right, CategoryTheory.MorphismProperty.Under.Hom.ext_iff, CategoryTheory.RetractArrow.instIsSplitEpiRightRArrow, CategoryTheory.Arrow.hom.congr_right, CategoryTheory.Under.hom_right_inv_right, CategoryTheory.Arrow.iso_w, CategoryTheory.Comma.mapLeftIso_unitIso_hom_app_right, CategoryTheory.MorphismProperty.Comma.isoMk_inv_right, CategoryTheory.Limits.Cocone.fromStructuredArrow_map_hom, CategoryTheory.CosimplicialObject.Augmented.hom_ext_iff, CategoryTheory.StructuredArrow.mapNatIso_counitIso_hom_app_right, CategoryTheory.Comma.mapRightId_hom_app_right, CategoryTheory.TwoSquare.costructuredArrowDownwardsPrecomp_map, CategoryTheory.Arrow.inv_left_hom_right, CategoryTheory.Arrow.homMk_right, CategoryTheory.StructuredArrow.commaMapEquivalenceCounitIso_hom_app_right_right, CategoryTheory.Functor.RightExtension.precomp_map_right, CategoryTheory.Under.postCongr_hom_app_right, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_inv_app_right, CategoryTheory.Limits.kernel_map_comp_kernelSubobjectIso_inv, CategoryTheory.Abelian.coimageImageComparisonFunctor_map, CategoryTheory.WithTerminal.commaFromOver_map_right, CategoryTheory.Comma.mapLeftIso_counitIso_hom_app_right, CategoryTheory.MorphismProperty.Under.forget_comp_forget_map, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceInverse_map_right_right, CategoryTheory.Bicategory.LeftLift.whiskerOfIdCompIsoSelf_hom_right, CategoryTheory.RetractArrow.op_r_left, CategoryTheory.StructuredArrow.preEquivalenceInverse_map_right_right, CategoryTheory.Comma.mapLeft_map_right, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_right, CategoryTheory.Square.fromArrowArrowFunctor'_map_τ₄, CategoryTheory.Comma.equivProd_unitIso_inv_app_right, CategoryTheory.Limits.IsColimit.pushoutCoconeEquivBinaryCofanFunctor_desc_right, CategoryTheory.CosimplicialObject.equivalenceRightToLeft_right_app, CategoryTheory.StructuredArrow.mapIso_unitIso_hom_app_right, CategoryTheory.StructuredArrow.w, CategoryTheory.Functor.RightExtension.postcompose₂_map_right, HomologicalComplex.Hom.sqTo_right, CategoryTheory.StructuredArrow.commaMapEquivalenceUnitIso_hom_app_right_right, CategoryTheory.StructuredArrow.pre_map_right, CategoryTheory.StructuredArrow.w_prod_fst_assoc, CategoryTheory.WithInitial.coconeEquiv_inverse_map_hom_right, CategoryTheory.SmallObject.functorMap_π, CategoryTheory.Functor.PushoutObjObj.mapArrowLeft_left, CategoryTheory.StructuredArrow.mapNatIso_unitIso_inv_app_right, CategoryTheory.underToAlgebra_map_f, CategoryTheory.CosimplicialObject.Augmented.leftOpRightOpIso_inv_right_app, CategoryTheory.Comma.mapRightId_inv_app_right, CategoryTheory.Square.fromArrowArrowFunctor'_map_τ₂, CategoryTheory.Comma.mapRightComp_hom_app_right, CategoryTheory.Square.fromArrowArrowFunctor_map_τ₁, CategoryTheory.RetractArrow.op_i_left, CategoryTheory.Comma.isoMk_hom_right, CategoryTheory.Functor.toUnder_map_right, CategoryTheory.Bicategory.LeftLift.whiskerIdCancel_right, CategoryTheory.Functor.mapArrowFunctor_map_app_right, CategoryTheory.StructuredArrow.mapIso_inverse_map_right, HomologicalComplex.Hom.sqFrom_right, CategoryTheory.Functor.PushoutObjObj.mapArrowLeft_right, CategoryTheory.SmallObject.iterationFunctorObjObjRightIso_ιIteration_app_right, CategoryTheory.TwoSquare.structuredArrowDownwards_map, CategoryTheory.Bicategory.LeftExtension.whiskerOfCompIdIsoSelf_hom_right, CategoryTheory.Arrow.epi_right, CategoryTheory.CosimplicialObject.Augmented.whiskering_map_app_right, CategoryTheory.RetractArrow.map_i_right, CategoryTheory.Bicategory.LeftLift.IsKan.uniqueUpToIso_hom_right, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_fst, CategoryTheory.Comma.id_right, CategoryTheory.Under.inv_right_hom_right, CategoryTheory.TransfiniteCompositionOfShape.ofArrowIso_isColimit, CategoryTheory.RetractArrow.instIsSplitMonoRightIArrow, CategoryTheory.WithInitial.liftFromUnder_map_app, CategoryTheory.Functor.LeibnizAdjunction.adj_unit_app_right, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_unitIso_hom_app_right_app, CategoryTheory.SimplicialObject.id_right, CategoryTheory.Under.hom_right_inv_right_assoc, CategoryTheory.simplicialToCosimplicialAugmented_map_right, CategoryTheory.CostructuredArrow.pre_map_right, CategoryTheory.Square.fromArrowArrowFunctor'_map_τ₁, CategoryTheory.StructuredArrow.commaMapEquivalenceUnitIso_hom_app_right_left, CategoryTheory.MorphismProperty.Under.w_assoc, CategoryTheory.Arrow.square_to_iso_invert, CategoryTheory.StructuredArrow.preEquivalenceFunctor_map_right, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_hom_app_right_app, CategoryTheory.StructuredArrow.preEquivalenceInverse_obj_hom_right, CategoryTheory.TwoSquare.EquivalenceJ.functor_map, CategoryTheory.Under.UnderMorphism.ext_iff, CategoryTheory.Square.toArrowArrowFunctor'_map_right_right, CategoryTheory.RetractArrow.unop_i_left, CategoryTheory.cosimplicialToSimplicialAugmented_map, CategoryTheory.StructuredArrow.commaMapEquivalenceUnitIso_inv_app_right_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompToArrowIso_hom_app_right, CategoryTheory.Arrow.homMk'_right, CategoryTheory.Comma.mapRightEq_inv_app_right, CategoryTheory.StructuredArrow.mapIso_functor_map_right, CategoryTheory.Comma.post_map_right, CategoryTheory.WithTerminal.equivComma_inverse_map_app, CategoryTheory.Bicategory.LanLift.CommuteWith.lanLiftCompIsoWhisker_inv_right, CategoryTheory.Functor.PullbackObjObj.mapArrowLeft_right, CategoryTheory.Bicategory.LeftExtension.whiskerHom_right, CategoryTheory.Under.opEquivOpOver_counitIso, CategoryTheory.StructuredArrow.w_prod_snd_assoc, CategoryTheory.MorphismProperty.Comma.eqToHom_right, CategoryTheory.Pretriangulated.exists_iso_of_arrow_iso, CategoryTheory.StructuredArrow.ext_iff, CategoryTheory.Square.fromArrowArrowFunctor_map_τ₂, CategoryTheory.WithInitial.liftFromUnder_obj_map, CategoryTheory.RetractArrow.unop_i_right, CategoryTheory.Limits.ImageMap.map_ι_assoc, CategoryTheory.Square.toArrowArrowFunctor'_obj_hom_right, CategoryTheory.Arrow.inv_right, CategoryTheory.Limits.kernel_map_comp_kernelSubobjectIso_inv_assoc, CategoryTheory.Square.toArrowArrowFunctor_map_left_right, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_map_right_app, groupHomology.d₁₀ArrowIso_hom_right, CategoryTheory.Arrow.left_hom_inv_right, CategoryTheory.Bicategory.LeftExtension.whiskerOfCompIdIsoSelf_inv_right, CategoryTheory.Square.toArrowArrowFunctor_map_right_left, CategoryTheory.Arrow.hom_inv_id_right, CategoryTheory.Under.mkIdInitial_to_right, CategoryTheory.MorphismProperty.Comma.Hom.prop_hom_right, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorToComma_map_right, CategoryTheory.Arrow.inv_hom_id_right_assoc, CategoryTheory.Bicategory.LeftLift.IsKan.uniqueUpToIso_inv_right, CategoryTheory.Comma.equivProd_functor_map, CategoryTheory.Over.lift_left, CategoryTheory.Under.postAdjunctionRight_counit_app_right, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_counitIso, CategoryTheory.TwoSquare.EquivalenceJ.inverse_obj, CategoryTheory.Arrow.w_assoc, CategoryTheory.Functor.PushoutObjObj.mapArrowRight_right