Documentation Verification Report

Basic

📁 Source: Mathlib/CategoryTheory/Comma/Basic.lean

Statistics

MetricCount
DefinitionsequivProd, fromProd, fst, hom, inhabited, isoMk, left, leftIso, map, mapFst, mapLeft, mapLeftComp, mapLeftEq, mapLeftId, mapLeftIso, mapRight, mapRightComp, mapRightEq, mapRightId, mapRightIso, mapSnd, natTrans, opEquiv, opFunctor, opFunctorCompFst, opFunctorCompSnd, post, postIso, preLeft, preLeftIso, preRight, preRightIso, right, rightIso, snd, toIdPUnitEquiv, toPUnitIdEquiv, unopFunctor, unopFunctorCompFst, unopFunctorCompSnd, CommaMorphism, inhabited, left, right, commaCategory
45
Theoremscomp_left, comp_right, eqToHom_left, eqToHom_right, equivProd_counitIso_hom_app, equivProd_counitIso_inv_app, equivProd_functor_map, equivProd_functor_obj, equivProd_inverse_map_left, equivProd_inverse_map_right, equivProd_inverse_obj_left, equivProd_inverse_obj_right, equivProd_unitIso_hom_app_left, equivProd_unitIso_hom_app_right, equivProd_unitIso_inv_app_left, equivProd_unitIso_inv_app_right, essSurj_map, faithful_map, fromProd_map_left, fromProd_map_right, fromProd_obj_hom, fromProd_obj_left, fromProd_obj_right, fst_map, fst_obj, full_map, hom_ext, hom_ext_iff, id_left, id_right, instEssSurjCompPostOfFull, instEssSurjCompPreLeft, instEssSurjCompPreRight, instFaithfulCompPost, instFaithfulCompPreLeft, instFaithfulCompPreRight, instFullCompPostOfFaithful, instFullCompPreLeft, instFullCompPreRight, instIsIsoLeft, instIsIsoRight, inv_left, inv_left_hom_right, inv_right, isEquivalenceMap, isEquivalence_post, isEquivalence_preLeft, isEquivalence_preRight, isoMk_hom_left, isoMk_hom_right, isoMk_inv_left, isoMk_inv_right, leftIso_hom, leftIso_inv, left_hom_inv_right, mapFst_hom_app, mapFst_inv_app, mapLeftComp_hom_app_left, mapLeftComp_hom_app_right, mapLeftComp_inv_app_left, mapLeftComp_inv_app_right, mapLeftEq_hom_app_left, mapLeftEq_hom_app_right, mapLeftEq_inv_app_left, mapLeftEq_inv_app_right, mapLeftId_hom_app_left, mapLeftId_hom_app_right, mapLeftId_inv_app_left, mapLeftId_inv_app_right, mapLeftIso_counitIso_hom_app_left, mapLeftIso_counitIso_hom_app_right, mapLeftIso_counitIso_inv_app_left, mapLeftIso_counitIso_inv_app_right, mapLeftIso_functor_map_left, mapLeftIso_functor_map_right, mapLeftIso_functor_obj_hom, mapLeftIso_functor_obj_left, mapLeftIso_functor_obj_right, mapLeftIso_inverse_map_left, mapLeftIso_inverse_map_right, mapLeftIso_inverse_obj_hom, mapLeftIso_inverse_obj_left, mapLeftIso_inverse_obj_right, mapLeftIso_unitIso_hom_app_left, mapLeftIso_unitIso_hom_app_right, mapLeftIso_unitIso_inv_app_left, mapLeftIso_unitIso_inv_app_right, mapLeft_map_left, mapLeft_map_right, mapLeft_obj_hom, mapLeft_obj_left, mapLeft_obj_right, mapRightComp_hom_app_left, mapRightComp_hom_app_right, mapRightComp_inv_app_left, mapRightComp_inv_app_right, mapRightEq_hom_app_left, mapRightEq_hom_app_right, mapRightEq_inv_app_left, mapRightEq_inv_app_right, mapRightId_hom_app_left, mapRightId_hom_app_right, mapRightId_inv_app_left, mapRightId_inv_app_right, mapRightIso_counitIso_hom_app_left, mapRightIso_counitIso_hom_app_right, mapRightIso_counitIso_inv_app_left, mapRightIso_counitIso_inv_app_right, mapRightIso_functor_map_left, mapRightIso_functor_map_right, mapRightIso_functor_obj_hom, mapRightIso_functor_obj_left, mapRightIso_functor_obj_right, mapRightIso_inverse_map_left, mapRightIso_inverse_map_right, mapRightIso_inverse_obj_hom, mapRightIso_inverse_obj_left, mapRightIso_inverse_obj_right, mapRightIso_unitIso_hom_app_left, mapRightIso_unitIso_hom_app_right, mapRightIso_unitIso_inv_app_left, mapRightIso_unitIso_inv_app_right, mapRight_map_left, mapRight_map_right, mapRight_obj_hom, mapRight_obj_left, mapRight_obj_right, mapSnd_hom_app, mapSnd_inv_app, map_fst, map_map_left, map_map_right, map_obj_hom, map_obj_left, map_obj_right, map_snd, natTrans_app, opEquiv_counitIso, opEquiv_functor, opEquiv_inverse, opEquiv_unitIso, opFunctorCompFst_hom_app, opFunctorCompFst_inv_app, opFunctorCompSnd_hom_app, opFunctorCompSnd_inv_app, opFunctor_map, opFunctor_obj, post_map_left, post_map_right, post_obj_hom, post_obj_left, post_obj_right, preLeft_map_left, preLeft_map_right, preLeft_obj_hom, preLeft_obj_left, preLeft_obj_right, preRight_map_left, preRight_map_right, preRight_obj_hom, preRight_obj_left, preRight_obj_right, rightIso_hom, rightIso_inv, snd_map, snd_obj, toIdPUnitEquiv_counitIso_hom_app, toIdPUnitEquiv_counitIso_inv_app, toIdPUnitEquiv_functor_iso, toIdPUnitEquiv_functor_map, toIdPUnitEquiv_functor_obj, toIdPUnitEquiv_inverse_map_right, toIdPUnitEquiv_inverse_obj_left_as, toIdPUnitEquiv_inverse_obj_right, toIdPUnitEquiv_unitIso_hom_app_right, toIdPUnitEquiv_unitIso_inv_app_right, toPUnitIdEquiv_counitIso_hom_app, toPUnitIdEquiv_counitIso_inv_app, toPUnitIdEquiv_functor_iso, toPUnitIdEquiv_functor_map, toPUnitIdEquiv_functor_obj, toPUnitIdEquiv_inverse_map_left, toPUnitIdEquiv_inverse_obj_left, toPUnitIdEquiv_inverse_obj_right_as, toPUnitIdEquiv_unitIso_hom_app_left, toPUnitIdEquiv_unitIso_inv_app_left, unopFunctorCompFst_hom_app, unopFunctorCompFst_inv_app, unopFunctorCompSnd_hom_app, unopFunctorCompSnd_inv_app, unopFunctor_map, unopFunctor_obj, ext, ext_iff, w, w_assoc
196
Total241

CategoryTheory

Definitions

NameCategoryTheorems
CommaMorphism 📖CompData
commaCategory 📖CompOp
434 mathmath: TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_hom_right, CostructuredArrow.ofCommaFstEquivalenceInverse_obj_left_hom, StructuredArrow.ofCommaSndEquivalenceInverse_obj_right_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_hom_app_left, WithInitial.equivComma_functor_obj_right_obj, StructuredArrow.ofCommaSndEquivalenceFunctor_map_right, Comma.snd_obj, Comma.mapLeftEq_inv_app_right, Comma.mapLeftIso_inverse_map_right, Functor.leftExtensionEquivalenceOfIso₁_functor_map_left, Comma.opFunctor_obj, WithTerminal.equivComma_functor_obj_left_obj, StructuredArrow.mapIso_functor_obj_left, WithTerminal.equivComma_counitIso_hom_app_left_app, Comma.toPUnitIdEquiv_functor_map, NonemptyParallelPairPresentationAux.hf, StructuredArrow.commaMapEquivalenceInverse_map, Comma.map_obj_hom, WithTerminal.equivComma_counitIso_inv_app_left_app, StructuredArrow.ofCommaSndEquivalence_functor, Comma.toIdPUnitEquiv_inverse_map_right, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_inverse_map_app, Comma.map_final, Comma.mapLeft_map_left, StructuredArrow.mapIso_inverse_obj_hom, CostructuredArrow.grothendieckPrecompFunctorToComma_map_left, Comma.fromProd_obj_hom, CostructuredArrow.mapNatIso_inverse_obj_left, CostructuredArrow.mapIso_functor_obj_hom, StructuredArrow.commaMapEquivalenceCounitIso_hom_app_left_right, Comma.fst_obj, Comma.mapLeftIso_functor_map_left, Comma.mapLeftIso_unitIso_inv_app_left, Functor.leftExtensionEquivalenceOfIso₁_functor_obj_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_obj_left, Comma.mapRightIso_counitIso_inv_app_left, TwoSquare.EquivalenceJ.inverse_map, StructuredArrow.commaMapEquivalenceUnitIso_inv_app_right_right, Comma.mapRightEq_hom_app_right, Comma.initial_fst, Comma.mapRightIso_counitIso_inv_app_right, Comma.opEquiv_counitIso, Comma.mapLeftEq_hom_app_left, Comma.isConnected_comma_of_initial, Comma.hasColimitsOfSize, Comma.coneOfPreserves_π_app_right, Comma.eqToHom_left, Comma.limitAuxiliaryCone_pt, WithTerminal.equivComma_inverse_obj_obj, Comma.hasColimitsOfShape, Comma.mapRightIso_functor_map_left, Comma.mapLeftIso_counitIso_inv_app_right, WithTerminal.equivComma_counitIso_hom_app_right, Comma.map_map_right, Comma.instEssSurjCompPostOfFull, CostructuredArrow.mapNatIso_inverse_map_right, StructuredArrow.mapNatIso_functor_obj_right, Comma.mapRight_obj_hom, Comma.mapRightIso_inverse_map_right, WithTerminal.equivComma_functor_obj_left_map, CostructuredArrow.mapNatIso_unitIso_inv_app_left, Comma.inv_left, CostructuredArrow.mapIso_unitIso_hom_app_left, WithTerminal.equivComma_functor_obj_right, Comma.mapRightIso_unitIso_inv_app_right, Comma.toPUnitIdEquiv_counitIso_hom_app, Comma.mapSnd_inv_app, Comma.fromProd_obj_right, CostructuredArrow.grothendieckPrecompFunctorEquivalence_functor, Comma.mapRightIso_functor_obj_right, Comma.opFunctor_map, CostructuredArrow.commaToGrothendieckPrecompFunctor_map_fiber, CostructuredArrow.commaToGrothendieckPrecompFunctor_obj_fiber, Comma.preRight_obj_left, WithTerminal.commaFromOver_map_left, WithInitial.equivComma_functor_obj_right_map, WithInitial.equivComma_counitIso_hom_app_right_app, Comma.rightIso_hom, CostructuredArrow.ιCompGrothendieckProj_inv_app, Comma.mapLeftIso_inverse_obj_left, CostructuredArrow.mapIso_inverse_obj_right, Comma.mapRight_obj_left, Comma.equivProd_unitIso_hom_app_left, Comma.comp_right, WithTerminal.commaFromOver_obj_right, StructuredArrow.ofCommaSndEquivalence_unitIso, TwoSquare.costructuredArrowRightwards_map, StructuredArrow.ofCommaSndEquivalence_counitIso, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_inverse_obj_map, CostructuredArrow.mapIso_functor_map_left, Comma.mapLeftIso_inverse_obj_right, Functor.leftExtensionEquivalenceOfIso₁_inverse_map_left, Comma.equivProd_counitIso_hom_app, Comma.mapRightId_inv_app_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_inverse_obj_obj, Comma.instFaithfulCompPreLeft, Functor.leftExtensionEquivalenceOfIso₁_inverse_obj_left, Comma.mapLeftId_hom_app_right, Comma.post_obj_right, Comma.preRight_map_left, MorphismProperty.Comma.instFullTopCommaForget, MorphismProperty.Comma.isoFromComma_hom, StructuredArrow.mapNatIso_functor_obj_hom, CostructuredArrow.mapIso_unitIso_inv_app_left, CostructuredArrow.grothendieckPrecompFunctorToComma_obj_right, Comma.preLeft_obj_right, StructuredArrow.mapIso_inverse_obj_right, CostructuredArrow.commaToGrothendieckPrecompFunctor_map_base, Comma.mapRightComp_inv_app_right, StructuredArrow.mapNatIso_inverse_map_right, Comma.instFaithfulCompPost, StructuredArrow.mapNatIso_functor_map_right, CostructuredArrow.ofCommaFstEquivalence_inverse, StructuredArrow.ofCommaSndEquivalenceInverse_map_right_left, CostructuredArrow.mapIso_functor_obj_left, WithInitial.equivComma_counitIso_inv_app_right_app, Comma.hasColimit, CostructuredArrow.ofCommaFstEquivalenceFunctor_obj_hom, StructuredArrow.mapNatIso_inverse_obj_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_map_left, WithTerminal.equivComma_functor_map_right, Comma.faithful_map, Comma.comp_left, Comma.toPUnitIdEquiv_functor_obj, WithInitial.commaFromUnder_map_left, Comma.fromProd_obj_left, StructuredArrow.ofCommaSndEquivalenceFunctor_map_left, Comma.mapLeftComp_inv_app_left, Comma.mapLeftIso_functor_obj_left, StructuredArrow.mapNatIso_unitIso_hom_app_right, Comma.natTrans_app, Comma.map_obj_right, Comma.coneOfPreserves_pt_right, Comma.equivProd_inverse_map_left, CostructuredArrow.ιCompGrothendieckPrecompFunctorToCommaCompFst_inv_app, Comma.instFullCompPreLeft, Comma.equivProd_unitIso_hom_app_right, CostructuredArrow.ofCommaFstEquivalenceInverse_obj_right_as, Comma.preRight_map_right, CostructuredArrow.ofCommaFstEquivalenceInverse_obj_left_left, CostructuredArrow.mapNatIso_functor_obj_hom, Comma.map_map_left, Comma.mapRightIso_functor_obj_hom, Comma.toIdPUnitEquiv_unitIso_inv_app_right, Comma.post_map_left, CostructuredArrow.grothendieckPrecompFunctorToComma_obj_left, Comma.toPUnitIdEquiv_unitIso_inv_app_left, Comma.colimitAuxiliaryCocone_pt, StructuredArrow.ofCommaSndEquivalenceFunctor_obj_right, Comma.coconeOfPreserves_pt_right, Comma.isCofiltered_of_initial, Comma.preservesColimitsOfShape_snd, Comma.snd_map, Comma.preRight_obj_right, Comma.mapLeftIso_unitIso_inv_app_right, CostructuredArrow.mapNatIso_counitIso_inv_app_left, Comma.isEquivalence_post, Comma.mapLeftIso_unitIso_hom_app_left, CostructuredArrow.mapIso_counitIso_hom_app_left, WithInitial.equivComma_functor_map_left, CostructuredArrow.mapCompιCompGrothendieckProj_inv_app, Comma.mapRightEq_inv_app_left, Functor.leftExtensionEquivalenceOfIso₁_inverse_map_right, Comma.isEquivalenceMap, Comma.eqToHom_right, CostructuredArrow.mapIso_functor_map_right, WithTerminal.equivComma_functor_obj_hom_app, WithInitial.equivComma_inverse_map_app, Comma.unopFunctor_obj, CostructuredArrow.mapNatIso_inverse_map_left, Comma.mapLeftComp_inv_app_right, Comma.equivProd_counitIso_inv_app, Comma.isEquivalence_preLeft, Comma.coconeOfPreserves_ι_app_right, Comma.toIdPUnitEquiv_unitIso_hom_app_right, WithInitial.equivComma_counitIso_hom_app_left, Comma.mapRightIso_inverse_obj_right, CostructuredArrow.grothendieckPrecompFunctorEquivalence_unitIso, Comma.coconeOfPreserves_pt_hom, Comma.mapLeftIso_counitIso_hom_app_left, Comma.mapRightIso_functor_map_right, Comma.limitAuxiliaryCone_π_app, WithInitial.equivComma_functor_map_right_app, Comma.toIdPUnitEquiv_functor_map, Comma.toIdPUnitEquiv_inverse_obj_left_as, Functor.leftExtensionEquivalenceOfIso₁_inverse_obj_right, StructuredArrow.commaMapEquivalenceInverse_obj, Functor.leftExtensionEquivalenceOfIso₁_counitIso_inv_app_right_app, Comma.inv_right, WithInitial.equivComma_functor_obj_hom_app, Comma.toIdPUnitEquiv_functor_obj, StructuredArrow.mapNatIso_inverse_obj_hom, WithInitial.commaFromUnder_obj_hom_app, StructuredArrow.commaMapEquivalenceFunctor_obj_left, CostructuredArrow.mapNatIso_inverse_obj_hom, WithInitial.commaFromUnder_obj_right, WithInitial.equivComma_inverse_obj_map, Comma.toIdPUnitEquiv_counitIso_hom_app, Comma.mapRightComp_hom_app_left, StructuredArrow.commaMapEquivalenceFunctor_map_left, CostructuredArrow.ofCommaFstEquivalence_functor, Comma.toPUnitIdEquiv_inverse_map_left, Comma.mapRightIso_functor_obj_left, CostructuredArrow.ofCommaFstEquivalenceFunctor_map_right, MorphismProperty.Comma.forget_obj, Comma.unopFunctorCompSnd_inv_app, Comma.coconeOfPreserves_ι_app_left, Comma.equivProd_inverse_map_right, CostructuredArrow.mapNatIso_unitIso_hom_app_left, Functor.leftExtensionEquivalenceOfIso₁_inverse_obj_hom_app, Comma.isoMk_inv_left, CostructuredArrow.grothendieckPrecompFunctorEquivalence_inverse, Comma.toPUnitIdEquiv_functor_iso, CostructuredArrow.ofCommaFstEquivalenceInverse_map_left_left, StructuredArrow.mapIso_functor_obj_right, Comma.mapLeftEq_hom_app_right, StructuredArrow.mapIso_unitIso_inv_app_right, Comma.mapLeft_obj_right, Comma.hasLimitsOfSize, Comma.preservesColimitsOfShape_fst, Comma.opFunctorCompSnd_hom_app, StructuredArrow.mapIso_functor_map_left, Functor.leftExtensionEquivalenceOfIso₁_functor_obj_hom_app, Comma.mapLeftIso_inverse_obj_hom, StructuredArrow.commaMapEquivalenceFunctor_map_right, Comma.mapLeftId_hom_app_left, Comma.hasLimitsOfShape, Comma.post_obj_left, Comma.mapLeftId_inv_app_left, Comma.mapRightIso_counitIso_hom_app_right, Comma.fromProd_map_right, MorphismProperty.Comma.forget_map, Comma.equivProd_inverse_obj_right, Comma.isFiltered_of_final, WithTerminal.commaFromOver_obj_hom_app, Comma.opFunctorCompFst_hom_app, Comma.toPUnitIdEquiv_unitIso_hom_app_left, Comma.mapRightIso_unitIso_hom_app_left, WithInitial.equivComma_unitIso_inv_app_app, Comma.fromProd_map_left, Comma.full_map, WithInitial.commaFromUnder_map_right, WithInitial.equivComma_functor_obj_left, StructuredArrow.ofCommaSndEquivalenceInverse_obj_hom, Comma.opFunctorCompFst_inv_app, Comma.preRight_obj_hom, Comma.unopFunctor_map, Comma.instFullCompPreRight, CostructuredArrow.mapNatIso_functor_obj_left, Comma.instFullCompPostOfFaithful, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_unitIso_inv_app_app, Comma.opEquiv_functor, MorphismProperty.Comma.id_hom, Comma.initial_snd, MorphismProperty.Comma.isoFromComma_inv, Comma.instFaithfulCompPreRight, Comma.mapLeftIso_unitIso_hom_app_right, CostructuredArrow.ofCommaFstEquivalence_counitIso, Comma.opEquiv_unitIso, StructuredArrow.mapNatIso_counitIso_hom_app_right, Comma.mapRightId_hom_app_right, CostructuredArrow.ofCommaFstEquivalenceFunctor_obj_left, Comma.mapLeftIso_counitIso_inv_app_left, Comma.toPUnitIdEquiv_inverse_obj_right_as, MorphismProperty.Comma.instIsIsoCommaHom, Comma.mapRightIso_counitIso_hom_app_left, WithInitial.equivComma_unitIso_hom_app_app, CostructuredArrow.mapNatIso_functor_obj_right, StructuredArrow.commaMapEquivalenceCounitIso_hom_app_right_right, Comma.mapRightId_hom_app_left, CostructuredArrow.ofCommaFstEquivalenceFunctor_map_left, Comma.final_fst, Comma.mapLeftEq_inv_app_left, WithTerminal.commaFromOver_map_right, Comma.mapLeftIso_counitIso_hom_app_right, WithInitial.equivComma_inverse_obj_obj, Comma.instEssSurjCompPreLeft, StructuredArrow.ofCommaSndEquivalenceInverse_map_right_right, CostructuredArrow.ofCommaFstEquivalenceFunctor_obj_right, Comma.mapFst_hom_app, Comma.mapLeft_map_right, Comma.mapLeft_obj_left, Comma.coneOfPreserves_pt_hom, Comma.unopFunctorCompFst_inv_app, Comma.leftIso_hom, Comma.equivProd_unitIso_inv_app_right, WithInitial.commaFromUnder_obj_left, CostructuredArrow.grothendieckPrecompFunctorEquivalence_counitIso, TwoSquare.EquivalenceJ.functor_obj, Comma.toPUnitIdEquiv_inverse_obj_left, StructuredArrow.mapIso_unitIso_hom_app_right, MorphismProperty.Comma.instFaithfulCommaForget, Comma.mapLeftIso_functor_obj_hom, Comma.isEquivalence_preRight, StructuredArrow.commaMapEquivalenceUnitIso_hom_app_right_right, CostructuredArrow.mapNatIso_counitIso_hom_app_left, Comma.final_snd, Comma.leftIso_inv, StructuredArrow.mapIso_functor_obj_hom, StructuredArrow.mapNatIso_unitIso_inv_app_right, WithInitial.equivComma_counitIso_inv_app_left, Comma.isConnected_comma_of_final, Comma.mapRight_map_left, Comma.mapRightId_inv_app_right, Comma.mapRightComp_hom_app_right, Comma.opFunctorCompSnd_inv_app, Comma.isoMk_hom_right, Comma.mapRightIso_inverse_obj_hom, CostructuredArrow.ofCommaFstEquivalenceInverse_obj_left_right, StructuredArrow.mapIso_inverse_map_right, Comma.id_left, TwoSquare.structuredArrowDownwards_map, CostructuredArrow.mapCompιCompGrothendieckProj_hom_app, WithTerminal.equivComma_functor_map_left_app, Comma.preLeft_map_left, StructuredArrow.ofCommaSndEquivalenceFunctor_obj_left, Comma.opEquiv_inverse, TwoSquare.structuredArrowDownwards_obj, CostructuredArrow.mapNatIso_inverse_obj_right, MorphismProperty.Comma.inv_hom, Comma.id_right, MorphismProperty.Comma.instReflectsIsomorphismsCommaForgetOfRespectsIso, CostructuredArrow.mapNatIso_functor_map_left, Comma.mapRightIso_unitIso_inv_app_left, WithInitial.liftFromUnder_map_app, CostructuredArrow.