, CategoryTheory.SimplicialObject.augmentedCechNerve_map_left_app, CategoryTheory.SmallObject.iterationFunctorMapSuccAppArrowIso_hom_right_right_comp, CategoryTheory.Under.inv_right_hom_right_assoc, CategoryTheory.CostructuredArrow.mapNatIso_functor_map_right, CategoryTheory.Under.opEquivOpOver_functor_map, CategoryTheory.Arrow.hom_ext_iff, CategoryTheory.CosimplicialObject.equivalenceLeftToRight_right, CategoryTheory.Comma.preLeft_map_right, CategoryTheory.StructuredArrow.toCostructuredArrow'_map, CategoryTheory.RetractArrow.i_w_assoc, CategoryTheory.RetractArrow.unop_r_left, CategoryTheory.CostructuredArrow.mapIso_inverse_map_right, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_counitIso_hom_app_right_app, CategoryTheory.SmallObject.iterationFunctorObjObjRightIso_ιIteration_app_right_assoc, CategoryTheory.WithTerminal.equivComma_counitIso_inv_app_right, CategoryTheory.Bicategory.LeftExtension.w, CategoryTheory.SmallObject.πObj_naturality, CategoryTheory.Under.id_right, CategoryTheory.Bicategory.LeftLift.whiskerOfIdCompIsoSelf_inv_right, CategoryTheory.Comma.isoMk_inv_right, CategoryTheory.WithInitial.ofCommaMorphism_app, CategoryTheory.SmallObject.instIsIsoRightAppArrowιIteration, CategoryTheory.Arrow.comp_right, CategoryTheory.Square.fromArrowArrowFunctor'_obj_f₂₄, CategoryTheory.StructuredArrow.commaMapEquivalenceCounitIso_inv_app_left_right, CategoryTheory.Under.w_assoc, CategoryTheory.Comma.mapLeftId_inv_app_right, CategoryTheory.StructuredArrow.w_assoc, CategoryTheory.StructuredArrow.mapNatIso_counitIso_inv_app_right, CategoryTheory.WithInitial.coconeEquiv_unitIso_inv_app_hom_right, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_obj_right, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_functor_map_right, CategoryTheory.MorphismProperty.Comma.Hom.comp_right, CategoryTheory.Comma.rightIso_inv, CategoryTheory.Comma.mapLeftComp_hom_app_right, CategoryTheory.Comma.mapRight_map_right, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_unitIso_inv_app_right_app, CategoryTheory.SimplicialObject.equivalenceLeftToRight_left_app, CategoryTheory.Under.w, CategoryTheory.Comma.mapLeftIso_functor_map_right, CategoryTheory.SimplicialObject.augmentedCechNerve_map_right, CategoryTheory.Arrow.mapAugmentedCechNerve_right, CategoryTheory.StructuredArrow.commaMapEquivalenceCounitIso_inv_app_right_right, CategoryTheory.StructuredArrow.mapIso_counitIso_hom_app_right, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_inv_app_right_app, CategoryTheory.Arrow.isoMk_hom_right, CategoryTheory.StructuredArrow.hom_ext_iff, CategoryTheory.Arrow.iso_w', CategoryTheory.StructuredArrow.preEquivalenceFunctor_obj_hom, CategoryTheory.StructuredArrow.mapIso_counitIso_inv_app_right, CategoryTheory.Comma.mapRightIso_unitIso_hom_app_right, CategoryTheory.SimplicialObject.equivalenceLeftToRight_right, CategoryTheory.CosimplicialObject.Augmented.drop_map, CategoryTheory.Bicategory.LanLift.CommuteWith.lanLiftCompIsoWhisker_hom_right, CategoryTheory.Arrow.isIso_right, CategoryTheory.Under.comp_right, CategoryTheory.Arrow.squareToSnd_right, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_obj_hom, CategoryTheory.MorphismProperty.Comma.id_right, CategoryTheory.Bicategory.LeftLift.w, CategoryTheory.Square.fromArrowArrowFunctor_map_τ₄, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceInverse_map_left_right, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_snd_assoc, CategoryTheory.Arrow.rightFunc_map, CommRingCat.pushout_inr_tensorProdObjIsoPushoutObj_inv_right
|