ιCompGrothendieckPrecompFunctorToCommaCompFst_hom_app, Comma.essSurj_map, Comma.equivProd_inverse_obj_left, Functor.leftExtensionEquivalenceOfIso₁_unitIso_hom_app_right_app, Comma.hasLimit, Comma.mapSnd_hom_app, StructuredArrow.mapNatIso_functor_obj_left, StructuredArrow.commaMapEquivalenceUnitIso_hom_app_right_left, Comma.toPUnitIdEquiv_counitIso_inv_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_hom_app_right_app, CostructuredArrow.ofCommaFstEquivalence_unitIso, TwoSquare.EquivalenceJ.functor_map, StructuredArrow.mapIso_inverse_obj_left, Comma.instEssSurjCompPreRight, Comma.locallySmall, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_obj_right_map, Comma.mapRightEq_hom_app_left, StructuredArrow.commaMapEquivalenceUnitIso_inv_app_right_left, Comma.mapRightEq_inv_app_right, StructuredArrow.mapIso_functor_map_right, Comma.coneOfPreserves_pt_left, StructuredArrow.ofCommaSndEquivalence_inverse, Comma.post_map_right, WithTerminal.equivComma_inverse_map_app, CostructuredArrow.mapIso_functor_obj_right, WithTerminal.equivComma_inverse_obj_map, Comma.toIdPUnitEquiv_counitIso_inv_app, Comma.coconeOfPreserves_pt_left, MorphismProperty.Comma.comp_hom, WithTerminal.liftFromOver_map_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_map_right_app, CostructuredArrow.grothendieckPrecompFunctorToComma_map_right, MorphismProperty.instIsClosedUnderIsomorphismsCommaCommaObjOfRespectsIso, Comma.equivProd_functor_map, TwoSquare.EquivalenceJ.inverse_obj, Comma.mapLeftIso_inverse_map_left, Comma.preLeft_obj_left, Comma.mapRight_obj_right, Comma.mapLeftComp_hom_app_left, Comma.mapLeftIso_functor_obj_right, StructuredArrow.mapIso_inverse_map_left, Comma.mapLeft_obj_hom, CostructuredArrow.ιCompGrothendieckProj_hom_app, StructuredArrow.ofCommaSndEquivalenceInverse_obj_right_hom, CostructuredArrow.mapNatIso_functor_map_right, CostructuredArrow.mapIso_inverse_obj_hom, WithTerminal.commaFromOver_obj_left, Comma.equivProd_unitIso_inv_app_left, Comma.unopFunctorCompSnd_hom_app, Comma.preLeft_map_right, Comma.toIdPUnitEquiv_functor_iso, CostructuredArrow.mapIso_inverse_map_right, StructuredArrow.ofCommaSndEquivalenceInverse_obj_left_as, Comma.post_obj_hom, Functor.leftExtensionEquivalenceOfIso₁_counitIso_hom_app_right_app, WithTerminal.equivComma_counitIso_inv_app_right, Comma.unopFunctorCompFst_hom_app, CostructuredArrow.mapIso_inverse_map_left, Comma.isoMk_inv_right, StructuredArrow.mapNatIso_inverse_map_left, Comma.map_fst, CostructuredArrow.commaToGrothendieckPrecompFunctor_obj_base, WithTerminal.equivComma_unitIso_hom_app_app, TwoSquare.costructuredArrowRightwards_obj, Comma.toIdPUnitEquiv_inverse_obj_right, Comma.colimitAuxiliaryCocone_ι_app, NonemptyParallelPairPresentationAux.hg, Comma.mapRightIso_inverse_obj_left, CostructuredArrow.ofCommaFstEquivalenceInverse_obj_hom, Comma.fst_map, StructuredArrow.commaMapEquivalenceCounitIso_inv_app_left_right, Comma.mapRightIso_inverse_map_left, Comma.mapLeftId_inv_app_right, StructuredArrow.mapNatIso_functor_map_left, Comma.map_snd, StructuredArrow.mapNatIso_counitIso_inv_app_right, StructuredArrow.commaMapEquivalenceFunctor_obj_right, Functor.leftExtensionEquivalenceOfIso₁_functor_map_right, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_obj_hom_app, Comma.rightIso_inv, WithTerminal.equivComma_unitIso_inv_app_app, CostructuredArrow.grothendieckPrecompFunctorToComma_obj_hom, Comma.mapLeftComp_hom_app_right, StructuredArrow.ofCommaSndEquivalenceFunctor_obj_hom, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_obj_right_obj, Comma.mapRight_map_right, Comma.isoMk_hom_left, Functor.leftExtensionEquivalenceOfIso₁_unitIso_inv_app_right_app, Comma.mapFst_inv_app, CostructuredArrow.mapIso_counitIso_inv_app_left, Comma.mapLeftIso_functor_map_right, StructuredArrow.commaMapEquivalenceCounitIso_inv_app_right_right, StructuredArrow.mapIso_counitIso_hom_app_right, Comma.equivProd_functor_obj, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_inv_app_right_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_inv_app_left, Comma.map_obj_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_unitIso_hom_app_app, Comma.mapRightComp_inv_app_left, StructuredArrow.mapNatIso_inverse_obj_right, StructuredArrow.ofCommaSndEquivalenceInverse_obj_right_right, StructuredArrow.mapIso_counitIso_inv_app_right, Comma.mapRightIso_unitIso_hom_app_right, StructuredArrow.commaMapEquivalenceFunctor_obj_hom, Comma.preLeft_obj_hom, Functor.leftExtensionEquivalenceOfIso₁_functor_obj_right, CostructuredArrow.ofCommaFstEquivalenceInverse_map_left_right, CostructuredArrow.mapIso_inverse_obj_left, Comma.coneOfPreserves_π_app_left

CategoryTheory.Comma

Definitions

NameCategoryTheorems
equivProd 📖CompOp
22 mathmath: toIdPUnitEquiv_inverse_map_right, toPUnitIdEquiv_counitIso_hom_app, equivProd_unitIso_hom_app_left, equivProd_counitIso_hom_app, equivProd_inverse_map_left, equivProd_unitIso_hom_app_right, toIdPUnitEquiv_unitIso_inv_app_right, toPUnitIdEquiv_unitIso_inv_app_left, equivProd_counitIso_inv_app, toIdPUnitEquiv_unitIso_hom_app_right, toIdPUnitEquiv_counitIso_hom_app, toPUnitIdEquiv_inverse_map_left, equivProd_inverse_map_right, equivProd_inverse_obj_right, toPUnitIdEquiv_unitIso_hom_app_left, equivProd_unitIso_inv_app_right, equivProd_inverse_obj_left, toPUnitIdEquiv_counitIso_inv_app, toIdPUnitEquiv_counitIso_inv_app, equivProd_functor_map, equivProd_unitIso_inv_app_left, equivProd_functor_obj
fromProd 📖CompOp
7 mathmath: fromProd_obj_hom, fromProd_obj_right, equivProd_counitIso_hom_app, fromProd_obj_left, equivProd_counitIso_inv_app, fromProd_map_right, fromProd_map_left
fst 📖CompOp
69 mathmath: CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceInverse_obj_left_hom, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceInverse_obj_right_left, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceFunctor_map_right, CategoryTheory.StructuredArrow.ofCommaSndEquivalence_functor, fst_obj, initial_fst, coneOfPreserves_π_app_right, limitAuxiliaryCone_pt, CategoryTheory.CostructuredArrow.ιCompGrothendieckProj_inv_app, CategoryTheory.StructuredArrow.ofCommaSndEquivalence_unitIso, CategoryTheory.StructuredArrow.ofCommaSndEquivalence_counitIso, equivProd_counitIso_hom_app, CategoryTheory.CostructuredArrow.ofCommaFstEquivalence_inverse, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceInverse_map_right_left, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceFunctor_obj_hom, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceFunctor_map_left, natTrans_app, CategoryTheory.CostructuredArrow.ιCompGrothendieckPrecompFunctorToCommaCompFst_inv_app, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceInverse_obj_right_as, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceInverse_obj_left_left, colimitAuxiliaryCocone_pt, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceFunctor_obj_right, CategoryTheory.CostructuredArrow.mapCompιCompGrothendieckProj_inv_app, equivProd_counitIso_inv_app, coconeOfPreserves_ι_app_right, coconeOfPreserves_pt_hom, limitAuxiliaryCone_π_app, CategoryTheory.CostructuredArrow.ofCommaFstEquivalence_functor, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceFunctor_map_right, unopFunctorCompSnd_inv_app, coconeOfPreserves_ι_app_left, toPUnitIdEquiv_functor_iso, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceInverse_map_left_left, preservesColimitsOfShape_fst, opFunctorCompSnd_hom_app, opFunctorCompFst_hom_app, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceInverse_obj_hom, opFunctorCompFst_inv_app, CategoryTheory.CostructuredArrow.ofCommaFstEquivalence_counitIso, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceFunctor_obj_left, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceFunctor_map_left, final_fst, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceInverse_map_right_right, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceFunctor_obj_right, mapFst_hom_app, unopFunctorCompFst_inv_app, opFunctorCompSnd_inv_app, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceInverse_obj_left_right, CategoryTheory.CostructuredArrow.mapCompιCompGrothendieckProj_hom_app, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceFunctor_obj_left, CategoryTheory.CostructuredArrow.ιCompGrothendieckPrecompFunctorToCommaCompFst_hom_app, CategoryTheory.CostructuredArrow.ofCommaFstEquivalence_unitIso, coneOfPreserves_pt_left, CategoryTheory.StructuredArrow.ofCommaSndEquivalence_inverse, coconeOfPreserves_pt_left, CategoryTheory.CostructuredArrow.ιCompGrothendieckProj_hom_app, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceInverse_obj_right_hom, unopFunctorCompSnd_hom_app, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceInverse_obj_left_as, unopFunctorCompFst_hom_app, map_fst, colimitAuxiliaryCocone_ι_app, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceInverse_obj_hom, fst_map, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceFunctor_obj_hom, mapFst_inv_app, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceInverse_obj_right_right, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceInverse_map_left_right, coneOfPreserves_π_app_left
hom 📖CompOp
877 mathmath: TopCat.Presheaf.generateEquivalenceOpensLe_functor'_obj_obj, CategoryTheory.Over.associator_hom_left_snd_fst_assoc, CategoryTheory.Limits.coker.π_app, CategoryTheory.CostructuredArrow.homMk'_id, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left_fst, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_hom_right, CategoryTheory.Over.prodLeftIsoPullback_hom_snd_assoc, CategoryTheory.Limits.HasImage.of_arrow_iso, CategoryTheory.Over.μ_pullback_left_snd', CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceInverse_obj_left_hom, CategoryTheory.StructuredArrow.map_map_right, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_snd_fst_assoc, CategoryTheory.Functor.leibnizPullback_obj_map, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceFunctor_map_right, mapLeftIso_inverse_map_right, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_functor_map_left, CategoryTheory.Over.iteratedSliceForwardNaturalityIso_hom_app, CategoryTheory.CostructuredArrow.mk_hom_eq_self, CategoryTheory.Functor.LeftExtension.precomp₂_obj_hom_app, CategoryTheory.Limits.MonoFactorisation.ofArrowIso_e, opFunctor_obj, CategoryTheory.Limits.multicospanIndexEnd_fst, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left_fst, CategoryTheory.CategoryOfElements.fromStructuredArrow_map, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_pullback_map, CategoryTheory.OverPresheafAux.unitAux_hom, CategoryTheory.Over.iteratedSliceBackward_map, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_unitIso, CategoryTheory.CostructuredArrow.ofDiagEquivalence.functor_map_left_left, CategoryTheory.Over.associator_inv_left_snd, CategoryTheory.Functor.mapArrow_obj, CategoryTheory.StructuredArrow.commaMapEquivalenceInverse_map, CategoryTheory.Over.pullback_obj_left, map_obj_hom, TopCat.Presheaf.generateEquivalenceOpensLe_unitIso, CategoryTheory.StructuredArrow.w_prod_fst, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_left_hom, CategoryTheory.StructuredArrow.homMk'_comp, CategoryTheory.CostructuredArrow.w_assoc, CategoryTheory.MonoOver.isIso_left_iff_subobjectMk_eq, CategoryTheory.Functor.PullbackObjObj.mapArrowRight_right, CategoryTheory.Over.rightUnitor_inv_left_fst_assoc, CategoryTheory.Functor.PushoutObjObj.mapArrowRight_id, CategoryTheory.Functor.PullbackObjObj.mapArrowLeft_id, mapLeft_map_left, CategoryTheory.SmallObject.πObj_ιIteration_app_right, CategoryTheory.OverPresheafAux.restrictedYoneda_map, CategoryTheory.toOver_obj_hom, CategoryTheory.Sieve.ofArrows_category', CategoryTheory.Limits.IsImage.ofArrowIso_lift, CategoryTheory.StructuredArrow.mapIso_inverse_obj_hom, CategoryTheory.CostructuredArrow.pre_obj_hom, CategoryTheory.Over.whiskerLeft_left, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorToComma_map_left, CategoryTheory.Limits.image.map_id, CategoryTheory.OverPresheafAux.restrictedYoneda_obj, CategoryTheory.Presheaf.isSheaf_iff_isLimit_coverage, CategoryTheory.MonoOver.isIso_iff_subobjectMk_eq, CategoryTheory.Functor.LeftExtension.postcomp₁_map_right_app, CategoryTheory.CostructuredArrow.IsUniversal.existsUnique, CategoryTheory.Functor.leftKanExtensionUnit_leftKanExtension_map_leftKanExtensionObjIsoColimit_hom, fromProd_obj_hom, CategoryTheory.CostructuredArrow.w_prod_fst, CategoryTheory.SimplicialObject.Augmented.toArrow_map_right, CategoryTheory.Square.fromArrowArrowFunctor_map_τ₃, CategoryTheory.CostructuredArrow.mapIso_functor_obj_hom, CategoryTheory.StructuredArrow.commaMapEquivalenceCounitIso_hom_app_left_right, Profinite.Extend.cone_π_app, CategoryTheory.IsGrothendieckAbelian.IsPresentable.injectivity₀.g_app, mapLeftIso_functor_map_left, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.inverse_obj_left_hom, CategoryTheory.Square.toArrowArrowFunctor_obj_hom_right, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.pullbackGluedIso_inv_snd_assoc, CategoryTheory.MorphismProperty.Over.pullbackComp_hom_app_left, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.isIso_hom_app, CategoryTheory.TwoSquare.EquivalenceJ.inverse_map, CategoryTheory.StructuredArrow.commaMapEquivalenceUnitIso_inv_app_right_right, CategoryTheory.CostructuredArrow.eq_mk, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.isPullback, CategoryTheory.MorphismProperty.Under.mk_hom, CategoryTheory.StructuredArrow.map₂_map_right, CategoryTheory.Limits.Cone.fromCostructuredArrow_map_hom, CategoryTheory.Functor.PullbackObjObj.π_iso_of_iso_left_inv, CategoryTheory.StructuredArrow.preEquivalenceInverse_obj_right_hom, CategoryTheory.Limits.image.map_comp, CategoryTheory.ChosenPullbacksAlong.iso_mapPullbackAdj_unit_app, CategoryTheory.toOverPullbackIsoToOver_inv_app_left, CategoryTheory.Functor.ι_leftKanExtensionObjIsoColimit_inv, CategoryTheory.CostructuredArrow.w_prod_fst_assoc, CategoryTheory.Functor.LeftExtension.precomp_map_right, CategoryTheory.Over.toUnit_left, CategoryTheory.SimplicialObject.Augmented.w₀, CategoryTheory.Functor.RightExtension.coneAt_π_app, mapRightIso_functor_map_left, map_map_right, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_hom_app_comp_snd_assoc, CategoryTheory.CostructuredArrow.mapNatIso_inverse_map_right, CategoryTheory.Limits.multicospanIndexEnd_snd, CategoryTheory.leftAdjointOfStructuredArrowInitialsAux_apply, CategoryTheory.Over.braiding_inv_left, CategoryTheory.CostructuredArrow.post_obj, CategoryTheory.Functor.RightExtension.postcomp₁_map_right, CategoryTheory.Over.prodLeftIsoPullback_inv_snd, CategoryTheory.Functor.LeibnizAdjunction.adj_unit_app_left, CategoryTheory.Over.iteratedSliceForwardIsoPost_inv_app, CategoryTheory.SimplicialObject.Augmented.toArrow_map_left, mapRight_obj_hom, CategoryTheory.MorphismProperty.FunctorialFactorizationData.functorCategory.Z_map_app, mapRightIso_inverse_map_right, CategoryTheory.SimplicialObject.Augmented.ExtraDegeneracy.s'_comp_ε, CategoryTheory.Limits.coker_map, CategoryTheory.Square.toArrowArrowFunctor'_obj_left_hom, CategoryTheory.StructuredArrow.eta_hom_right, CategoryTheory.Square.fromArrowArrowFunctor_obj_f₃₄, CategoryTheory.SmallObject.functorialFactorizationData_i_app, CategoryTheory.CostructuredArrow.prodFunctor_map, CategoryTheory.Abelian.coim_map, CategoryTheory.StructuredArrow.prodInverse_map, CategoryTheory.StructuredArrow.eta_inv_right, CategoryTheory.Over.leftUnitor_hom_left, CategoryTheory.Functor.PullbackObjObj.mapArrowLeft_comp, CategoryTheory.MorphismProperty.Over.pullbackMapHomPullback_app, CategoryTheory.Over.tensorObj_ext_iff, CategoryTheory.CosimplicialObject.augment_hom_app, CategoryTheory.CostructuredArrow.toOver_map_right, CategoryTheory.CostructuredArrow.map_obj_hom, LightProfinite.Extend.cocone_ι_app, CategoryTheory.Under.mk_hom, CategoryTheory.Functor.LeftExtension.precomp_obj_hom_app, CategoryTheory.Functor.LeibnizAdjunction.adj_counit_app_left, CategoryTheory.StructuredArrow.eq_mk, CategoryTheory.MorphismProperty.Over.mk_hom, TopCat.Presheaf.generateEquivalenceOpensLe_inverse'_obj_obj_right_as, CategoryTheory.MorphismProperty.Over.pullback_obj_left, CategoryTheory.NatTrans.instIsClosedUnderLimitsOfShapeOverFunctorEquifiberedHomDiscretePUnitOfHasCoproductsOfShapeHom, opFunctor_map, CategoryTheory.CostructuredArrow.toOver_obj_hom, CategoryTheory.CostructuredArrow.commaToGrothendieckPrecompFunctor_map_fiber, CategoryTheory.ChosenPullbacksAlong.Over.tensorObj_ext_iff, CategoryTheory.OrthogonalReflection.D₁.ι_comp_t_assoc, CategoryTheory.CostructuredArrow.commaToGrothendieckPrecompFunctor_obj_fiber, CategoryTheory.CostructuredArrow.ofDiagEquivalence.functor_obj_hom, CategoryTheory.Over.rightUnitor_inv_left_fst, CategoryTheory.CostructuredArrow.homMk'_mk_id, CategoryTheory.Limits.Cocone.fromCostructuredArrow_ι_app, CategoryTheory.Limits.Cone.fromStructuredArrow_π_app, CategoryTheory.WithTerminal.commaFromOver_map_left, CategoryTheory.Functor.RightExtension.precomp_map_left, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left_snd_assoc, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtension.isLeftKanExtension, CategoryTheory.Limits.Cone.fromCostructuredArrow_obj_π, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_mapPullbackAdj_unit_app, CategoryTheory.MonoOver.isIso_hom_left_iff_subobjectMk_eq, CategoryTheory.Under.pushout_map, CategoryTheory.Sieve.ofArrows_category, CategoryTheory.Limits.image.map_ι, CategoryTheory.Abelian.Pseudoelement.pseudoZero_iff, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_inv_left_snd, CategoryTheory.CostructuredArrow.homMk'_right, CategoryTheory.WithInitial.coconeEquiv_inverse_obj_pt_hom, CategoryTheory.Functor.ι_leftKanExtensionObjIsoColimit_inv_assoc, CategoryTheory.Over.mk_hom, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.inverse_obj_hom, CategoryTheory.OverPresheafAux.counitForward_naturality₁, TopCat.Presheaf.generateEquivalenceOpensLe_inverse'_obj_obj_hom, CategoryTheory.SimplicialObject.Truncated.rightExtensionInclusion_hom_app, CategoryTheory.MorphismProperty.Over.pullbackCongr_hom_app_left_fst, CategoryTheory.Functor.PushoutObjObj.mapArrowRight_left, CategoryTheory.Over.whiskerRight_left_fst, CategoryTheory.MorphismProperty.FunctorialFactorizationData.functorCategory.Z_obj_map, CategoryTheory.CostructuredArrow.w_prod_snd_assoc, CategoryTheory.Over.postAdjunctionLeft_unit_app_left, CommRingCat.pushout_inr_tensorProdObjIsoPushoutObj_inv_right_assoc, CategoryTheory.MorphismProperty.Over.mapPullbackAdj_counit_app, CategoryTheory.CostructuredArrow.costructuredArrowToOverEquivalence.functor_map, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.pullbackGluedIso_inv_fst_assoc, CategoryTheory.Arrow.square_from_iso_invert, CategoryTheory.MonoOver.pullback_obj_arrow, CategoryTheory.Functor.PullbackObjObj.π_iso_of_iso_right_hom, CategoryTheory.Over.prodLeftIsoPullback_inv_fst, CategoryTheory.Functor.PushoutObjObj.mapArrowRight_comp_assoc, CategoryTheory.Abelian.im_map, CategoryTheory.StructuredArrow.map₂_map_left, CategoryTheory.TwoSquare.costructuredArrowRightwards_map, CategoryTheory.Presheaf.isLimit_iff_isSheafFor_presieve, CategoryTheory.WithTerminal.coneEquiv_functor_obj_π_app_star, CategoryTheory.Under.postAdjunctionRight_unit_app_right, CategoryTheory.CostructuredArrow.ofDiagEquivalence.functor_obj_left_hom, CategoryTheory.Functor.PullbackObjObj.mapArrowRight_comp_assoc, CategoryTheory.Over.opEquivOpUnder_inverse_obj, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_inverse_obj_map, CategoryTheory.CostructuredArrow.mapIso_functor_map_left, CategoryTheory.StructuredArrow.prodFunctor_map, CategoryTheory.Arrow.equivSigma_apply_snd_snd, CategoryTheory.Over.prodLeftIsoPullback_inv_snd_assoc, CategoryTheory.Functor.RightExtension.mk_hom, CategoryTheory.Over.rightUnitor_inv_left_snd, CategoryTheory.ChosenPullbacksAlong.Over.tensorObj_hom, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_inverse_map_left, CategoryTheory.Over.post_map, CategoryTheory.regularTopology.equalizerConditionMap_iff_nonempty_isLimit, CategoryTheory.Pseudofunctor.presheafHom_obj, CategoryTheory.Over.mapPullbackAdj_counit_app, CategoryTheory.Over.iteratedSliceBackward_forget, CategoryTheory.Abelian.Pseudoelement.ModuleCat.eq_range_of_pseudoequal, preRight_map_left, CategoryTheory.SimplicialObject.Augmented.const_obj_hom, CategoryTheory.StructuredArrow.ofDiagEquivalence.inverse_obj_hom, CategoryTheory.CostructuredArrow.post_map, CategoryTheory.StructuredArrow.mapNatIso_functor_obj_hom, CategoryTheory.ChosenPullbacksAlong.Over.tensorObj_left, CategoryTheory.CostructuredArrow.commaToGrothendieckPrecompFunctor_map_base, CategoryTheory.Under.post_obj, CategoryTheory.StructuredArrow.ofDiagEquivalence.functor_obj_right_hom, CategoryTheory.StructuredArrow.mapNatIso_inverse_map_right, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_fst, CategoryTheory.Over.prodLeftIsoPullback_hom_snd, CategoryTheory.CostructuredArrow.preEquivalence.functor_obj_hom, CategoryTheory.StructuredArrow.IsUniversal.existsUnique, CategoryTheory.ChosenPullbacksAlong.isoInv_pullback_map_left, CategoryTheory.StructuredArrow.mapNatIso_functor_map_right, CategoryTheory.Over.whiskerRight_left_snd_assoc, CategoryTheory.Arrow.w_mk_right, CategoryTheory.ChosenPullbacksAlong.Over.snd_eq_snd', CategoryTheory.MorphismProperty.Over.mapPullbackAdj_unit_app, CategoryTheory.CostructuredArrow.eta_hom_left, CategoryTheory.Over.associator_inv_left_fst_fst_assoc, CategoryTheory.Square.fromArrowArrowFunctor'_map_τ₃, CategoryTheory.Limits.ker.ι_app, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceFunctor_obj_hom, CategoryTheory.Over.associator_hom_left_fst, CategoryTheory.SmallObject.functor_map, CategoryTheory.StructuredArrow.ofDiagEquivalence.functor_map_right_right, CategoryTheory.ChosenPullbacksAlong.Over.leftUnitor_inv_left_snd, CategoryTheory.CostructuredArrow.toStructuredArrow'_obj, CategoryTheory.Arrow.leftToRight_app, CategoryTheory.Abelian.Pseudoelement.pseudoApply_mk', CategoryTheory.WithInitial.commaFromUnder_map_left, CategoryTheory.StructuredArrow.homMk'_mk_comp, CategoryTheory.NatTrans.instIsClosedUnderColimitsOfShapeUnderFunctorCoequifiberedHomDiscretePUnitOfHasProductsOfShapeHom, CategoryTheory.CostructuredArrow.prodInverse_obj, CategoryTheory.ChosenPullbacksAlong.Over.tensorUnit_hom, CategoryTheory.Over.prodLeftIsoPullback_hom_fst_assoc, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left_snd_assoc, CategoryTheory.SmallObject.objMap_comp_assoc, CategoryTheory.Limits.ker_obj, CategoryTheory.SmallObject.functorialFactorizationData_Z_obj, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_snd_fst, CategoryTheory.MonoOver.image_map, CategoryTheory.Under.mapPushoutAdj_unit_app, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceFunctor_map_left, CategoryTheory.OverPresheafAux.counitForward_val_snd, CategoryTheory.Limits.instHasImageHomMk, CategoryTheory.WithInitial.coconeEquiv_functor_obj_ι_app_star, CategoryTheory.Limits.ImageMap.factor_map_assoc, CategoryTheory.Over.tensorUnit_hom, CategoryTheory.Over.opEquivOpUnder_inverse_map, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.inverse_map_left_left, CategoryTheory.Over.leftUnitor_inv_left_fst, CategoryTheory.Under.post_map, CategoryTheory.ChosenPullbacksAlong.isoInv_mapPullbackAdj_unit_app_left, CategoryTheory.Over.starPullbackIsoStar_hom_app_left, CommRingCat.mkUnder_hom, AlgebraicGeometry.opensDiagram_map, natTrans_app, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left, CategoryTheory.CostructuredArrow.ofDiagEquivalence.inverse_obj_hom, CategoryTheory.Presheaf.isSeparated_iff_subsingleton, CategoryTheory.Functor.leibnizPushout_obj_map, CategoryTheory.Functor.PushoutObjObj.mapArrowLeft_id, CategoryTheory.Over.tensorHom_left_snd_assoc, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.ι_isoColimit_hom, CategoryTheory.SmallObject.ε_app, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_inv_left_snd_assoc, CategoryTheory.Functor.LeftExtension.postcompose₂_map_right_app, CategoryTheory.Limits.kernelSubobjectIso_comp_kernel_map, CategoryTheory.Limits.image.map_homMk'_ι, CategoryTheory.Under.map_obj_hom, CategoryTheory.CommaMorphism.w_assoc, CategoryTheory.WithInitial.mkCommaObject_hom_app, CategoryTheory.CostructuredArrow.map_map_right, CategoryTheory.Over.leftUnitor_inv_left_snd, CategoryTheory.ChosenPullbacksAlong.Over.leftUnitor_inv_left_fst_assoc, AlgebraicGeometry.Scheme.kerAdjunction_counit_app, AlgebraicGeometry.opensDiagramι_app, CategoryTheory.Arrow.w, CategoryTheory.StructuredArrow.homMk'_left, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_snd', CategoryTheory.OverClass.fromOver_over, AlgebraicTopology.AlternatingFaceMapComplex.ε_app_f_zero, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.fst_gluedCocone_ι, CategoryTheory.SmallObject.objMap_id, CategoryTheory.MonoOver.image_obj, preRight_map_right, CategoryTheory.Limits.coker_obj, CategoryTheory.Over.μ_pullback_left_fst_snd', CategoryTheory.Over.mapPullbackAdj_unit_app, CategoryTheory.CostructuredArrow.mapNatIso_functor_obj_hom, map_map_left, CategoryTheory.CostructuredArrow.w_prod_snd, CategoryTheory.MorphismProperty.Over.pullbackComp_inv_app_left, mapRightIso_functor_obj_hom, CategoryTheory.Limits.imageSubobjectIso_comp_image_map, CategoryTheory.SmallObject.SuccStruct.toSuccArrow_hom, post_map_left, CategoryTheory.CommaMorphism.w, CategoryTheory.ChosenPullbacksAlong.Over.leftUnitor_inv_left_fst, CategoryTheory.CostructuredArrow.CreatesConnected.natTransInCostructuredArrow_app, CategoryTheory.Limits.multispanIndexCoend_snd, CategoryTheory.Over.leftUnitor_inv_left_snd_assoc, CategoryTheory.Functor.LeftExtension.postcompose₂_obj_hom_app, CategoryTheory.SimplicialObject.Augmented.ExtraDegeneracy.s₀_comp_δ₁_assoc, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.functor_map_right_right, TopCat.Presheaf.whiskerIsoMapGenerateCocone_inv_hom, CategoryTheory.MorphismProperty.instHasPullbackHomDiscretePUnitOfHasPullbacksAlong, CategoryTheory.ChosenPullbacksAlong.iso_pullback_obj, CategoryTheory.SimplicialObject.augment_hom_zero, CategoryTheory.SmallObject.ιObj_naturality, CategoryTheory.Functor.LeibnizAdjunction.adj_counit_app_right, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_left_app, CategoryTheory.Presieve.ofArrows_category, CategoryTheory.WithInitial.coconeEquiv_functor_map_hom, CategoryTheory.OverPresheafAux.counitAuxAux_inv, CategoryTheory.Functor.LeftExtension.postcomp₁_obj_hom_app, CategoryTheory.CategoryOfElements.fromStructuredArrow_obj, CategoryTheory.Arrow.w_mk_right_assoc, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_mapPullbackAdj_unit_app, CategoryTheory.ComposableArrows.arrowEquiv_symm_apply, CategoryTheory.OverPresheafAux.restrictedYonedaObj_map, CategoryTheory.Over.map_obj_hom, CategoryTheory.Square.fromArrowArrowFunctor_obj_f₁₃, CategoryTheory.CosimplicialObject.Augmented.toArrow_map_right, CategoryTheory.Over.associator_hom_left_snd_fst, CategoryTheory.CostructuredArrow.toOver_map_left, CategoryTheory.RanIsSheafOfIsCocontinuous.fac', CategoryTheory.Functor.mapArrow_map_left, CategoryTheory.CostructuredArrow.eta_inv_left, CategoryTheory.MorphismProperty.over_iso_iff, CategoryTheory.SmallObject.ιFunctorObj_eq, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_inverse_map_right, CategoryTheory.TwoSquare.costructuredArrowDownwardsPrecomp_obj, CategoryTheory.CategoryOfElements.fromCostructuredArrow_obj_snd, CategoryTheory.CostructuredArrow.mapIso_functor_map_right, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.functor_obj_right_hom, CategoryTheory.Over.rightUnitor_inv_left_snd_assoc, CategoryTheory.WithTerminal.equivComma_functor_obj_hom_app, CategoryTheory.Over.toOverSectionsAdj_counit_app, CategoryTheory.StructuredArrow.toCostructuredArrow_map, CategoryTheory.Limits.ImageMap.factor_map, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left_snd, left_hom_inv_right, CategoryTheory.forgetAdjToOver_unit_app, CategoryTheory.OverPresheafAux.counitBackward_counitForward, CategoryTheory.Arrow.isIso_hom_iff_isIso_of_isIso, unopFunctor_obj, CategoryTheory.CostructuredArrow.mapNatIso_inverse_map_left, CategoryTheory.CostructuredArrow.costructuredArrowToOverEquivalence.functor_obj, CategoryTheory.CostructuredArrow.map₂_map_right, CategoryTheory.StructuredArrow.toUnder_map_right, CategoryTheory.regularTopology.parallelPair_pullback_initial, CategoryTheory.overToCoalgebra_map_f, CategoryTheory.CosimplicialObject.Augmented.toArrow_map_left, CategoryTheory.Pseudofunctor.isStackFor_iff, CategoryTheory.SimplicialObject.augment_hom_app, CategoryTheory.StructuredArrow.IsUniversal.hom_desc, CommRingCat.pushout_inl_tensorProdObjIsoPushoutObj_inv_right_assoc, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left_snd_assoc, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left_fst_assoc, coconeOfPreserves_pt_hom, CategoryTheory.TwoSquare.isIso_lanBaseChange_app_iff, CategoryTheory.Over.pullback_map_left, CategoryTheory.CostructuredArrow.CreatesConnected.raiseCone_pt, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_fst_fst, mapRightIso_functor_map_right, limitAuxiliaryCone_π_app, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.fst_gluedCocone_ι_assoc, CategoryTheory.Pseudofunctor.presheafHom_map, CategoryTheory.MorphismProperty.costructuredArrow_iso_iff, CategoryTheory.WithTerminal.coneEquiv_inverse_obj_pt_hom, CategoryTheory.Functor.ranObjObjIsoLimit_inv_π_assoc, CategoryTheory.Over.sections_obj, CategoryTheory.MorphismProperty.Comma.ext_iff, AlgebraicGeometry.opensDiagram_obj, CategoryTheory.Functor.PushoutObjObj.ι_iso_of_iso_right_hom, CategoryTheory.CostructuredArrow.toStructuredArrow'_map, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.ι_isoColimit_hom_assoc, CategoryTheory.Abelian.coim_obj, CategoryTheory.Functor.mapArrow_map_right, CategoryTheory.MorphismProperty.overObj_iff, AlgebraicGeometry.opensCone_π_app, CategoryTheory.Over.tensorHom_left, CategoryTheory.CostructuredArrow.w, CategoryTheory.StructuredArrow.commaMapEquivalenceInverse_obj, CategoryTheory.toOverIteratedSliceForwardIsoPullback_hom_app_left, CategoryTheory.StructuredArrow.homMk'_id, CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtension.isIso_hom, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.ι_isoColimit_inv_assoc, CategoryTheory.StructuredArrow.w_prod_snd, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.inverse_obj_hom, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.functor_obj_left_hom, CategoryTheory.Presheaf.isSheaf_iff_isLimit, CategoryTheory.Under.opEquivOpOver_functor_obj, CategoryTheory.WithInitial.equivComma_functor_obj_hom_app, CategoryTheory.StructuredArrow.mapNatIso_inverse_obj_hom, CategoryTheory.Over.associator_inv_left_fst_snd, CategoryTheory.Square.toArrowArrowFunctor_obj_hom_left, CategoryTheory.WithInitial.commaFromUnder_obj_hom_app, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_obj_left, CategoryTheory.Limits.kernelSubobjectIso_comp_kernel_map_assoc, CategoryTheory.CostructuredArrow.mapNatIso_inverse_obj_hom, CategoryTheory.WithInitial.equivComma_inverse_obj_map, CategoryTheory.MorphismProperty.Over.w_assoc, CategoryTheory.toOverPullbackIsoToOver_hom_app_left, CategoryTheory.Over.star_obj_hom, CategoryTheory.Functor.RightExtension.postcomp₁_map_left_app, CategoryTheory.Arrow.mk_hom, CategoryTheory.SmallObject.πObj_ιIteration_app_right_assoc, CategoryTheory.WithTerminal.ofCommaObject_map, CategoryTheory.Over.associator_hom_left_snd_snd_assoc, CategoryTheory.StructuredArrow.post_map, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_map_left, CategoryTheory.Functor.PullbackObjObj.mapArrowRight_comp, CategoryTheory.Functor.ranObjObjIsoLimit_hom_π_assoc, CategoryTheory.Limits.im_obj, CategoryTheory.SmallObject.πObj_naturality_assoc, CategoryTheory.Functor.PullbackObjObj.π_iso_of_iso_right_inv, CategoryTheory.MorphismProperty.FunctorialFactorizationData.functorCategory.Z_obj_obj, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_inv_app_comp_fst, TopCat.Presheaf.generateEquivalenceOpensLe_functor, CategoryTheory.Bicategory.LeftExtension.ofCompId_hom, CategoryTheory.Over.μ_pullback_left_fst_fst', CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceFunctor_map_right, Types.monoOverEquivalenceSet_functor_map, CategoryTheory.Over.μ_pullback_left_fst_snd, CategoryTheory.Over.whiskerRight_left, CategoryTheory.CostructuredArrow.homMk'_left, CategoryTheory.StructuredArrow.homMk'_right, CategoryTheory.Abelian.coimageImageComparisonFunctor_obj, CategoryTheory.Square.fromArrowArrowFunctor'_obj_f₁₃, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_counitIso, CategoryTheory.Limits.IndObjectPresentation.toCostructuredArrow_obj_hom, CategoryTheory.StructuredArrow.pre_map_left, inv_left_hom_right, CommRingCat.pushout_inl_tensorProdObjIsoPushoutObj_inv_right, CategoryTheory.Over.opEquivOpUnder_counitIso, CategoryTheory.CostructuredArrow.prodFunctor_obj, CategoryTheory.OverPresheafAux.counitAux_hom, CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtensionAt.isIso_hom_app, CategoryTheory.OrthogonalReflection.D₂.multispanIndex_left, CategoryTheory.Limits.ImageFactorisation.ofArrowIso_F, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_left_app, CategoryTheory.Arrow.equivSigma_symm_apply_hom, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_inverse_obj_hom_app, CategoryTheory.CategoryOfElements.fromCostructuredArrow_map_coe, CategoryTheory.StructuredArrow.map_map_left, CategoryTheory.Functor.PullbackObjObj.mapArrowLeft_left, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_inv_app_comp_snd, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_map_left_right, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_hom_app, CategoryTheory.Over.w, CategoryTheory.MorphismProperty.CostructuredArrow.toOver_map, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_pullback_map, CategoryTheory.Functor.PullbackObjObj.mapArrowLeft_comp_assoc, TopCat.Presheaf.generateEquivalenceOpensLe_counitIso, CategoryTheory.Limits.MonoFactorisation.ofArrowIso_m, CategoryTheory.StructuredArrow.prodFunctor_obj, CategoryTheory.Functor.PushoutObjObj.ι_iso_of_iso_left_inv, CategoryTheory.Sieve.yonedaFamily_fromCocone_compatible, CategoryTheory.CosimplicialObject.augment_hom_zero, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left_fst_assoc, CategoryTheory.SimplicialObject.Augmented.ExtraDegeneracy.s₀_comp_δ₁, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtension.isIso_hom, CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtensionAt.isoLimit_inv_π, CategoryTheory.OverPresheafAux.unitAuxAux_inv_app_snd_coe, CategoryTheory.Arrow.mk_eq, CategoryTheory.MorphismProperty.CostructuredArrow.toOver_obj, Types.monoOverEquivalenceSet_functor_obj, CategoryTheory.MorphismProperty.Under.w, CategoryTheory.CosimplicialObject.Augmented.toArrow_obj_hom, CategoryTheory.StructuredArrow.mapIso_functor_map_left, AlgebraicGeometry.Scheme.kerFunctor_map, CategoryTheory.MorphismProperty.Comma.prop, CategoryTheory.Pseudofunctor.IsStack.essSurj_of_sieve, CategoryTheory.CostructuredArrow.homMk'_mk_comp, CategoryTheory.Over.associator_inv_left_fst_fst, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_functor_obj_hom_app, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.inverse_map_right_right, mapLeftIso_inverse_obj_hom, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_map_right, CategoryTheory.Over.snd_left, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.functor_map_left_left, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_hom_app_comp_snd, CategoryTheory.Limits.ImageMap.map_ι, CategoryTheory.CostructuredArrow.prodInverse_map, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left_fst_assoc, CategoryTheory.Functor.leibnizPushout_obj_obj, CategoryTheory.Arrow.isIso_hom_iff_isIso_hom_of_isIso, CategoryTheory.Over.tensorHom_left_fst, CategoryTheory.Over.whiskerRight_left_snd, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryToUnit_mapPullbackAdj_unit_app, CategoryTheory.MorphismProperty.structuredArrowObj_iff, CategoryTheory.SimplicialObject.Augmented.w₀_assoc, TopCat.Presheaf.whiskerIsoMapGenerateCocone_hom_hom, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_fst_snd_assoc, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_fst_snd, CategoryTheory.WithTerminal.commaFromOver_obj_hom_app, CategoryTheory.MorphismProperty.mem_toSet_iff, CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtension.isRightKanExtension, CategoryTheory.underToAlgebra_obj_a, CategoryTheory.CommSq.of_arrow, CategoryTheory.WithInitial.commaFromUnder_map_right, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left_fst, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceInverse_obj_hom, CategoryTheory.CostructuredArrow.toStructuredArrow_obj, preRight_obj_hom, unopFunctor_map, CategoryTheory.Arrow.isIso_of_isIso, CategoryTheory.Over.tensorHom_left_fst_assoc, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_snd_assoc, CategoryTheory.OverPresheafAux.restrictedYonedaObj_obj, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.functor_obj_hom, CategoryTheory.CostructuredArrow.CreatesConnected.raiseCone_π_app, CategoryTheory.Over.prodLeftIsoPullback_inv_fst_assoc, CategoryTheory.Abelian.im_obj, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_hom_left, CategoryTheory.OverClass.asOver_hom, SSet.Augmented.stdSimplex_obj_hom_app, CategoryTheory.ChosenPullbacksAlong.Over.leftUnitor_hom_left, CategoryTheory.OverPresheafAux.restrictedYonedaObjMap₁_app, CategoryTheory.Arrow.iso_w, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_pullback_obj, CategoryTheory.Limits.Cocone.fromStructuredArrow_map_hom, CategoryTheory.Over.whiskerLeft_left_fst, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_mapPullbackAdj_counit_app, CategoryTheory.SmallObject.πFunctorObj_eq, CategoryTheory.MonoOver.inf_map_app, CategoryTheory.TwoSquare.costructuredArrowDownwardsPrecomp_map, CategoryTheory.SmallObject.objMap_comp, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceFunctor_obj_left, CategoryTheory.Functor.LeftExtension.postcompose₂_map_left, CategoryTheory.CosimplicialObject.Augmented.const_obj_hom, CategoryTheory.ChosenPullbacksAlong.isoInv_mapPullbackAdj_counit_app_left, CategoryTheory.Over.post_obj, CategoryTheory.Arrow.inv_left_hom_right, CategoryTheory.Limits.Cone.equivCostructuredArrow_counitIso, CategoryTheory.WithTerminal.mkCommaObject_hom_app, CategoryTheory.StructuredArrow.toUnder_obj_hom, CategoryTheory.Functor.RightExtension.postcompose₂_obj_hom_app, CategoryTheory.Functor.RightExtension.precomp_obj_hom_app, CategoryTheory.StructuredArrow.commaMapEquivalenceCounitIso_hom_app_right_right, CategoryTheory.Pseudofunctor.isPrestackFor_iff, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceFunctor_map_left, CategoryTheory.Functor.RightExtension.precomp_map_right, CategoryTheory.ChosenPullbacksAlong.Over.lift_left, CategoryTheory.Square.fromArrowArrowFunctor_obj_f₁₂, CategoryTheory.Limits.kernel_map_comp_kernelSubobjectIso_inv, CategoryTheory.Abelian.coimageImageComparisonFunctor_map, CategoryTheory.Bicategory.LeftLift.ofIdComp_hom, CategoryTheory.WithTerminal.commaFromOver_map_right, CategoryTheory.CostructuredArrow.map_map_left, CategoryTheory.CostructuredArrow.map₂_map_left, CategoryTheory.SimplicialObject.Augmented.ExtraDegeneracy.s'_comp_ε_assoc, CategoryTheory.Over.isPullback_of_binaryFan_isLimit, CategoryTheory.MorphismProperty.commaObj_iff, CategoryTheory.Pseudofunctor.IsStackFor.isEquivalence, CategoryTheory.Over.whiskerLeft_left_fst_assoc, CategoryTheory.Under.pushout_obj, CategoryTheory.MorphismProperty.Over.w, CategoryTheory.Square.toArrowArrowFunctor_obj_right_hom, CategoryTheory.Functor.RightExtension.postcompose₂_map_left_app, CategoryTheory.Over.coprodObj_obj, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.trans_app_left, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_fst_fst, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_pullback_obj, CategoryTheory.StructuredArrow.preEquivalenceInverse_map_right_right, mapLeft_map_right, coneOfPreserves_pt_hom, CategoryTheory.CostructuredArrow.IsUniversal.fac, CategoryTheory.Square.fromArrowArrowFunctor'_map_τ₄, CategoryTheory.MorphismProperty.FunctorialFactorizationData.fac_app, CategoryTheory.Functor.PushoutObjObj.ι_iso_of_iso_right_inv, CategoryTheory.MonoOver.subobjectMk_le_mk_of_hom, CategoryTheory.Over.whiskerLeft_left_snd_assoc, CategoryTheory.TwoSquare.EquivalenceJ.functor_obj, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_inverse_obj, CategoryTheory.StructuredArrow.w, CategoryTheory.Functor.RightExtension.postcompose₂_map_right, CategoryTheory.Over.leftUnitor_inv_left_fst_assoc, CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtensionAt.isoLimit_inv_π_assoc, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left, CategoryTheory.Sieve.forallYonedaIsSheaf_iff_colimit, CategoryTheory.Functor.PullbackObjObj.mapArrowRight_id, CategoryTheory.WithTerminal.liftFromOver_obj_map, CategoryTheory.Functor.LeftExtension.precomp_map_left, mapLeftIso_functor_obj_hom, CategoryTheory.Abelian.Pseudoelement.pseudoZero_aux, CategoryTheory.StructuredArrow.commaMapEquivalenceUnitIso_hom_app_right_right, CategoryTheory.Limits.MonoFactorisation.ofArrowIso_I, CategoryTheory.MorphismProperty.comma_iso_iff, CategoryTheory.StructuredArrow.pre_map_right, CategoryTheory.StructuredArrow.w_prod_fst_assoc, CategoryTheory.Square.fromArrowArrowFunctor_obj_f₂₄, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.comp_homEquiv_symm, CategoryTheory.StructuredArrow.mapIso_functor_obj_hom, CategoryTheory.Functor.PushoutObjObj.mapArrowLeft_left, CategoryTheory.Functor.ranObjObjIsoLimit_hom_π, CategoryTheory.underToAlgebra_map_f, CategoryTheory.SimplicialObject.Augmented.rightOp_hom_app, Profinite.Extend.cocone_ι_app, CategoryTheory.Limits.ImageFactorisation.ofArrowIso_isImage, CategoryTheory.Pseudofunctor.IsStackFor.essSurj, CategoryTheory.Over.associator_inv_left_fst_snd_assoc, mapRight_map_left, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_mapPullbackAdj_counit_app, CategoryTheory.Functor.LeftExtension.postcomp₁_map_left, CategoryTheory.Square.fromArrowArrowFunctor'_map_τ₂, CategoryTheory.CechNerveTerminalFrom.hasWidePullback, CategoryTheory.MonoOver.forget_obj_hom, CategoryTheory.Over.rightUnitor_hom_left, CategoryTheory.MorphismProperty.Over.pullback_map_left, CategoryTheory.Square.fromArrowArrowFunctor_map_τ₁, CategoryTheory.OrthogonalReflection.D₁.ι_comp_t, CategoryTheory.Limits.HasImageMaps.has_image_map, CategoryTheory.Over.sections_map, mapRightIso_inverse_obj_hom, CategoryTheory.rightAdjointOfCostructuredArrowTerminalsAux_symm_apply, CategoryTheory.StructuredArrow.mapIso_inverse_map_right, CategoryTheory.Over.μ_pullback_left_snd, CategoryTheory.Functor.PushoutObjObj.mapArrowLeft_right, CategoryTheory.Under.mapPushoutAdj_counit_app, CategoryTheory.Over.iteratedSliceBackward_obj, CategoryTheory.PreGaloisCategory.autEmbedding_range, CategoryTheory.CostructuredArrow.homMk'_comp, CategoryTheory.TwoSquare.structuredArrowDownwards_map, CategoryTheory.ChosenPullbacksAlong.Over.toUnit_left, CategoryTheory.Localization.structuredArrowEquiv_symm_apply, CategoryTheory.SimplicialObject.Augmented.toArrow_obj_hom, preLeft_map_left, CategoryTheory.OrthogonalReflection.D₂.multispanIndex_fst, CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtensionAt.isoLimit_hom_π, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceFunctor_obj_left, CategoryTheory.StructuredArrow.ofDiagEquivalence.functor_obj_hom, CategoryTheory.Functor.PushoutObjObj.mapArrowLeft_comp_assoc, CategoryTheory.TwoSquare.structuredArrowDownwards_obj, CategoryTheory.CostructuredArrow.mapNatIso_functor_map_left, CategoryTheory.Over.braiding_hom_left, CategoryTheory.MonoOver.instMonoHomDiscretePUnitObjOverForget, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_snd, CategoryTheory.ChosenPullbacksAlong.isoInv_pullback_obj_hom, CategoryTheory.ChosenPullbacksAlong.iso_mapPullbackAdj_counit_app, CategoryTheory.MorphismProperty.Over.pullback_obj_hom, CategoryTheory.Functor.LeibnizAdjunction.adj_unit_app_right, CategoryTheory.StructuredArrow.projectSubobject_factors, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left_snd, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_snd_snd, CategoryTheory.overToCoalgebra_obj_a, CategoryTheory.FunctorToTypes.mem_fromOverSubfunctor_iff, CategoryTheory.Over.μ_pullback_left_fst_fst, CategoryTheory.Over.starPullbackIsoStar_inv_app_left, CategoryTheory.Over.iteratedSliceForward_map, CategoryTheory.MorphismProperty.underObj_iff, CategoryTheory.Presheaf.tautologicalCocone_ι_app, CategoryTheory.CostructuredArrow.pre_map_right, CategoryTheory.CosimplicialObject.Augmented.leftOp_hom_app, CategoryTheory.StructuredArrow.mk_hom_eq_self, CategoryTheory.Square.fromArrowArrowFunctor'_map_τ₁, CategoryTheory.StructuredArrow.commaMapEquivalenceUnitIso_hom_app_right_left, CategoryTheory.MorphismProperty.Under.w_assoc, CategoryTheory.Arrow.square_to_iso_invert, CategoryTheory.Presheaf.tautologicalCocone'_ι_app, CategoryTheory.StructuredArrow.preEquivalenceFunctor_map_right, CategoryTheory.toOverIteratedSliceForwardIsoPullback_inv_app_left, CategoryTheory.StructuredArrow.preEquivalenceInverse_obj_hom_right, CategoryTheory.Functor.PullbackObjObj.mapArrowRight_left, CategoryTheory.ChosenPullbacksAlong.iso_pullback_map, CategoryTheory.Limits.image_map_comp_imageSubobjectIso_inv, CategoryTheory.Under.opEquivOpOver_inverse_obj, Types.monoOverEquivalenceSet_unitIso, CategoryTheory.Functor.ranObjObjIsoLimit_inv_π, CategoryTheory.TwoSquare.EquivalenceJ.functor_map, CategoryTheory.CostructuredArrow.costructuredArrowToOverEquivalence.inverse_obj, CategoryTheory.Over.coe_hom, TopCat.Presheaf.generateEquivalenceOpensLe_inverse'_obj_obj_left, CategoryTheory.MorphismProperty.instHasPullbackSndHomDiscretePUnitOfHasPullbacksAlongOfIsStableUnderBaseChangeAlong, AlgebraicGeometry.Scheme.kerFunctor_obj, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_hom_app_comp_fst_assoc, CategoryTheory.Over.forgetCocone_ι_app, CategoryTheory.SmallObject.functor_obj, CategoryTheory.StructuredArrow.commaMapEquivalenceUnitIso_inv_app_right_left, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.ι_isoColimit_inv, CategoryTheory.StructuredArrow.mapIso_functor_map_right, CategoryTheory.Over.whiskerRight_left_fst_assoc, post_map_right, CategoryTheory.StructuredArrow.pre_obj_hom, CategoryTheory.Functor.PullbackObjObj.mapArrowLeft_right, CategoryTheory.Over.tensorHom_left_snd, CategoryTheory.WithInitial.ofCommaObject_map, CategoryTheory.Under.opEquivOpOver_counitIso, CategoryTheory.StructuredArrow.toUnder_map_left, CategoryTheory.StructuredArrow.w_prod_snd_assoc, CategoryTheory.WithTerminal.equivComma_inverse_obj_map, CategoryTheory.CostructuredArrow.preEquivalence.inverse_obj_hom_left, CategoryTheory.StructuredArrow.prodInverse_obj, CategoryTheory.CostructuredArrow.preEquivalence.functor_map_left, CategoryTheory.Functor.RightExtension.postcomp₁_obj_hom_app, CategoryTheory.SmallObject.ιObj_naturality_assoc, CategoryTheory.Square.fromArrowArrowFunctor_map_τ₂, CategoryTheory.Functor.ι_leftKanExtensionObjIsoColimit_hom, CategoryTheory.WithInitial.liftFromUnder_obj_map, CategoryTheory.Limits.ImageMap.map_ι_assoc, CategoryTheory.Square.toArrowArrowFunctor'_obj_hom_right, CategoryTheory.Limits.kernel_map_comp_kernelSubobjectIso_inv_assoc, CategoryTheory.Arrow.left_hom_inv_right, CategoryTheory.Functor.PushoutObjObj.mapArrowRight_comp, CategoryTheory.Under.mkIdInitial_to_right, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorToComma_map_right, CategoryTheory.Over.ConstructProducts.conesEquivInverseObj_π_app, CategoryTheory.Under.costar_obj_hom, CategoryTheory.Functor.LeftExtension.coconeAt_ι_app, CategoryTheory.Presheaf.isLimit_iff_isSheafFor, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_inv_app_comp_fst_assoc, CategoryTheory.Over.lift_left, CategoryTheory.Under.postAdjunctionRight_counit_app_right, CategoryTheory.TwoSquare.EquivalenceJ.inverse_obj, mapLeftIso_inverse_map_left, CategoryTheory.Arrow.w_assoc, CategoryTheory.StructuredArrow.map_obj_hom, CategoryTheory.CostructuredArrow.preEquivalence.inverse_map_left_left, CategoryTheory.SmallObject.functorialFactorizationData_p_app, CategoryTheory.Over.opEquivOpUnder_functor_map, CategoryTheory.Functor.PushoutObjObj.mapArrowRight_right, CategoryTheory.OverPresheafAux.counitForward_counitBackward, SSet.Truncated.rightExtensionInclusion_hom_app, CategoryTheory.Limits.multispanIndexCoend_fst, CategoryTheory.StructuredArrow.mapIso_inverse_map_left, mapLeft_obj_hom, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_hom_app_comp_fst, TopCat.Presheaf.generateEquivalenceOpensLe_functor'_map, CategoryTheory.CostructuredArrow.pre_map_left, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceInverse_obj_right_hom, CategoryTheory.Over.mkIdTerminal_from_left, CategoryTheory.ChosenPullbacksAlong.Over.fst_eq_fst', CategoryTheory.CostructuredArrow.mapNatIso_functor_map_right, CategoryTheory.Under.opEquivOpOver_functor_map, CategoryTheory.Square.toArrowArrowFunctor'_obj_hom_left, CategoryTheory.CostructuredArrow.mapIso_inverse_obj_hom, CategoryTheory.CostructuredArrow.projectQuotient_factors, CategoryTheory.Over.fst_left, CategoryTheory.Over.prodLeftIsoPullback_hom_fst, CategoryTheory.Over.associator_hom_left_fst_assoc, CategoryTheory.TwoSquare.lanBaseChange_app, CategoryTheory.Over.isMonHom_pullbackFst_id_right, CategoryTheory.Over.pullback_obj_hom, CategoryTheory.Over.forgetAdjStar_unit_app_left, preLeft_map_right, CategoryTheory.Functor.leibnizPullback_map_app, CategoryTheory.StructuredArrow.toCostructuredArrow'_map, CategoryTheory.Over.tensorObj_left, Types.monoOverEquivalenceSet_counitIso, CategoryTheory.StructuredArrow.post_obj, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.pullbackGluedIso_inv_snd, CategoryTheory.CostructuredArrow.mapIso_inverse_map_right, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.pullbackGluedIso_inv_fst, CategoryTheory.StructuredArrow.toCostructuredArrow'_obj, CategoryTheory.Functor.PushoutObjObj.mapArrowLeft_comp, CategoryTheory.Abelian.app_hom, post_obj_hom, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_fst_snd', CategoryTheory.SmallObject.πObj_naturality, CategoryTheory.Functor.PullbackObjObj.π_iso_of_iso_left_hom, CategoryTheory.Functor.ι_leftKanExtensionObjIsoColimit_hom_assoc, CategoryTheory.CostructuredArrow.mapIso_inverse_map_left, CategoryTheory.StructuredArrow.IsUniversal.fac_assoc, CategoryTheory.StructuredArrow.mapNatIso_inverse_map_left, CategoryTheory.Presheaf.subsingleton_iff_isSeparatedFor, CategoryTheory.Limits.Cocone.fromStructuredArrow_obj_ι, CategoryTheory.CostructuredArrow.map₂_obj_hom, CategoryTheory.Limits.Cocone.equivStructuredArrow_counitIso, CategoryTheory.ChosenPullbacksAlong.Over.leftUnitor_inv_left_snd_assoc, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_inv_left_fst_assoc, TopCat.Presheaf.generateEquivalenceOpensLe_inverse'_map, CategoryTheory.Functor.PushoutObjObj.ι_iso_of_iso_left_hom, CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtensionAt.isoLimit_hom_π_assoc, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_inverse_map, CategoryTheory.TwoSquare.costructuredArrowRightwards_obj, colimitAuxiliaryCocone_ι_app, CategoryTheory.StructuredArrow.IsUniversal.fac, CategoryTheory.Square.fromArrowArrowFunctor'_obj_f₂₄, AlgebraicGeometry.Scheme.restrictFunctor_obj_hom, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.relativeGluingData_natTrans_app, CategoryTheory.MorphismProperty.Over.pullbackComp_left_fst_fst, CategoryTheory.OverPresheafAux.counitAuxAux_hom, ext_iff, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceInverse_obj_hom, CategoryTheory.Over.associator_hom_left_snd_snd, CategoryTheory.Over.associator_inv_left_snd_assoc, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_obj_map, CategoryTheory.Over.coprodObj_map, CategoryTheory.MorphismProperty.arrow_iso_iff, CategoryTheory.Functor.leibnizPullback_obj_obj, CategoryTheory.StructuredArrow.commaMapEquivalenceCounitIso_inv_app_left_right, mapRightIso_inverse_map_left, CategoryTheory.MorphismProperty.FunctorialFactorizationData.fac_app_assoc, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_inv_left_fst, CategoryTheory.Under.w_assoc, CategoryTheory.Limits.image.factor_map, CategoryTheory.StructuredArrow.w_assoc, CategoryTheory.StructuredArrow.mapNatIso_functor_map_left, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_inv_app_comp_snd_assoc, CategoryTheory.Square.toArrowArrowFunctor'_obj_right_hom, CategoryTheory.StructuredArrow.map₂_obj_hom, CategoryTheory.MorphismProperty.homFamily_apply, CategoryTheory.Under.opEquivOpOver_inverse_map, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_obj_right, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_functor_map_right, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_obj_hom_app, CategoryTheory.Under.forgetCone_π_app, CategoryTheory.Over.iteratedSliceForward_obj, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.inverse_obj_right_hom, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorToComma_obj_hom, CategoryTheory.CostructuredArrow.toStructuredArrow_map, CategoryTheory.Over.whiskerLeft_left_snd, CategoryTheory.Functor.leibnizPushout_map_app, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceFunctor_obj_hom, CategoryTheory.Over.w_assoc, CategoryTheory.OverPresheafAux.counitForward_val_fst, mapRight_map_right, CategoryTheory.StructuredArrow.homMk'_mk_id, CategoryTheory.CostructuredArrow.IsUniversal.fac_assoc, CategoryTheory.Pseudofunctor.IsPrestackFor.nonempty_fullyFaithful, CategoryTheory.Square.toArrowArrowFunctor_obj_left_hom, CategoryTheory.Abelian.coimIsoIm_hom_app, CategoryTheory.Limits.diagonal_pullback_fst, CategoryTheory.Over.iteratedSliceForwardNaturalityIso_inv_app, CategoryTheory.Under.w, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_fst_assoc, CategoryTheory.CostructuredArrow.costructuredArrowToOverEquivalence.inverse_map, CategoryTheory.MorphismProperty.Over.pullbackCongr_hom_app_left_fst_assoc, CategoryTheory.Square.fromArrowArrowFunctor'_obj_f₁₂, CategoryTheory.MonoOver.mono_obj_hom, CategoryTheory.Sieve.overEquiv_iff, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left_snd, mapLeftIso_functor_map_right, CategoryTheory.Over.opEquivOpUnder_functor_obj, CategoryTheory.OrthogonalReflection.D₂.multispanIndex_snd, CategoryTheory.StructuredArrow.commaMapEquivalenceCounitIso_inv_app_right_right, CategoryTheory.Functor.costructuredArrowMapCocone_ι_app, CategoryTheory.Over.iteratedSliceForwardIsoPost_hom_app, CategoryTheory.MorphismProperty.CostructuredArrow.mk_hom, CategoryTheory.Over.tensorObj_hom, CategoryTheory.StructuredArrow.toCostructuredArrow_obj, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.comp_homEquiv_symm_assoc, CategoryTheory.toOverUnit_obj_hom, CategoryTheory.Over.postAdjunctionLeft_counit_app_left, CategoryTheory.CostructuredArrow.preEquivalence.inverse_obj_left_hom, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.functor_obj_hom, CategoryTheory.StructuredArrow.preEquivalenceFunctor_obj_hom, TopCat.Presheaf.generateEquivalenceOpensLe_inverse, CategoryTheory.Limits.ker_map, CategoryTheory.Functor.LeftExtension.mk_hom, CategoryTheory.Square.fromArrowArrowFunctor'_obj_f₃₄, CategoryTheory.MorphismProperty.costructuredArrowObj_iff, CategoryTheory.MorphismProperty.Over.map_obj_hom, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_obj_hom, CategoryTheory.CostructuredArrow.IsUniversal.hom_desc, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_fst_fst_assoc, CategoryTheory.Abelian.coimIsoIm_inv_app, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_snd_snd_assoc, preLeft_obj_hom, CategoryTheory.WithTerminal.coneEquiv_functor_map_hom, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left, CategoryTheory.Square.fromArrowArrowFunctor_map_τ₄, CategoryTheory.Presheaf.isSheaf_iff_isLimit_pretopology, CategoryTheory.Functor.structuredArrowMapCone_π_app, CategoryTheory.OverPresheafAux.counitForward_naturality₂, CommRingCat.pushout_inr_tensorProdObjIsoPushoutObj_inv_right, CategoryTheory.Localization.structuredArrowEquiv_apply
inhabited 📖CompOp
isoMk 📖CompOp
4 mathmath: isoMk_inv_left, isoMk_hom_right, isoMk_inv_right, isoMk_hom_left
left 📖CompOp
1218 mathmath: TopCat.Presheaf.generateEquivalenceOpensLe_functor'_obj_obj, CategoryTheory.IsGrothendieckAbelian.subobjectMk_of_isColimit_eq_iSup, CategoryTheory.Over.associator_hom_left_snd_fst_assoc, CategoryTheory.Limits.coker.π_app, CategoryTheory.CostructuredArrow.homMk'_id, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left_fst, CategoryTheory.SimplicialObject.id_left_app, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_hom_right, CategoryTheory.Over.prodLeftIsoPullback_hom_snd_assoc, CategoryTheory.LocalizerMorphism.IsRightDerivabilityStructure.Constructor.fromRightResolution_map, CategoryTheory.CosimplicialObject.Augmented.leftOpRightOpIso_hom_left, CategoryTheory.Limits.HasImage.of_arrow_iso, CategoryTheory.Over.μ_pullback_left_snd', CategoryTheory.WithTerminal.coneEquiv_unitIso_hom_app_hom_left, CategoryTheory.Bicategory.RightExtension.w_assoc, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceInverse_obj_left_hom, CategoryTheory.StructuredArrow.map_map_right, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceInverse_obj_right_left, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_snd_fst_assoc, CategoryTheory.Functor.leibnizPullback_obj_map, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_hom_app_left, CategoryTheory.Arrow.equivSigma_symm_apply_left, AlgebraicGeometry.Scheme.Cover.pullbackCoverOver_X, CategoryTheory.Over.ConstructProducts.conesEquivInverseObj_pt, mapLeftIso_inverse_map_right, CategoryTheory.CategoryOfElements.costructuredArrowYonedaEquivalenceInverseπ_hom_app, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_functor_map_left, CategoryTheory.Over.iteratedSliceForwardNaturalityIso_hom_app, CategoryTheory.Functor.LeftExtension.precomp₂_obj_hom_app, CategoryTheory.CostructuredArrow.toOver_obj_left, CategoryTheory.Limits.MonoFactorisation.ofArrowIso_e, CategoryTheory.MonoOver.mk_coe, opFunctor_obj, CategoryTheory.Limits.multicospanIndexEnd_fst, CategoryTheory.WithTerminal.equivComma_functor_obj_left_obj, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left_fst, CategoryTheory.StructuredArrow.mapIso_functor_obj_left, CategoryTheory.CategoryOfElements.fromStructuredArrow_map, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_pullback_map, CategoryTheory.MonoOver.congr_unitIso, CategoryTheory.WithTerminal.equivComma_counitIso_hom_app_left_app, CategoryTheory.OverPresheafAux.unitAux_hom, CategoryTheory.MorphismProperty.FunctorialFactorizationData.i_mapZ_assoc, CategoryTheory.Over.iteratedSliceBackward_map, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_unitIso, CategoryTheory.CostructuredArrow.ofDiagEquivalence.functor_map_left_left, CategoryTheory.Over.associator_inv_left_snd, CategoryTheory.Functor.mapArrow_obj, CategoryTheory.StructuredArrow.commaMapEquivalenceInverse_map, CategoryTheory.Over.pullback_obj_left, CategoryTheory.Over.inv_left_hom_left_assoc, map_obj_hom, TopCat.Presheaf.generateEquivalenceOpensLe_unitIso, CategoryTheory.StructuredArrow.w_prod_fst, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_left_hom, CategoryTheory.StructuredArrow.homMk'_comp, CategoryTheory.WithTerminal.equivComma_counitIso_inv_app_left_app, CategoryTheory.RetractArrow.retract_left_assoc, CategoryTheory.CostructuredArrow.w_assoc, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_inverse_map_app, CategoryTheory.MonoOver.isIso_left_iff_subobjectMk_eq, CategoryTheory.Functor.PullbackObjObj.mapArrowRight_right, CategoryTheory.Sieve.overEquiv_pullback, CategoryTheory.Over.rightUnitor_inv_left_fst_assoc, CategoryTheory.Functor.PushoutObjObj.mapArrowRight_id, CategoryTheory.Functor.PullbackObjObj.mapArrowLeft_id, mapLeft_map_left, CategoryTheory.OverPresheafAux.restrictedYoneda_map, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.inverse_obj_right_left_as, CategoryTheory.Bicategory.RightLift.w_assoc, CategoryTheory.Sieve.ofArrows_category', CategoryTheory.Over.comp_left_assoc, CategoryTheory.CostructuredArrow.preEquivalence.functor_obj_right_as, CategoryTheory.Limits.IsImage.ofArrowIso_lift, CategoryTheory.Over.hom_left_inv_left, CategoryTheory.StructuredArrow.toUnder_obj_left, CategoryTheory.Functor.RightExtension.postcompose₂_obj_left_map, CategoryTheory.MorphismProperty.Comma.eqToHom_left, CategoryTheory.Over.whiskerLeft_left, CategoryTheory.CosimplicialObject.Augmented.leftOp_right, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorToComma_map_left, CategoryTheory.Over.forgetMapTerminal_hom_app, CategoryTheory.Limits.image.map_id, CategoryTheory.OverPresheafAux.restrictedYoneda_obj, CategoryTheory.Over.mk_left, CategoryTheory.Presheaf.isSheaf_iff_isLimit_coverage, CategoryTheory.MonoOver.isIso_iff_subobjectMk_eq, CategoryTheory.Functor.LeftExtension.postcomp₁_map_right_app, CategoryTheory.CostructuredArrow.IsUniversal.existsUnique, CategoryTheory.Functor.leftKanExtensionUnit_leftKanExtension_map_leftKanExtensionObjIsoColimit_hom, CategoryTheory.ParametrizedAdjunction.inr_arrowHomEquiv_symm_apply_left, CategoryTheory.CostructuredArrow.w_prod_fst, CategoryTheory.CostructuredArrow.mapNatIso_inverse_obj_left, CategoryTheory.SimplicialObject.Augmented.toArrow_map_right, CategoryTheory.Square.fromArrowArrowFunctor_map_τ₃, CategoryTheory.Over.epi_iff_epi_left, CategoryTheory.ParametrizedAdjunction.inl_arrowHomEquiv_symm_apply_left, CategoryTheory.CostructuredArrow.mapIso_functor_obj_hom, CategoryTheory.StructuredArrow.commaMapEquivalenceCounitIso_hom_app_left_right, fst_obj, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_hom_left_comp, AlgebraicGeometry.Scheme.Cover.pullbackCoverOver'_X, mapLeftIso_functor_map_left, CategoryTheory.SimplicialObject.augment_left, CategoryTheory.MorphismProperty.Over.map_obj_left, mapLeftIso_unitIso_inv_app_left, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.inverse_obj_left_hom, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_functor_obj_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_obj_left, CategoryTheory.Arrow.comp_left, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.pullbackGluedIso_inv_snd_assoc, CategoryTheory.MorphismProperty.Over.pullbackComp_hom_app_left, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.isIso_hom_app, mapRightIso_counitIso_inv_app_left, CategoryTheory.TwoSquare.EquivalenceJ.inverse_map, CategoryTheory.StructuredArrow.commaMapEquivalenceUnitIso_inv_app_right_right, CategoryTheory.CostructuredArrow.ofDiagEquivalence.inverse_obj_left, CategoryTheory.Functor.RightExtension.coneAt_pt, CategoryTheory.CostructuredArrow.eq_mk, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.isPullback, CategoryTheory.SimplicialObject.Augmented.ExtraDegeneracy.s_comp_δ₀_assoc, CategoryTheory.Functor.LeftExtension.postcomp₁_obj_left, CategoryTheory.RetractArrow.r_w_assoc, CategoryTheory.StructuredArrow.map₂_map_right, mapLeftEq_hom_app_left, CategoryTheory.Limits.Cone.fromCostructuredArrow_map_hom, AlgebraicGeometry.instIsOpenImmersionLeftSchemeDiscretePUnitMapWalkingSpanOverTopMorphismPropertySpan, CategoryTheory.Functor.PullbackObjObj.π_iso_of_iso_left_inv, CategoryTheory.toOver_obj_left, CategoryTheory.StructuredArrow.preEquivalenceInverse_obj_right_hom, CategoryTheory.Limits.image.map_comp, CategoryTheory.ChosenPullbacksAlong.iso_mapPullbackAdj_unit_app, CategoryTheory.toOverPullbackIsoToOver_inv_app_left, eqToHom_left, CategoryTheory.Functor.ι_leftKanExtensionObjIsoColimit_inv, CategoryTheory.CostructuredArrow.w_prod_fst_assoc, CategoryTheory.WithInitial.ofCommaObject_obj, CategoryTheory.Functor.LeftExtension.precomp_map_right, CategoryTheory.WithTerminal.equivComma_inverse_obj_obj, CategoryTheory.Functor.LeftExtension.precomp₂_obj_left, CategoryTheory.SimplicialObject.Augmented.w₀, CategoryTheory.Functor.RightExtension.coneAt_π_app, mapRightIso_functor_map_left, map_map_right, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_hom_app_comp_snd_assoc, CategoryTheory.Arrow.leftFunc_obj, CategoryTheory.CostructuredArrow.mapNatIso_inverse_map_right, CategoryTheory.CostructuredArrow.unop_left_comp_ofMkLEMk_unop, CategoryTheory.Limits.multicospanIndexEnd_snd, CategoryTheory.Over.braiding_inv_left, CategoryTheory.Functor.RightExtension.postcomp₁_obj_left_map, CategoryTheory.MorphismProperty.Over.mapCongr_inv_app_left, CategoryTheory.CostructuredArrow.post_obj, CategoryTheory.Functor.RightExtension.postcomp₁_map_right, CategoryTheory.Over.prodLeftIsoPullback_inv_snd, CategoryTheory.Functor.LeibnizAdjunction.adj_unit_app_left, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_map_app, CategoryTheory.Over.iteratedSliceForwardIsoPost_inv_app, CategoryTheory.SimplicialObject.Augmented.toArrow_map_left, mapRight_obj_hom, CategoryTheory.MorphismProperty.FunctorialFactorizationData.functorCategory.Z_map_app, mapRightIso_inverse_map_right, CategoryTheory.WithTerminal.equivComma_functor_obj_left_map, CategoryTheory.SimplicialObject.Augmented.ExtraDegeneracy.s'_comp_ε, CategoryTheory.Limits.coker_map, CategoryTheory.CostructuredArrow.mapNatIso_unitIso_inv_app_left, CategoryTheory.instIsContinuousOverLeftDiscretePUnitIteratedSliceForwardOver, inv_left, CategoryTheory.Square.toArrowArrowFunctor'_obj_left_hom, CategoryTheory.Square.fromArrowArrowFunctor_obj_f₃₄, CategoryTheory.SmallObject.functorialFactorizationData_i_app, CategoryTheory.CostructuredArrow.prodFunctor_map, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_left_right, CategoryTheory.SimplicialObject.Augmented.toArrow_obj_left, CategoryTheory.Abelian.coim_map, CategoryTheory.Over.leftUnitor_hom_left, CategoryTheory.CostructuredArrow.mapIso_unitIso_hom_app_left, CategoryTheory.Functor.PullbackObjObj.mapArrowLeft_comp, CategoryTheory.MorphismProperty.Over.pullbackMapHomPullback_app, CategoryTheory.Over.tensorObj_ext_iff, CategoryTheory.RetractArrow.i_w, CategoryTheory.CostructuredArrow.toOver_map_right, CategoryTheory.CostructuredArrow.map_obj_hom, CategoryTheory.Functor.LeftExtension.precomp_obj_hom_app, CategoryTheory.WithTerminal.ofCommaObject_obj, CategoryTheory.Functor.LeibnizAdjunction.adj_counit_app_left, CategoryTheory.Over.iteratedSliceForward_forget, CategoryTheory.StructuredArrow.eq_mk, CategoryTheory.Over.ConstructProducts.conesEquivCounitIso_inv_app_hom_left, TopCat.Presheaf.generateEquivalenceOpensLe_inverse'_obj_obj_right_as, CategoryTheory.MorphismProperty.Over.pullback_obj_left, CategoryTheory.Over.postAdjunctionRight_counit_app, CategoryTheory.Over.conePost_obj_π_app, CategoryTheory.Limits.multicospanIndexEnd_right, CategoryTheory.MonoOver.mkArrowIso_hom_hom_left, CategoryTheory.NatTrans.instIsClosedUnderLimitsOfShapeOverFunctorEquifiberedHomDiscretePUnitOfHasCoproductsOfShapeHom, opFunctor_map, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.functor_obj_left_as, CategoryTheory.CostructuredArrow.commaToGrothendieckPrecompFunctor_map_fiber, CategoryTheory.Sieve.overEquiv_le_overEquiv_iff, CategoryTheory.MonoOver.map_obj_left, CategoryTheory.ChosenPullbacksAlong.Over.tensorObj_ext_iff, CategoryTheory.OrthogonalReflection.D₁.ι_comp_t_assoc, CategoryTheory.CostructuredArrow.commaToGrothendieckPrecompFunctor_obj_fiber, CategoryTheory.Square.fromArrowArrowFunctor'_obj_X₂, CategoryTheory.CostructuredArrow.ofDiagEquivalence.functor_obj_hom, CategoryTheory.Over.rightUnitor_inv_left_fst, CategoryTheory.CostructuredArrow.homMk'_mk_id, preRight_obj_left, CategoryTheory.Functor.RightExtension.precomp_map_left, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left_snd_assoc, CategoryTheory.Bicategory.LeftExtension.ofCompId_left_as, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtension.isLeftKanExtension, CategoryTheory.WithInitial.equivComma_counitIso_hom_app_right_app, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_mapPullbackAdj_unit_app, CategoryTheory.MonoOver.isIso_hom_left_iff_subobjectMk_eq, CategoryTheory.Under.pushout_map, CategoryTheory.Over.mapCongr_inv_app_left, CategoryTheory.StructuredArrow.preEquivalenceFunctor_obj_left_as, CategoryTheory.StructuredArrow.map₂_obj_left, CategoryTheory.Sieve.ofArrows_category, CategoryTheory.MorphismProperty.Comma.comp_left_assoc, CategoryTheory.Limits.image.map_ι, CategoryTheory.Over.mapCongr_hom_app_left, CategoryTheory.Abelian.Pseudoelement.pseudoZero_iff, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_inv_left_snd, CategoryTheory.equivToOverUnit_unitIso, CategoryTheory.CostructuredArrow.homMk'_right, CategoryTheory.Over.postCongr_inv_app_left, CategoryTheory.Square.fromArrowArrowFunctor'_obj_X₃, CategoryTheory.Functor.ι_leftKanExtensionObjIsoColimit_inv_assoc, CategoryTheory.ChosenPullbacksAlong.isoInv_pullback_obj_left, CategoryTheory.CostructuredArrow.ιCompGrothendieckProj_inv_app, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.inverse_obj_hom, CategoryTheory.OverPresheafAux.counitForward_naturality₁, CategoryTheory.Over.mapComp_hom_app_left, mapLeftIso_inverse_obj_left, TopCat.Presheaf.generateEquivalenceOpensLe_inverse'_obj_obj_hom, mapRight_obj_left, equivProd_unitIso_hom_app_left, CategoryTheory.MorphismProperty.Over.pullbackCongr_hom_app_left_fst, CategoryTheory.Functor.PushoutObjObj.mapArrowRight_left, CategoryTheory.Over.whiskerRight_left_fst, CategoryTheory.MorphismProperty.FunctorialFactorizationData.functorCategory.Z_obj_map, CategoryTheory.CostructuredArrow.w_prod_snd_assoc, CategoryTheory.Over.postAdjunctionLeft_unit_app_left, CommRingCat.pushout_inr_tensorProdObjIsoPushoutObj_inv_right_assoc, CategoryTheory.MorphismProperty.Over.mapPullbackAdj_counit_app, CategoryTheory.CostructuredArrow.costructuredArrowToOverEquivalence.functor_map, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.pullbackGluedIso_inv_fst_assoc, CategoryTheory.Arrow.square_from_iso_invert, CategoryTheory.MonoOver.pullback_obj_arrow, CategoryTheory.Over.preservesTerminalIso_pullback, CategoryTheory.Functor.PullbackObjObj.π_iso_of_iso_right_hom, CategoryTheory.Over.prodLeftIsoPullback_inv_fst, CategoryTheory.Functor.PushoutObjObj.mapArrowRight_comp_assoc, CategoryTheory.Abelian.im_map, CategoryTheory.StructuredArrow.map₂_map_left, CategoryTheory.TwoSquare.costructuredArrowRightwards_map, CategoryTheory.Presheaf.isLimit_iff_isSheafFor_presieve, CategoryTheory.CostructuredArrow.ofDiagEquivalence.functor_obj_left_hom, CategoryTheory.Functor.PullbackObjObj.mapArrowRight_comp_assoc, CategoryTheory.Over.opEquivOpUnder_inverse_obj, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_inverse_obj_map, CategoryTheory.Arrow.mono_left, CategoryTheory.CostructuredArrow.mapIso_functor_map_left, CategoryTheory.StructuredArrow.prodFunctor_map, CategoryTheory.Arrow.equivSigma_apply_snd_snd, CategoryTheory.SimplicialObject.Augmented.ExtraDegeneracy.s_comp_δ, CategoryTheory.Over.prodLeftIsoPullback_inv_snd_assoc, CategoryTheory.Over.rightUnitor_inv_left_snd, CategoryTheory.ChosenPullbacksAlong.Over.tensorObj_hom, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_inverse_map_left, AlgebraicGeometry.instIsClosedImmersionLeftSchemeDiscretePUnitOneOverSpecOf, CategoryTheory.Over.post_map, CategoryTheory.Square.toArrowArrowFunctor_obj_left_left, CategoryTheory.regularTopology.equalizerConditionMap_iff_nonempty_isLimit, mapRightId_inv_app_left, CategoryTheory.Pseudofunctor.presheafHom_obj, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_inverse_obj_obj, CategoryTheory.Over.mapPullbackAdj_counit_app, CategoryTheory.CostructuredArrow.pre_obj_left, CategoryTheory.Over.iteratedSliceBackward_forget, CategoryTheory.Abelian.Pseudoelement.ModuleCat.eq_range_of_pseudoequal, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_inverse_obj_left, CategoryTheory.Over.postCongr_hom_app_left, preRight_map_left, CategoryTheory.toOverUnit_obj_left, CategoryTheory.CostructuredArrow.post_map, CategoryTheory.CostructuredArrow.mapIso_unitIso_inv_app_left, CategoryTheory.ChosenPullbacksAlong.Over.tensorObj_left, CategoryTheory.CostructuredArrow.commaToGrothendieckPrecompFunctor_map_base, CategoryTheory.StructuredArrow.mapNatIso_inverse_map_right, CategoryTheory.Over.iteratedSliceBackward_forget_forget, CategoryTheory.Square.fromArrowArrowFunctor_obj_X₃, CategoryTheory.CostructuredArrow.proj_obj, CategoryTheory.RetractArrow.op_r_right, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_fst, CategoryTheory.Over.prodLeftIsoPullback_hom_snd, CategoryTheory.CostructuredArrow.preEquivalence.functor_obj_hom, CategoryTheory.StructuredArrow.IsUniversal.existsUnique, CategoryTheory.Limits.pullbackConeEquivBinaryFan_counitIso, CategoryTheory.ChosenPullbacksAlong.isoInv_pullback_map_left, CategoryTheory.StructuredArrow.mapNatIso_functor_map_right, CategoryTheory.IsGrothendieckAbelian.exists_isIso_of_functor_from_monoOver, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceInverse_map_right_left, CategoryTheory.CostructuredArrow.mapIso_functor_obj_left, CategoryTheory.Over.whiskerRight_left_snd_assoc, CategoryTheory.Arrow.w_mk_right, CategoryTheory.SimplicialObject.Truncated.rightExtensionInclusion_left, CategoryTheory.WithInitial.equivComma_counitIso_inv_app_right_app, CategoryTheory.ChosenPullbacksAlong.Over.snd_eq_snd', CategoryTheory.Limits.IsLimit.pullbackConeEquivBinaryFanFunctor_lift_left, CategoryTheory.CostructuredArrow.map_obj_left, CategoryTheory.MorphismProperty.Over.mapPullbackAdj_unit_app, CategoryTheory.CostructuredArrow.eta_hom_left, CategoryTheory.Over.associator_inv_left_fst_fst_assoc, CategoryTheory.Sieve.overEquiv_symm_iff, CategoryTheory.Square.fromArrowArrowFunctor'_map_τ₃, CategoryTheory.CosimplicialObject.Augmented.leftOpRightOpIso_inv_left, CategoryTheory.Sieve.functorPushforward_over_map, CategoryTheory.Limits.ker.ι_app, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceFunctor_obj_hom, CategoryTheory.Over.associator_hom_left_fst, CategoryTheory.StructuredArrow.mapNatIso_inverse_obj_left, CategoryTheory.SmallObject.functor_map, CategoryTheory.StructuredArrow.ofDiagEquivalence.functor_map_right_right, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.inverse_obj_left_as, CategoryTheory.Subfunctor.equivalenceMonoOver_inverse_map, comp_left, toPUnitIdEquiv_functor_obj, CategoryTheory.Square.fromArrowArrowFunctor_obj_X₂, CategoryTheory.ChosenPullbacksAlong.Over.leftUnitor_inv_left_snd, CategoryTheory.CostructuredArrow.toStructuredArrow'_obj, CategoryTheory.Abelian.Pseudoelement.pseudoApply_mk', CategoryTheory.NatTrans.instIsClosedUnderColimitsOfShapeUnderFunctorCoequifiberedHomDiscretePUnitOfHasProductsOfShapeHom, CategoryTheory.CostructuredArrow.prodInverse_obj, CategoryTheory.Over.prodLeftIsoPullback_hom_fst_assoc, SSet.Augmented.stdSimplex_obj_left, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left_snd_assoc, CategoryTheory.MorphismProperty.Over.mapId_inv_app_left, CategoryTheory.Under.costar_obj_left, CategoryTheory.SmallObject.objMap_comp_assoc, CategoryTheory.CostructuredArrow.ofDiagEquivalence.functor_obj_left_left, CategoryTheory.Limits.ker_obj, CategoryTheory.SmallObject.functorialFactorizationData_Z_obj, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_snd_fst, fromProd_obj_left, CategoryTheory.MonoOver.image_map, CategoryTheory.Arrow.equivSigma_apply_fst, CategoryTheory.Under.under_left, CategoryTheory.Under.mapPushoutAdj_unit_app, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceFunctor_map_left, CategoryTheory.GrothendieckTopology.mem_over_iff, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_obj_obj, CategoryTheory.OverPresheafAux.counitForward_val_snd, mapLeftComp_inv_app_left, CategoryTheory.Limits.instHasImageHomMk, CategoryTheory.Limits.ImageMap.factor_map_assoc, CategoryTheory.Over.opEquivOpUnder_inverse_map, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.inverse_map_left_left, CategoryTheory.StructuredArrow.mkPostcomp_left, CategoryTheory.StructuredArrow.left_eq_id, CategoryTheory.Over.leftUnitor_inv_left_fst, mapLeftIso_functor_obj_left, CategoryTheory.ChosenPullbacksAlong.isoInv_mapPullbackAdj_unit_app_left, CategoryTheory.Over.inv_left_hom_left, AlgebraicGeometry.opensDiagram_map, CategoryTheory.CostructuredArrow.id_left, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left, HomotopicalAlgebra.cofibrations_over_iff, CategoryTheory.CostructuredArrow.ofDiagEquivalence.inverse_obj_hom, CategoryTheory.Over.forgetMapTerminal_inv_app, CategoryTheory.MorphismProperty.Over.mapCongr_hom_app_left, CategoryTheory.Subobject.inf_eq_map_pullback', CategoryTheory.CosimplicialObject.Augmented.leftOp_left_map, CategoryTheory.Presheaf.isSeparated_iff_subsingleton, CategoryTheory.Over.eqToHom_left, CategoryTheory.Sieve.overEquiv_top, CategoryTheory.Functor.leibnizPushout_obj_map, CategoryTheory.Functor.PushoutObjObj.mapArrowLeft_id, CategoryTheory.Over.tensorHom_left_snd_assoc, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.ι_isoColimit_hom, CategoryTheory.SmallObject.ε_app, CategoryTheory.CostructuredArrow.ιCompGrothendieckPrecompFunctorToCommaCompFst_inv_app, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_inv_left_snd_assoc, CategoryTheory.Functor.LeftExtension.postcompose₂_map_right_app, CategoryTheory.Limits.kernelSubobjectIso_comp_kernel_map, CategoryTheory.Limits.image.map_homMk'_ι, CategoryTheory.CommaMorphism.w_assoc, CategoryTheory.CostructuredArrow.map_map_right, CategoryTheory.Over.leftUnitor_inv_left_snd, CategoryTheory.ChosenPullbacksAlong.Over.leftUnitor_inv_left_fst_assoc, AlgebraicGeometry.Scheme.kerAdjunction_counit_app, AlgebraicGeometry.opensDiagramι_app, CategoryTheory.Arrow.w, CategoryTheory.StructuredArrow.homMk'_left, HomotopicalAlgebra.instCofibrationLeftDiscretePUnitOfOver, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_snd', CategoryTheory.OverClass.fromOver_over, AlgebraicTopology.AlternatingFaceMapComplex.ε_app_f_zero, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.fst_gluedCocone_ι, CategoryTheory.SmallObject.objMap_id, CategoryTheory.MonoOver.image_obj, preRight_map_right, TopologicalSpace.Opens.coe_overEquivalence_functor_obj, CategoryTheory.OverClass.asOver_left, CategoryTheory.Limits.coker_obj, CategoryTheory.Over.μ_pullback_left_fst_snd', CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceInverse_obj_left_left, CategoryTheory.Over.comp_left, CategoryTheory.ChosenPullbacksAlong.Over.tensorUnit_left, CategoryTheory.Over.mapPullbackAdj_unit_app, CategoryTheory.Functor.RightExtension.postcomp₁_obj_left_obj, CategoryTheory.CostructuredArrow.mapNatIso_functor_obj_hom, CategoryTheory.Over.mapId_inv_app_left, map_map_left, CategoryTheory.Limits.multicospanShapeEnd_fst, CategoryTheory.ParametrizedAdjunction.inr_arrowHomEquiv_symm_apply_left_assoc, CategoryTheory.CostructuredArrow.w_prod_snd, CategoryTheory.MorphismProperty.Over.pullbackComp_inv_app_left, mapRightIso_functor_obj_hom, CategoryTheory.Limits.imageSubobjectIso_comp_image_map, post_map_left, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorToComma_obj_left, CategoryTheory.CommaMorphism.w, toPUnitIdEquiv_unitIso_inv_app_left, CategoryTheory.ChosenPullbacksAlong.Over.leftUnitor_inv_left_fst, CategoryTheory.Sieve.overEquiv_symm_pullback, CategoryTheory.Limits.multispanIndexCoend_snd, CategoryTheory.Subfunctor.equivalenceMonoOver_inverse_obj, CategoryTheory.Over.leftUnitor_inv_left_snd_assoc, CategoryTheory.MorphismProperty.Comma.Hom.prop_hom_left, CategoryTheory.RetractArrow.r_w, CategoryTheory.Functor.LeftExtension.postcompose₂_obj_hom_app, CategoryTheory.SimplicialObject.Augmented.ExtraDegeneracy.s₀_comp_δ₁_assoc, CategoryTheory.CategoryOfElements.costructuredArrowYonedaEquivalence_counitIso, TopCat.Presheaf.whiskerIsoMapGenerateCocone_inv_hom, CategoryTheory.MorphismProperty.instHasPullbackHomDiscretePUnitOfHasPullbacksAlong, CategoryTheory.ChosenPullbacksAlong.iso_pullback_obj, CategoryTheory.Arrow.inv_left, CategoryTheory.SimplicialObject.augment_hom_zero, CategoryTheory.SmallObject.ιObj_naturality, CategoryTheory.SmallObject.ιFunctorObj_naturality, CategoryTheory.WithTerminal.coneEquiv_inverse_obj_pt_left, CategoryTheory.Functor.LeibnizAdjunction.adj_counit_app_right, CategoryTheory.Over.conePost_map_hom, CategoryTheory.WithTerminal.mkCommaObject_left_map, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_left_app, CategoryTheory.SimplicialObject.Augmented.rightOp_right_map, CategoryTheory.MonoOver.bot_left, CategoryTheory.Presieve.ofArrows_category, CategoryTheory.Functor.RightExtension.coneAtWhiskerRightIso_inv_hom, CategoryTheory.WithTerminal.ofCommaMorphism_app, CategoryTheory.CostructuredArrow.mapNatIso_counitIso_inv_app_left, CategoryTheory.OverPresheafAux.counitAuxAux_inv, CategoryTheory.Functor.LeftExtension.postcomp₁_obj_hom_app, CategoryTheory.SmallObject.functorMapSrc_functorObjTop, CategoryTheory.StructuredArrow.mk_left, TopologicalSpace.Opens.overEquivalence_unitIso_hom_app_left, mapLeftIso_unitIso_hom_app_left, CategoryTheory.MonoOver.map_obj_arrow, CategoryTheory.StructuredArrow.ofDiagEquivalence.functor_obj_right_left_as, CategoryTheory.Arrow.w_mk_right_assoc, CategoryTheory.MorphismProperty.FunctorialFactorizationData.i_mapZ, CategoryTheory.Limits.pullbackConeEquivBinaryFan_inverse_obj, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_mapPullbackAdj_unit_app, CategoryTheory.CostructuredArrow.mapIso_counitIso_hom_app_left, CategoryTheory.ComposableArrows.arrowEquiv_symm_apply, CategoryTheory.OverPresheafAux.restrictedYonedaObj_map, CategoryTheory.WithInitial.coconeEquiv_inverse_obj_pt_left_as, CategoryTheory.Over.map_obj_hom, CategoryTheory.CostructuredArrow.mapCompιCompGrothendieckProj_inv_app, CategoryTheory.Square.fromArrowArrowFunctor_obj_f₁₃, CategoryTheory.CosimplicialObject.Augmented.toArrow_map_right, CategoryTheory.Over.associator_hom_left_snd_fst, CategoryTheory.CostructuredArrow.toOver_map_left, CategoryTheory.Over.postComp_inv_app_left, CategoryTheory.RanIsSheafOfIsCocontinuous.fac', mapRightEq_inv_app_left, CategoryTheory.Functor.mapArrow_map_left, CategoryTheory.subterminalsEquivMonoOverTerminal_inverse_map, CategoryTheory.CostructuredArrow.eta_inv_left, CategoryTheory.MorphismProperty.over_iso_iff, CategoryTheory.SmallObject.ιFunctorObj_eq, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_inverse_map_right, CategoryTheory.RetractArrow.retract_left, CategoryTheory.Functor.toOver_obj_left, CategoryTheory.TwoSquare.costructuredArrowDownwardsPrecomp_obj, CategoryTheory.CategoryOfElements.fromCostructuredArrow_obj_snd, CategoryTheory.Arrow.squareToSnd_left, CategoryTheory.CostructuredArrow.mapIso_functor_map_right, CategoryTheory.Over.rightUnitor_inv_left_snd_assoc, CategoryTheory.Over.toOverSectionsAdj_counit_app, CategoryTheory.StructuredArrow.toCostructuredArrow_map, CategoryTheory.Limits.ImageMap.factor_map, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left_snd, CategoryTheory.MonoOver.w, CategoryTheory.MonoOver.bot_arrow_eq_zero, CategoryTheory.WithInitial.equivComma_inverse_map_app, AlgebraicGeometry.Scheme.Cover.pullbackCoverOverProp'_X, left_hom_inv_right, CategoryTheory.forgetAdjToOver_unit_app, CategoryTheory.Arrow.isIso_left, CategoryTheory.OverPresheafAux.counitBackward_counitForward, CategoryTheory.Arrow.isIso_hom_iff_isIso_of_isIso, unopFunctor_obj, CategoryTheory.SimplicialObject.Augmented.rightOpLeftOpIso_inv_left_app, CategoryTheory.Over.iteratedSliceEquivOverMapIso_inv_app_left_left, CategoryTheory.CostructuredArrow.mapNatIso_inverse_map_left, CategoryTheory.Over.iteratedSliceEquivOverMapIso_hom_app_left_left, CategoryTheory.CostructuredArrow.costructuredArrowToOverEquivalence.functor_obj, CategoryTheory.CostructuredArrow.map₂_map_right, CategoryTheory.WithInitial.equivComma_counitIso_hom_app_left, CategoryTheory.StructuredArrow.toUnder_map_right, CategoryTheory.regularTopology.parallelPair_pullback_initial, CategoryTheory.WithTerminal.liftFromOver_obj_obj, CategoryTheory.overToCoalgebra_map_f, CategoryTheory.Limits.IndObjectPresentation.toCostructuredArrow_obj_left, CategoryTheory.CosimplicialObject.Augmented.toArrow_map_left, CategoryTheory.Pseudofunctor.isStackFor_iff, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.functor_obj_left_right_as, CommRingCat.pushout_inl_tensorProdObjIsoPushoutObj_inv_right_assoc, CategoryTheory.Pseudofunctor.isPrestackFor_iff_isSheafFor, CategoryTheory.SimplicialObject.Augmented.rightOpLeftOpIso_hom_left_app, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left_snd_assoc, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left_fst_assoc, CategoryTheory.Square.fromArrowArrowFunctor_obj_X₁, CategoryTheory.TwoSquare.isIso_lanBaseChange_app_iff, mapLeftIso_counitIso_hom_app_left, CategoryTheory.Over.pullback_map_left, CategoryTheory.instIsContinuousOverLeftDiscretePUnitIteratedSliceBackwardOver, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_fst_fst, mapRightIso_functor_map_right, limitAuxiliaryCone_π_app, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.fst_gluedCocone_ι_assoc, CategoryTheory.Pseudofunctor.presheafHom_map, CategoryTheory.MorphismProperty.costructuredArrow_iso_iff, CategoryTheory.Over.postEquiv_counitIso, CategoryTheory.Limits.multispanIndexCoend_left, CategoryTheory.Over.ConstructProducts.conesEquivCounitIso_hom_app_hom_left, CategoryTheory.Over.sections_obj, CategoryTheory.MorphismProperty.Comma.ext_iff, toIdPUnitEquiv_inverse_obj_left_as, AlgebraicGeometry.opensDiagram_obj, CategoryTheory.Functor.PushoutObjObj.ι_iso_of_iso_right_hom, CategoryTheory.Limits.PreservesFiniteLimitsOfIsFilteredCostructuredArrowYonedaAux.isoAux_hom_app, CategoryTheory.CostructuredArrow.toStructuredArrow'_map, CategoryTheory.RetractArrow.op_i_right, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.ι_isoColimit_hom_assoc, CategoryTheory.Abelian.coim_obj, CategoryTheory.Over.star_obj_left, CategoryTheory.Functor.mapArrow_map_right, CategoryTheory.Over.iteratedSliceEquiv_functor, CategoryTheory.MorphismProperty.overObj_iff, AlgebraicGeometry.opensCone_π_app, CategoryTheory.Over.tensorHom_left, CategoryTheory.CostructuredArrow.w, CategoryTheory.StructuredArrow.commaMapEquivalenceInverse_obj, CategoryTheory.MorphismProperty.Over.mapComp_hom_app_left, CategoryTheory.toOverIteratedSliceForwardIsoPullback_hom_app_left, CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtension.isIso_hom, CategoryTheory.MonoOver.mk'_coe', CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.ι_isoColimit_inv_assoc, CategoryTheory.StructuredArrow.w_prod_snd, CategoryTheory.StructuredArrow.preEquivalenceInverse_obj_right_right, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.functor_obj_left_hom, CategoryTheory.Presheaf.isSheaf_iff_isLimit, CategoryTheory.Under.opEquivOpOver_functor_obj, CategoryTheory.StructuredArrow.preEquivalenceInverse_obj_right_left_as, CategoryTheory.MonoOver.mono, CategoryTheory.Over.associator_inv_left_fst_snd, CategoryTheory.SimplicialObject.comp_left_app, CategoryTheory.MonoOver.forget_obj_left, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_obj_left, CategoryTheory.Limits.kernelSubobjectIso_comp_kernel_map_assoc, CategoryTheory.CostructuredArrow.mapNatIso_inverse_obj_hom, CategoryTheory.WithInitial.equivComma_inverse_obj_map, CategoryTheory.Over.forget_obj, CategoryTheory.MorphismProperty.Over.w_assoc, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_fst_assoc, CategoryTheory.SimplicialObject.Augmented.rightOp_right_obj, CategoryTheory.toOverPullbackIsoToOver_hom_app_left, CategoryTheory.Functor.RightExtension.postcomp₁_map_left_app, CategoryTheory.WithTerminal.ofCommaObject_map, CategoryTheory.MorphismProperty.ofHoms_homFamily, CategoryTheory.Over.associator_hom_left_snd_snd_assoc, mapRightComp_hom_app_left, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_map_left, CategoryTheory.Functor.PullbackObjObj.mapArrowRight_comp, CategoryTheory.Functor.ranObjObjIsoLimit_hom_π_assoc, TopologicalSpace.Opens.overEquivalence_counitIso_inv_app, CategoryTheory.Limits.im_obj, CategoryTheory.SmallObject.πObj_naturality_assoc, CategoryTheory.Functor.PullbackObjObj.π_iso_of_iso_right_inv, CategoryTheory.MorphismProperty.FunctorialFactorizationData.functorCategory.Z_obj_obj, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_inv_app_comp_fst, CategoryTheory.CostructuredArrow.epi_left_of_epi, TopCat.Presheaf.generateEquivalenceOpensLe_functor, CategoryTheory.Limits.multispanShapeCoend_fst, mapRightIso_functor_obj_left, CategoryTheory.Over.μ_pullback_left_fst_fst', CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryToUnit_pullback_obj, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceFunctor_map_right, Types.monoOverEquivalenceSet_functor_map, CategoryTheory.Over.μ_pullback_left_fst_snd, CategoryTheory.Over.whiskerRight_left, CategoryTheory.CosimplicialObject.Augmented.toArrow_obj_left, CategoryTheory.CostructuredArrow.homMk'_left, CategoryTheory.Square.toArrowArrowFunctor'_map_left_right, TopologicalSpace.Opens.overEquivalence_unitIso_inv_app_left, CategoryTheory.Arrow.id_left, CategoryTheory.Abelian.coimageImageComparisonFunctor_obj, CategoryTheory.Square.fromArrowArrowFunctor'_obj_f₁₃, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_counitIso, CategoryTheory.StructuredArrow.pre_map_left, unopFunctorCompSnd_inv_app, inv_left_hom_right, CommRingCat.pushout_inl_tensorProdObjIsoPushoutObj_inv_right, CategoryTheory.Over.opEquivOpUnder_counitIso, CategoryTheory.CostructuredArrow.prodFunctor_obj, CategoryTheory.OverPresheafAux.counitAux_hom, CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtensionAt.isIso_hom_app, CategoryTheory.CostructuredArrow.mapNatIso_unitIso_hom_app_left, CategoryTheory.OrthogonalReflection.D₂.multispanIndex_left, CategoryTheory.SimplicialObject.Augmented.ExtraDegeneracy.s_comp_σ, CategoryTheory.Limits.ImageFactorisation.ofArrowIso_F, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_left_app, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_inverse_obj_hom_app, CategoryTheory.CategoryOfElements.fromCostructuredArrow_map_coe, CategoryTheory.RetractArrow.unop_r_right, CategoryTheory.StructuredArrow.map_map_left, CategoryTheory.Functor.PullbackObjObj.mapArrowLeft_left, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_inv_app_comp_snd, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_map_left_right, CategoryTheory.SmallObject.iterationFunctorMapSuccAppArrowIso_hom_right_right_comp_assoc, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceInverse_map_left_left, CategoryTheory.rightAdjointOfCostructuredArrowTerminalsAux_apply, CategoryTheory.Over.w, CategoryTheory.MorphismProperty.CostructuredArrow.toOver_map, CategoryTheory.SimplicialObject.Augmented.drop_obj, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_pullback_map, CategoryTheory.Functor.PullbackObjObj.mapArrowLeft_comp_assoc, TopCat.Presheaf.generateEquivalenceOpensLe_counitIso, CategoryTheory.Limits.MonoFactorisation.ofArrowIso_m, CategoryTheory.StructuredArrow.prodFunctor_obj, CategoryTheory.MorphismProperty.Comma.Hom.comp_left, CategoryTheory.Functor.PushoutObjObj.ι_iso_of_iso_left_inv, CategoryTheory.Functor.LeftExtension.postcompose₂_obj_left, CategoryTheory.Sieve.yonedaFamily_fromCocone_compatible, CategoryTheory.subterminalsEquivMonoOverTerminal_inverse_obj_obj, CategoryTheory.CostructuredArrow.comp_left, CategoryTheory.CosimplicialObject.augment_hom_zero, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left_fst_assoc, CategoryTheory.SimplicialObject.Augmented.ExtraDegeneracy.s₀_comp_δ₁, CategoryTheory.coalgebraEquivOver_counitIso, opFunctorCompSnd_hom_app, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtension.isIso_hom, CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtensionAt.isoLimit_inv_π, CategoryTheory.Functor.LeftExtension.precomp_obj_left, CategoryTheory.OverPresheafAux.unitAuxAux_inv_app_snd_coe, CategoryTheory.Arrow.mk_eq, CategoryTheory.MorphismProperty.CostructuredArrow.toOver_obj, Types.monoOverEquivalenceSet_functor_obj, CategoryTheory.MorphismProperty.Under.w, CategoryTheory.CosimplicialObject.Augmented.toArrow_obj_hom, CategoryTheory.StructuredArrow.mapIso_functor_map_left, AlgebraicGeometry.Scheme.kerFunctor_map, CategoryTheory.CostructuredArrow.mk_left, CategoryTheory.MorphismProperty.Comma.prop, SSet.Truncated.rightExtensionInclusion_left, CategoryTheory.Pseudofunctor.IsStack.essSurj_of_sieve, CategoryTheory.CostructuredArrow.homMk'_mk_comp, CategoryTheory.Over.associator_inv_left_fst_fst, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_functor_obj_hom_app, mapLeftIso_inverse_obj_hom, CategoryTheory.MonoOver.isIso_iff_isIso_hom_left, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_map_right, mapLeftId_hom_app_left, post_obj_left, CategoryTheory.Over.snd_left, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.functor_map_left_left, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_hom_app_comp_snd, CategoryTheory.Limits.ImageMap.map_ι, CategoryTheory.CostructuredArrow.prodInverse_map, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left_fst_assoc, CategoryTheory.Functor.leibnizPushout_obj_obj, CategoryTheory.SimplicialObject.Augmented.ExtraDegeneracy.s_comp_δ_assoc, mapLeftId_inv_app_left, CategoryTheory.instIsCocontinuousOverLeftDiscretePUnitIteratedSliceBackwardOver, CategoryTheory.Arrow.isIso_hom_iff_isIso_hom_of_isIso, CategoryTheory.Arrow.inv_hom_id_left_assoc, CategoryTheory.Over.tensorHom_left_fst, CategoryTheory.Sieve.overEquiv_symm_generate, CategoryTheory.MorphismProperty.Over.mk_left, CategoryTheory.Over.whiskerRight_left_snd, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryToUnit_mapPullbackAdj_unit_app, CategoryTheory.MorphismProperty.structuredArrowObj_iff, CategoryTheory.SimplicialObject.Augmented.w₀_assoc, TopCat.Presheaf.whiskerIsoMapGenerateCocone_hom_hom, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_fst_snd_assoc, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_fst_snd, CategoryTheory.StructuredArrow.map_obj_left, AlgebraicGeometry.Scheme.Cover.toPresieveOver_le_arrows_iff, CategoryTheory.MorphismProperty.mem_toSet_iff, CategoryTheory.SimplicialObject.Augmented.ExtraDegeneracy.s_comp_σ_assoc, CategoryTheory.MorphismProperty.CostructuredArrow.mk_left, CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtension.isRightKanExtension, HomotopicalAlgebra.instFibrationLeftDiscretePUnitOfOver, CategoryTheory.Over.iteratedSliceEquiv_unitIso, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_left_π_assoc, toPUnitIdEquiv_unitIso_hom_app_left, CategoryTheory.CommSq.of_arrow, mapRightIso_unitIso_hom_app_left, CategoryTheory.SimplicialObject.Augmented.const_obj_left, CategoryTheory.WithInitial.equivComma_functor_obj_left, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left_fst, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceInverse_obj_hom, CategoryTheory.CostructuredArrow.toStructuredArrow_obj, unopFunctor_map, CategoryTheory.Arrow.isIso_of_isIso, CategoryTheory.Over.tensorHom_left_fst_assoc, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_snd_assoc, CategoryTheory.forgetAdjToOver.homEquiv_symm, AlgebraicGeometry.Scheme.Cover.overEquiv_generate_toPresieveOver_eq_ofArrows, CategoryTheory.OverPresheafAux.restrictedYonedaObj_obj, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.functor_obj_hom, CategoryTheory.Over.prodLeftIsoPullback_inv_fst_assoc, CategoryTheory.Abelian.im_obj, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_hom_left, CategoryTheory.SmallObject.SuccStruct.toSuccArrow_left, CategoryTheory.MorphismProperty.Comma.comp_left, CategoryTheory.Functor.RightExtension.mk_left, CategoryTheory.Over.postAdjunctionRight_unit_app, CategoryTheory.CostructuredArrow.mapNatIso_functor_obj_left, CategoryTheory.SmallObject.iterationFunctorMapSuccAppArrowIso_hom_left, CategoryTheory.Over.id_left, CategoryTheory.ChosenPullbacksAlong.Over.leftUnitor_hom_left, CategoryTheory.OverPresheafAux.restrictedYonedaObjMap₁_app, CategoryTheory.Arrow.iso_w, CategoryTheory.CosimplicialObject.augment_left, CategoryTheory.MorphismProperty.Under.mk_left, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_pullback_obj, CategoryTheory.Arrow.comp_left_assoc, CategoryTheory.Over.postComp_hom_app_left, CategoryTheory.Over.whiskerLeft_left_fst, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_mapPullbackAdj_counit_app, CategoryTheory.SmallObject.πFunctorObj_eq, CategoryTheory.MonoOver.inf_map_app, CategoryTheory.TwoSquare.costructuredArrowDownwardsPrecomp_map, CategoryTheory.SmallObject.objMap_comp, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceFunctor_obj_left, CategoryTheory.Functor.LeftExtension.postcompose₂_map_left, CategoryTheory.ChosenPullbacksAlong.isoInv_mapPullbackAdj_counit_app_left, mapLeftIso_counitIso_inv_app_left, CategoryTheory.Over.post_obj, CategoryTheory.MonoOver.mkArrowIso_inv_hom_left, CategoryTheory.Arrow.inv_left_hom_right, CategoryTheory.Limits.Cone.equivCostructuredArrow_counitIso, CategoryTheory.WithTerminal.mkCommaObject_left_obj, CategoryTheory.Functor.RightExtension.postcompose₂_obj_hom_app, CategoryTheory.ObjectProperty.ColimitOfShape.toCostructuredArrow_map, mapRightIso_counitIso_hom_app_left, CategoryTheory.Functor.RightExtension.precomp_obj_hom_app, CategoryTheory.StructuredArrow.commaMapEquivalenceCounitIso_hom_app_right_right, mapRightId_hom_app_left, CategoryTheory.Pseudofunctor.isPrestackFor_iff, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceFunctor_map_left, CategoryTheory.Functor.RightExtension.precomp_map_right, CategoryTheory.ChosenPullbacksAlong.Over.lift_left, CategoryTheory.Square.fromArrowArrowFunctor_obj_f₁₂, CategoryTheory.Over.mapId_hom_app_left, mapLeftEq_inv_app_left, CategoryTheory.Square.toArrowArrowFunctor_map_left_left, CategoryTheory.Limits.kernel_map_comp_kernelSubobjectIso_inv, CategoryTheory.Abelian.coimageImageComparisonFunctor_map, CategoryTheory.MonoOver.w_assoc, CategoryTheory.CostructuredArrow.map_map_left, CategoryTheory.MorphismProperty.over_iff, CategoryTheory.CostructuredArrow.map₂_map_left, CategoryTheory.SimplicialObject.Augmented.ExtraDegeneracy.s'_comp_ε_assoc, CategoryTheory.WithInitial.equivComma_inverse_obj_obj, CategoryTheory.Square.fromArrowArrowFunctor'_obj_X₁, CategoryTheory.Over.isPullback_of_binaryFan_isLimit, CategoryTheory.MorphismProperty.commaObj_iff, CategoryTheory.Pseudofunctor.IsStackFor.isEquivalence, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_hom_left_comp_assoc, AlgebraicGeometry.Scheme.Cover.pullbackCoverOverProp_X, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceFunctor_obj_right, CategoryTheory.Over.whiskerLeft_left_fst_assoc, CategoryTheory.Functor.RightExtension.postcompose₂ObjMkIso_inv_left_app, CategoryTheory.CostructuredArrow.preEquivalence.inverse_obj_left_left, CategoryTheory.MonoOver.pullback_obj_left, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.functor_obj_left_left, CategoryTheory.Under.pushout_obj, CategoryTheory.MorphismProperty.Over.w, CategoryTheory.SimplicialObject.Augmented.ExtraDegeneracy.s_comp_δ₀, CategoryTheory.Square.toArrowArrowFunctor_obj_right_left, CategoryTheory.Functor.RightExtension.postcompose₂_map_left_app, mapFst_hom_app, CategoryTheory.Over.coprodObj_obj, AlgebraicGeometry.isClosedImmersion_equalizer_ι_left, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.trans_app_left, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_fst_fst, CategoryTheory.Functor.RightExtension.postcompose₂_obj_left_obj, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_pullback_obj, CategoryTheory.CostructuredArrow.ofDiagEquivalence.functor_obj_left_right_as, CategoryTheory.StructuredArrow.preEquivalenceInverse_map_right_right, mapLeft_map_right, mapLeft_obj_left, CategoryTheory.CostructuredArrow.IsUniversal.fac, CategoryTheory.Subfunctor.equivalenceMonoOver_unitIso, CategoryTheory.Square.fromArrowArrowFunctor'_map_τ₄, CategoryTheory.Over.prodComparisonIso_pullback_Spec_inv_left_fst_fst', leftIso_hom, CategoryTheory.Functor.PushoutObjObj.ι_iso_of_iso_right_inv, CategoryTheory.MonoOver.subobjectMk_le_mk_of_hom, CategoryTheory.Over.whiskerLeft_left_snd_assoc, CategoryTheory.WithInitial.commaFromUnder_obj_left, CategoryTheory.ParametrizedAdjunction.inl_arrowHomEquiv_symm_apply_left_assoc, CategoryTheory.CostructuredArrow.grothendieckProj_obj, CategoryTheory.Over.equivalenceOfIsTerminal_unitIso, CategoryTheory.Square.toArrowArrowFunctor_obj_left_right, CategoryTheory.TwoSquare.EquivalenceJ.functor_obj, TopologicalSpace.Opens.coe_overEquivalence_inverse_obj_left, toPUnitIdEquiv_inverse_obj_left, CategoryTheory.Over.iteratedSliceEquiv_counitIso, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_inverse_obj, CategoryTheory.StructuredArrow.w, CategoryTheory.Functor.RightExtension.postcompose₂_map_right, CategoryTheory.Square.toArrowArrowFunctor'_map_left_left, CategoryTheory.Over.leftUnitor_inv_left_fst_assoc, CategoryTheory.Limits.Cone.fromCostructuredArrow_obj_pt, CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtensionAt.isoLimit_inv_π_assoc, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left, CategoryTheory.Sieve.forallYonedaIsSheaf_iff_colimit, CategoryTheory.Functor.PullbackObjObj.mapArrowRight_id, CategoryTheory.WithTerminal.liftFromOver_obj_map, CategoryTheory.Functor.LeftExtension.precomp_map_left, mapLeftIso_functor_obj_hom, CategoryTheory.Abelian.Pseudoelement.pseudoZero_aux, CategoryTheory.StructuredArrow.commaMapEquivalenceUnitIso_hom_app_right_right, CategoryTheory.CostructuredArrow.mapNatIso_counitIso_hom_app_left, CategoryTheory.Limits.MonoFactorisation.ofArrowIso_I, CategoryTheory.MorphismProperty.comma_iso_iff, CategoryTheory.StructuredArrow.pre_map_right, CategoryTheory.Arrow.hom_inv_id_left, CategoryTheory.StructuredArrow.w_prod_fst_assoc, CategoryTheory.WithInitial.coconeEquiv_inverse_map_hom_right, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.comp_homEquiv_symm, leftIso_inv, CategoryTheory.Functor.PushoutObjObj.mapArrowLeft_left, CategoryTheory.Functor.ranObjObjIsoLimit_hom_π, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryToUnit_mapPullbackAdj_counit_app, CategoryTheory.subterminalsEquivMonoOverTerminal_unitIso, CategoryTheory.overToCoalgebra_obj_A, CategoryTheory.SimplicialObject.Augmented.rightOp_hom_app, CategoryTheory.Over.postEquiv_unitIso, CategoryTheory.WithInitial.equivComma_counitIso_inv_app_left, CategoryTheory.Limits.ImageFactorisation.ofArrowIso_isImage, CategoryTheory.Pseudofunctor.IsStackFor.essSurj, CategoryTheory.Over.associator_inv_left_fst_snd_assoc, CategoryTheory.CosimplicialObject.Augmented.leftOp_left_obj, mapRight_map_left, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_mapPullbackAdj_counit_app, CategoryTheory.SimplicialObject.Augmented.rightOp_left, CategoryTheory.Arrow.inv_hom_id_left, CategoryTheory.Functor.LeftExtension.postcomp₁_map_left, CategoryTheory.Square.fromArrowArrowFunctor'_map_τ₂, CategoryTheory.Functor.RightExtension.coneAtFunctor_map_hom, CategoryTheory.CechNerveTerminalFrom.hasWidePullback, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_left_comp, CategoryTheory.Over.rightUnitor_hom_left, CategoryTheory.MorphismProperty.Over.pullback_map_left, opFunctorCompSnd_inv_app, CategoryTheory.Square.fromArrowArrowFunctor_map_τ₁, CategoryTheory.OrthogonalReflection.D₁.ι_comp_t, CategoryTheory.Limits.HasImageMaps.has_image_map, CategoryTheory.Over.sections_map, CategoryTheory.Functor.RightExtension.coneAtWhiskerRightIso_hom_hom, mapRightIso_inverse_obj_hom, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceInverse_obj_left_right, CategoryTheory.MonoOver.commSqOfHasStrongEpiMonoFactorisation, CategoryTheory.rightAdjointOfCostructuredArrowTerminalsAux_symm_apply, CategoryTheory.StructuredArrow.mapIso_inverse_map_right, CategoryTheory.Over.μ_pullback_left_snd, CategoryTheory.Functor.PushoutObjObj.mapArrowLeft_right, CategoryTheory.Over.iteratedSliceBackward_obj, CategoryTheory.PreGaloisCategory.autEmbedding_range, CategoryTheory.subterminalsEquivMonoOverTerminal_counitIso, CategoryTheory.CostructuredArrow.homMk'_comp, id_left, CategoryTheory.CostructuredArrow.ofDiagEquivalence.inverse_map_left, CategoryTheory.WithTerminal.coneEquiv_unitIso_inv_app_hom_left, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_left_π, CategoryTheory.Over.map_obj_left, CategoryTheory.Over.epi_left_of_epi, CategoryTheory.SimplicialObject.Augmented.toArrow_obj_hom, CategoryTheory.CostructuredArrow.mapCompιCompGrothendieckProj_hom_app, preLeft_map_left, CategoryTheory.Sieve.overEquiv_symm_top, CategoryTheory.OrthogonalReflection.D₂.multispanIndex_fst, CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtensionAt.isoLimit_hom_π, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceFunctor_obj_left, CategoryTheory.Functor.PushoutObjObj.mapArrowLeft_comp_assoc, CategoryTheory.CostructuredArrow.eqToHom_left, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_fst, CategoryTheory.CostructuredArrow.mapNatIso_functor_map_left, CategoryTheory.instHomIsOverLeftDiscretePUnit, mapRightIso_unitIso_inv_app_left, CategoryTheory.Over.braiding_hom_left, CategoryTheory.MonoOver.instMonoHomDiscretePUnitObjOverForget, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_snd, CategoryTheory.ChosenPullbacksAlong.isoInv_pullback_obj_hom, CategoryTheory.CostructuredArrow.ιCompGrothendieckPrecompFunctorToCommaCompFst_hom_app, CategoryTheory.ChosenPullbacksAlong.iso_mapPullbackAdj_counit_app, CategoryTheory.MorphismProperty.Over.pullback_obj_hom, CategoryTheory.Functor.LeibnizAdjunction.adj_unit_app_right, equivProd_inverse_obj_left, CategoryTheory.StructuredArrow.projectSubobject_factors, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left_snd, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_snd_snd, CategoryTheory.overToCoalgebra_obj_a, CategoryTheory.MorphismProperty.Over.mapComp_inv_app_left, CategoryTheory.FunctorToTypes.mem_fromOverSubfunctor_iff, CategoryTheory.Over.μ_pullback_left_fst_fst, CategoryTheory.StructuredArrow.ofDiagEquivalence.inverse_obj_left_as, CategoryTheory.Over.iteratedSliceForward_map, CategoryTheory.simplicialToCosimplicialAugmented_map_right, CategoryTheory.MorphismProperty.underObj_iff, CategoryTheory.MonoOver.inf_obj, CategoryTheory.CostructuredArrow.pre_map_right, CategoryTheory.CosimplicialObject.Augmented.leftOp_hom_app, CategoryTheory.Square.fromArrowArrowFunctor'_map_τ₁, CategoryTheory.WithInitial.mkCommaObject_left, CategoryTheory.SmallObject.ιFunctorObj_naturality_assoc, CategoryTheory.StructuredArrow.mapNatIso_functor_obj_left, CategoryTheory.StructuredArrow.commaMapEquivalenceUnitIso_hom_app_right_left, CategoryTheory.MorphismProperty.Under.w_assoc, CategoryTheory.Arrow.square_to_iso_invert, CategoryTheory.MonoOver.top_left, CategoryTheory.Over.tensorUnit_left, CategoryTheory.StructuredArrow.preEquivalenceFunctor_map_right, CategoryTheory.toOverIteratedSliceForwardIsoPullback_inv_app_left, CategoryTheory.Over.hom_left_inv_left_assoc, CategoryTheory.Arrow.mk_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_hom_app_right_app, CategoryTheory.CategoryOfElements.costructuredArrowYonedaEquivalenceInverseπ_inv_app, CategoryTheory.StructuredArrow.preEquivalenceInverse_obj_hom_right, CategoryTheory.Functor.PullbackObjObj.mapArrowRight_left, CategoryTheory.ChosenPullbacksAlong.iso_pullback_map, CategoryTheory.Limits.image_map_comp_imageSubobjectIso_inv, CategoryTheory.Under.opEquivOpOver_inverse_obj, Types.monoOverEquivalenceSet_unitIso, CategoryTheory.TwoSquare.EquivalenceJ.functor_map, CategoryTheory.CostructuredArrow.costructuredArrowToOverEquivalence.inverse_obj, CategoryTheory.Over.iteratedSliceEquiv_inverse, CategoryTheory.MorphismProperty.IsCardinalForSmallObjectArgument.preservesColimit, CategoryTheory.StructuredArrow.mapIso_inverse_obj_left, TopCat.Presheaf.generateEquivalenceOpensLe_inverse'_obj_obj_left, CategoryTheory.MorphismProperty.instHasPullbackSndHomDiscretePUnitOfHasPullbacksAlongOfIsStableUnderBaseChangeAlong, CategoryTheory.cosimplicialToSimplicialAugmented_map, AlgebraicGeometry.Scheme.kerFunctor_obj, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_hom_app_comp_fst_assoc, mapRightEq_hom_app_left, CategoryTheory.SmallObject.functor_obj, CategoryTheory.StructuredArrow.commaMapEquivalenceUnitIso_inv_app_right_left, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.ι_isoColimit_inv, CategoryTheory.StructuredArrow.mapIso_functor_map_right, coneOfPreserves_pt_left, CategoryTheory.Under.costar_map_left, CategoryTheory.Over.whiskerRight_left_fst_assoc, post_map_right, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_left_map, CategoryTheory.WithTerminal.equivComma_inverse_map_app, CategoryTheory.Functor.PullbackObjObj.mapArrowLeft_right, CategoryTheory.Over.tensorHom_left_snd, CategoryTheory.WithInitial.ofCommaObject_map, CategoryTheory.Limits.Cone.overPost_π_app, CategoryTheory.Under.opEquivOpOver_counitIso, CategoryTheory.StructuredArrow.toUnder_map_left, CategoryTheory.StructuredArrow.w_prod_snd_assoc, CategoryTheory.WithTerminal.equivComma_inverse_obj_map, CategoryTheory.CostructuredArrow.preEquivalence.inverse_obj_hom_left, CategoryTheory.Functor.mapArrowFunctor_map_app_left, CategoryTheory.CostructuredArrow.preEquivalence.functor_map_left, CategoryTheory.Functor.RightExtension.postcomp₁_obj_hom_app, CategoryTheory.SmallObject.ιObj_naturality_assoc, CategoryTheory.Subobject.representative_coe, CategoryTheory.Square.fromArrowArrowFunctor_map_τ₂, CategoryTheory.Functor.ι_leftKanExtensionObjIsoColimit_hom, CategoryTheory.RetractArrow.unop_i_right, CategoryTheory.Limits.ImageMap.map_ι_assoc, CategoryTheory.Limits.kernel_map_comp_kernelSubobjectIso_inv_assoc, coconeOfPreserves_pt_left, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.inverse_obj_left_right_as, CategoryTheory.Square.toArrowArrowFunctor_map_left_right, CategoryTheory.WithTerminal.liftFromOver_map_app, CategoryTheory.StructuredArrow.preEquivalenceInverse_obj_left_as, CategoryTheory.Sieve.overEquiv_generate, CategoryTheory.Bicategory.LeftLift.ofIdComp_left_as, CategoryTheory.Arrow.left_hom_inv_right, CategoryTheory.Subobject.inf_eq_map_pullback, CategoryTheory.Over.postMap_app, instIsIsoLeft, CategoryTheory.Square.toArrowArrowFunctor'_obj_left_left, CategoryTheory.Functor.PushoutObjObj.mapArrowRight_comp, CategoryTheory.CostructuredArrow.preEquivalence.inverse_obj_right_as, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorToComma_map_right, CategoryTheory.Over.ConstructProducts.conesEquivInverseObj_π_app, CategoryTheory.RetractArrow.instIsSplitEpiLeftRArrow, CategoryTheory.Functor.LeftExtension.coconeAt_ι_app, equivProd_functor_map, CategoryTheory.Presheaf.isLimit_iff_isSheafFor, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_inv_app_comp_fst_assoc, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.functor_obj_right_left_as, CategoryTheory.Over.lift_left, CategoryTheory.Under.postAdjunctionRight_counit_app_right, CategoryTheory.Functor.LeftExtension.mk_left_as, CategoryTheory.TwoSquare.EquivalenceJ.inverse_obj, AlgebraicGeometry.Scheme.restrictFunctor_obj_left, mapLeftIso_inverse_map_left, CategoryTheory.MonoOver.congr_counitIso, CategoryTheory.Arrow.w_assoc, CategoryTheory.CostructuredArrow.preEquivalence.inverse_map_left_left, preLeft_obj_left, CategoryTheory.SmallObject.functorialFactorizationData_p_app, CategoryTheory.Over.opEquivOpUnder_functor_map, mapLeftComp_hom_app_left, CategoryTheory.Functor.PushoutObjObj.mapArrowRight_right, CategoryTheory.Functor.LeftExtension.precomp₂_map_left, CategoryTheory.OverPresheafAux.counitForward_counitBackward, CategoryTheory.Limits.multispanIndexCoend_fst, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryToUnit_pullback_map, CategoryTheory.StructuredArrow.mapIso_inverse_map_left, mapLeft_obj_hom, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_hom_app_comp_fst, TopCat.Presheaf.generateEquivalenceOpensLe_functor'_map, CategoryTheory.CostructuredArrow.ιCompGrothendieckProj_hom_app, CategoryTheory.CostructuredArrow.pre_map_left, CategoryTheory.SmallObject.iterationFunctorMapSuccAppArrowIso_hom_right_right_comp, HomotopicalAlgebra.weakEquivalences_over_iff, CategoryTheory.ChosenPullbacksAlong.Over.fst_eq_fst', CategoryTheory.CostructuredArrow.mapNatIso_functor_map_right, CategoryTheory.WithTerminal.coneEquiv_functor_obj_pt, CategoryTheory.Under.opEquivOpOver_functor_map, CategoryTheory.CostructuredArrow.mapIso_inverse_obj_hom, CategoryTheory.CostructuredArrow.projectQuotient_factors, CategoryTheory.Functor.essImage_overPost, CategoryTheory.WithTerminal.commaFromOver_obj_left, TopologicalSpace.Opens.overEquivalence_counitIso_hom_app, CategoryTheory.Over.fst_left, CategoryTheory.Over.prodLeftIsoPullback_hom_fst, CategoryTheory.Over.associator_hom_left_fst_assoc, equivProd_unitIso_inv_app_left, CategoryTheory.Limits.pullbackConeEquivBinaryFan_unitIso, CategoryTheory.SmallObject.preservesColimit, CategoryTheory.Over.isMonHom_pullbackFst_id_right, CategoryTheory.Over.pullback_obj_hom, CategoryTheory.Over.forgetAdjStar_unit_app_left, unopFunctorCompSnd_hom_app, HomotopicalAlgebra.instWeakEquivalenceLeftDiscretePUnitOfOver, CategoryTheory.Pseudofunctor.isPrestackFor_iff_isSheafFor', preLeft_map_right, CategoryTheory.Functor.leibnizPullback_map_app, CategoryTheory.CostructuredArrow.epi_iff_epi_left, CategoryTheory.StructuredArrow.toCostructuredArrow'_map, CategoryTheory.Over.tensorObj_left, CategoryTheory.RetractArrow.i_w_assoc, CategoryTheory.CostructuredArrow.preEquivalence.inverse_obj_left_right_as, Types.monoOverEquivalenceSet_counitIso, CategoryTheory.CostructuredArrow.unop_left_comp_underlyingIso_hom_unop, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.pullbackGluedIso_inv_snd, CategoryTheory.instIsCocontinuousOverLeftDiscretePUnitIteratedSliceForwardOver, CategoryTheory.CostructuredArrow.mapIso_inverse_map_right, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.pullbackGluedIso_inv_fst, CategoryTheory.StructuredArrow.toCostructuredArrow'_obj, CategoryTheory.Functor.PushoutObjObj.mapArrowLeft_comp, CategoryTheory.Abelian.app_hom, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceInverse_obj_left_as, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.inverse_obj_left_left, CategoryTheory.SmallObject.hasColimitsOfShape_discrete, post_obj_hom, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_fst_snd', CategoryTheory.SmallObject.πObj_naturality, CategoryTheory.Functor.PullbackObjObj.π_iso_of_iso_left_hom, CategoryTheory.instIsDenseSubsiteOverLeftDiscretePUnitOverInverseIteratedSliceEquiv, CategoryTheory.Over.coprod_map_app, CategoryTheory.Functor.ι_leftKanExtensionObjIsoColimit_hom_assoc, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.functor_obj, CategoryTheory.CostructuredArrow.mapIso_inverse_map_left, CategoryTheory.StructuredArrow.IsUniversal.fac_assoc, CategoryTheory.Arrow.equivSigma_apply_snd_fst, CategoryTheory.StructuredArrow.mapNatIso_inverse_map_left, CategoryTheory.Presheaf.subsingleton_iff_isSeparatedFor, CategoryTheory.WithInitial.ofCommaMorphism_app, CategoryTheory.CostructuredArrow.map₂_obj_hom, CategoryTheory.ChosenPullbacksAlong.Over.leftUnitor_inv_left_snd_assoc, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_inv_left_fst_assoc, CategoryTheory.CosimplicialObject.Augmented.const_obj_left, TopCat.Presheaf.generateEquivalenceOpensLe_inverse'_map, CategoryTheory.Functor.PushoutObjObj.ι_iso_of_iso_left_hom, CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtensionAt.isoLimit_hom_π_assoc, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_inverse_map, CategoryTheory.CostructuredArrow.map₂_obj_left, CategoryTheory.TwoSquare.costructuredArrowRightwards_obj, AlgebraicGeometry.Scheme.mem_toGrothendieck_smallPretopology, colimitAuxiliaryCocone_ι_app, CategoryTheory.Square.toArrowArrowFunctor'_obj_right_left, CategoryTheory.RetractArrow.instIsSplitMonoLeftIArrow, CategoryTheory.MorphismProperty.Over.mapId_hom_app_left, mapRightIso_inverse_obj_left, CategoryTheory.StructuredArrow.IsUniversal.fac, CategoryTheory.Square.fromArrowArrowFunctor'_obj_f₂₄, CategoryTheory.CosimplicialObject.comp_left, CategoryTheory.StructuredArrow.ofDiagEquivalence.functor_obj_left_as, CategoryTheory.MorphismProperty.Over.pullbackComp_left_fst_fst, CategoryTheory.OverPresheafAux.counitAuxAux_hom, ext_iff, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceInverse_obj_hom, CategoryTheory.Limits.kernelSubobjectMap_arrow, CategoryTheory.Over.associator_hom_left_snd_snd, CategoryTheory.Over.associator_inv_left_snd_assoc, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_obj_map, CategoryTheory.Over.coprodObj_map, CategoryTheory.MorphismProperty.arrow_iso_iff, CategoryTheory.Functor.leibnizPullback_obj_obj, CategoryTheory.StructuredArrow.commaMapEquivalenceCounitIso_inv_app_left_right, mapRightIso_inverse_map_left, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_inv_left_fst, CategoryTheory.Under.w_assoc, CategoryTheory.Limits.image.factor_map, CategoryTheory.StructuredArrow.w_assoc, CategoryTheory.Arrow.hom_inv_id_left_assoc, CategoryTheory.StructuredArrow.mapNatIso_functor_map_left, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_inv_app_comp_snd_assoc, CategoryTheory.CosimplicialObject.Augmented.point_obj, CategoryTheory.Under.opEquivOpOver_inverse_map, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_obj_right, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_functor_map_right, CategoryTheory.Over.iteratedSliceForward_obj, CategoryTheory.Functor.essImage.of_overPost, CategoryTheory.Functor.RightExtension.postcompose₂ObjMkIso_hom_left_app, CategoryTheory.CostructuredArrow.projectQuotient_mk, CategoryTheory.CostructuredArrow.preEquivalence.functor_obj_left, CategoryTheory.MorphismProperty.Comma.id_left, CategoryTheory.CostructuredArrow.toStructuredArrow_map, CategoryTheory.Over.whiskerLeft_left_snd, CategoryTheory.Functor.leibnizPushout_map_app, CategoryTheory.Over.w_assoc, CategoryTheory.OverPresheafAux.counitForward_val_fst, mapRight_map_right, CategoryTheory.Square.toArrowArrowFunctor'_obj_left_right, CategoryTheory.CostructuredArrow.IsUniversal.fac_assoc, CategoryTheory.Pseudofunctor.IsPrestackFor.nonempty_fullyFaithful, mapFst_inv_app, CategoryTheory.Subfunctor.equivalenceMonoOver_counitIso, CategoryTheory.Square.toArrowArrowFunctor_obj_left_hom, CategoryTheory.Abelian.coimIsoIm_hom_app, CategoryTheory.Limits.diagonal_pullback_fst, CategoryTheory.Bicategory.RightLift.w, CategoryTheory.Over.iteratedSliceForwardNaturalityIso_inv_app, CategoryTheory.CategoryOfElements.fromCostructuredArrow_obj_fst, CategoryTheory.StructuredArrow.pre_obj_left, CategoryTheory.Under.w, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_fst_assoc, CategoryTheory.CostructuredArrow.costructuredArrowToOverEquivalence.inverse_map, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_left_left_as, CategoryTheory.CostructuredArrow.mapIso_counitIso_inv_app_left, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_left_obj, CategoryTheory.MorphismProperty.Over.pullbackCongr_hom_app_left_fst_assoc, CategoryTheory.Square.fromArrowArrowFunctor'_obj_f₁₂, CategoryTheory.MonoOver.mono_obj_hom, CategoryTheory.Sieve.overEquiv_iff, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left_snd, mapLeftIso_functor_map_right, CategoryTheory.Over.opEquivOpUnder_functor_obj, CategoryTheory.OrthogonalReflection.D₂.multispanIndex_snd, CategoryTheory.Limits.KernelFork.mapOfIsLimit_ι, HomotopicalAlgebra.fibrations_over_iff, CategoryTheory.StructuredArrow.commaMapEquivalenceCounitIso_inv_app_right_right, CategoryTheory.Functor.costructuredArrowMapCocone_ι_app, CategoryTheory.Over.iteratedSliceForwardIsoPost_hom_app, equivProd_functor_obj, CategoryTheory.Bicategory.RightExtension.w, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_inv_app_right_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_inv_app_left, CategoryTheory.Over.tensorObj_hom, CategoryTheory.StructuredArrow.toCostructuredArrow_obj, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.comp_homEquiv_symm_assoc, map_obj_left, CategoryTheory.Over.postAdjunctionLeft_counit_app_left, CategoryTheory.CostructuredArrow.preEquivalence.inverse_obj_left_hom, mapRightComp_inv_app_left, CategoryTheory.Limits.pullbackConeEquivBinaryFan_inverse_map_hom, CategoryTheory.Arrow.iso_w', TopCat.Presheaf.generateEquivalenceOpensLe_inverse, CategoryTheory.Over.mapComp_inv_app_left, CategoryTheory.CosimplicialObject.id_left, CategoryTheory.Limits.ker_map, CategoryTheory.Over.mono_left_of_mono, CategoryTheory.MorphismProperty.costructuredArrowObj_iff, CategoryTheory.MorphismProperty.Over.map_obj_hom, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_obj_hom, CategoryTheory.CostructuredArrow.IsUniversal.hom_desc, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_fst_fst_assoc, CategoryTheory.MonoOver.isIso_iff_isIso_left, CategoryTheory.Abelian.coimIsoIm_inv_app, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_snd_snd_assoc, CategoryTheory.MonoOver.instIsIsoLeftDiscretePUnitHomFullSubcategoryOverIsMono, CategoryTheory.Functor.RightExtension.precomp_obj_left, CategoryTheory.WithTerminal.coneEquiv_functor_map_hom, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left, CategoryTheory.Square.fromArrowArrowFunctor_map_τ₄, CategoryTheory.Presheaf.isSheaf_iff_isLimit_pretopology, CategoryTheory.CostructuredArrow.mapIso_inverse_obj_left, CategoryTheory.OverPresheafAux.counitForward_naturality₂, CommRingCat.pushout_inr_tensorProdObjIsoPushoutObj_inv_right
leftIso 📖CompOp
2 mathmath: leftIso_hom, leftIso_inv
map 📖CompOp
31 mathmath: CategoryTheory.StructuredArrow.commaMapEquivalenceInverse_map, map_obj_hom, map_final, CategoryTheory.StructuredArrow.commaMapEquivalenceCounitIso_hom_app_left_right, CategoryTheory.StructuredArrow.commaMapEquivalenceUnitIso_inv_app_right_right, map_map_right, mapSnd_inv_app, faithful_map, map_obj_right, map_map_left, isEquivalenceMap, CategoryTheory.StructuredArrow.commaMapEquivalenceInverse_obj, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_obj_left, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_map_left, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_map_right, full_map, CategoryTheory.StructuredArrow.commaMapEquivalenceCounitIso_hom_app_right_right, mapFst_hom_app, CategoryTheory.StructuredArrow.commaMapEquivalenceUnitIso_hom_app_right_right, essSurj_map, mapSnd_hom_app, CategoryTheory.StructuredArrow.commaMapEquivalenceUnitIso_hom_app_right_left, CategoryTheory.StructuredArrow.commaMapEquivalenceUnitIso_inv_app_right_left, map_fst, CategoryTheory.StructuredArrow.commaMapEquivalenceCounitIso_inv_app_left_right, map_snd, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_obj_right, mapFst_inv_app, CategoryTheory.StructuredArrow.commaMapEquivalenceCounitIso_inv_app_right_right, map_obj_left, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_obj_hom
mapFst 📖CompOp
2 mathmath: mapFst_hom_app, mapFst_inv_app
mapLeft 📖CompOp
38 mathmath: CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_hom_right, mapLeftEq_inv_app_right, mapLeft_map_left, mapLeftIso_unitIso_inv_app_left, mapLeftEq_hom_app_left, mapLeftIso_counitIso_inv_app_right, CategoryTheory.CostructuredArrow.mapNatIso_unitIso_inv_app_left, CategoryTheory.TwoSquare.costructuredArrowRightwards_map, mapLeftId_hom_app_right, mapLeftComp_inv_app_left, mapLeftIso_unitIso_inv_app_right, CategoryTheory.CostructuredArrow.mapNatIso_counitIso_inv_app_left, mapLeftIso_unitIso_hom_app_left, mapLeftComp_inv_app_right, mapLeftIso_counitIso_hom_app_left, CategoryTheory.CostructuredArrow.mapNatIso_unitIso_hom_app_left, mapLeftEq_hom_app_right, CategoryTheory.StructuredArrow.mapIso_unitIso_inv_app_right, mapLeft_obj_right, mapLeftId_hom_app_left, mapLeftId_inv_app_left, mapLeftIso_unitIso_hom_app_right, mapLeftIso_counitIso_inv_app_left, mapLeftEq_inv_app_left, mapLeftIso_counitIso_hom_app_right, mapLeft_map_right, mapLeft_obj_left, CategoryTheory.TwoSquare.EquivalenceJ.functor_obj, CategoryTheory.StructuredArrow.mapIso_unitIso_hom_app_right, CategoryTheory.CostructuredArrow.mapNatIso_counitIso_hom_app_left, CategoryTheory.TwoSquare.EquivalenceJ.functor_map, mapLeftComp_hom_app_left, mapLeft_obj_hom, CategoryTheory.TwoSquare.costructuredArrowRightwards_obj, mapLeftId_inv_app_right, mapLeftComp_hom_app_right, CategoryTheory.StructuredArrow.mapIso_counitIso_hom_app_right, CategoryTheory.StructuredArrow.mapIso_counitIso_inv_app_right
mapLeftComp 📖CompOp
4 mathmath: mapLeftComp_inv_app_left, mapLeftComp_inv_app_right, mapLeftComp_hom_app_left, mapLeftComp_hom_app_right
mapLeftEq 📖CompOp
4 mathmath: mapLeftEq_inv_app_right, mapLeftEq_hom_app_left, mapLeftEq_hom_app_right, mapLeftEq_inv_app_left
mapLeftId 📖CompOp
4 mathmath: mapLeftId_hom_app_right, mapLeftId_hom_app_left, mapLeftId_inv_app_left, mapLeftId_inv_app_right
mapLeftIso 📖CompOp
18 mathmath: mapLeftIso_inverse_map_right, mapLeftIso_functor_map_left, mapLeftIso_unitIso_inv_app_left, mapLeftIso_counitIso_inv_app_right, mapLeftIso_inverse_obj_left, mapLeftIso_inverse_obj_right, mapLeftIso_functor_obj_left, mapLeftIso_unitIso_inv_app_right, mapLeftIso_unitIso_hom_app_left, mapLeftIso_counitIso_hom_app_left, mapLeftIso_inverse_obj_hom, mapLeftIso_unitIso_hom_app_right, mapLeftIso_counitIso_inv_app_left, mapLeftIso_counitIso_hom_app_right, mapLeftIso_functor_obj_hom, mapLeftIso_inverse_map_left, mapLeftIso_functor_obj_right, mapLeftIso_functor_map_right
mapRight 📖CompOp
41 mathmath: mapRightIso_counitIso_inv_app_left, CategoryTheory.TwoSquare.EquivalenceJ.inverse_map, mapRightEq_hom_app_right, mapRightIso_counitIso_inv_app_right, mapRight_obj_hom, CategoryTheory.CostructuredArrow.mapIso_unitIso_hom_app_left, mapRightIso_unitIso_inv_app_right, mapRight_obj_left, mapRightId_inv_app_left, CategoryTheory.CostructuredArrow.mapIso_unitIso_inv_app_left, mapRightComp_inv_app_right, CategoryTheory.StructuredArrow.mapNatIso_unitIso_hom_app_right, CategoryTheory.CostructuredArrow.mapIso_counitIso_hom_app_left, mapRightEq_inv_app_left, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_counitIso_inv_app_right_app, mapRightComp_hom_app_left, mapRightIso_counitIso_hom_app_right, mapRightIso_unitIso_hom_app_left, CategoryTheory.StructuredArrow.mapNatIso_counitIso_hom_app_right, mapRightId_hom_app_right, mapRightIso_counitIso_hom_app_left, mapRightId_hom_app_left, CategoryTheory.StructuredArrow.mapNatIso_unitIso_inv_app_right, mapRight_map_left, mapRightId_inv_app_right, mapRightComp_hom_app_right, CategoryTheory.TwoSquare.structuredArrowDownwards_map, CategoryTheory.TwoSquare.structuredArrowDownwards_obj, mapRightIso_unitIso_inv_app_left, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_unitIso_hom_app_right_app, mapRightEq_hom_app_left, mapRightEq_inv_app_right, CategoryTheory.TwoSquare.EquivalenceJ.inverse_obj, mapRight_obj_right, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_counitIso_hom_app_right_app, CategoryTheory.StructuredArrow.mapNatIso_counitIso_inv_app_right, mapRight_map_right, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_unitIso_inv_app_right_app, CategoryTheory.CostructuredArrow.mapIso_counitIso_inv_app_left, mapRightComp_inv_app_left, mapRightIso_unitIso_hom_app_right
mapRightComp 📖CompOp
4 mathmath: mapRightComp_inv_app_right, mapRightComp_hom_app_left, mapRightComp_hom_app_right, mapRightComp_inv_app_left
mapRightEq 📖CompOp
4 mathmath: mapRightEq_hom_app_right, mapRightEq_inv_app_left, mapRightEq_hom_app_left, mapRightEq_inv_app_right
mapRightId 📖CompOp
4 mathmath: mapRightId_inv_app_left, mapRightId_hom_app_right, mapRightId_hom_app_left, mapRightId_inv_app_right
mapRightIso 📖CompOp
18 mathmath: mapRightIso_counitIso_inv_app_left, mapRightIso_counitIso_inv_app_right, mapRightIso_functor_map_left, mapRightIso_inverse_map_right, mapRightIso_unitIso_inv_app_right, mapRightIso_functor_obj_right, mapRightIso_functor_obj_hom, mapRightIso_inverse_obj_right, mapRightIso_functor_map_right, mapRightIso_functor_obj_left, mapRightIso_counitIso_hom_app_right, mapRightIso_unitIso_hom_app_left, mapRightIso_counitIso_hom_app_left, mapRightIso_inverse_obj_hom, mapRightIso_unitIso_inv_app_left, mapRightIso_inverse_obj_left, mapRightIso_inverse_map_left, mapRightIso_unitIso_hom_app_right
mapSnd 📖CompOp
2 mathmath: mapSnd_inv_app, mapSnd_hom_app
natTrans 📖CompOp
1 mathmath: natTrans_app
opEquiv 📖CompOp
4 mathmath: opEquiv_counitIso, opEquiv_functor, opEquiv_unitIso, opEquiv_inverse
opFunctor 📖CompOp
9 mathmath: opFunctor_obj, opEquiv_counitIso, opFunctor_map, opFunctorCompSnd_hom_app, opFunctorCompFst_hom_app, opFunctorCompFst_inv_app, opEquiv_functor, opEquiv_unitIso, opFunctorCompSnd_inv_app
opFunctorCompFst 📖CompOp
2 mathmath: opFunctorCompFst_hom_app, opFunctorCompFst_inv_app
opFunctorCompSnd 📖CompOp
2 mathmath: opFunctorCompSnd_hom_app, opFunctorCompSnd_inv_app
post 📖CompOp
9 mathmath: instEssSurjCompPostOfFull, post_obj_right, instFaithfulCompPost, post_map_left, isEquivalence_post, post_obj_left, instFullCompPostOfFaithful, post_map_right, post_obj_hom
postIso 📖CompOp
preLeft 📖CompOp
13 mathmath: instFaithfulCompPreLeft, preLeft_obj_right, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceInverse_map_right_left, instFullCompPreLeft, isEquivalence_preLeft, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceInverse_map_left_left, instEssSurjCompPreLeft, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceInverse_map_right_right, preLeft_map_left, preLeft_obj_left, preLeft_map_right, preLeft_obj_hom, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceInverse_map_left_right
preLeftIso 📖CompOp
preRight 📖CompOp
9 mathmath: preRight_obj_left, preRight_map_left, preRight_map_right, preRight_obj_right, preRight_obj_hom, instFullCompPreRight, instFaithfulCompPreRight, isEquivalence_preRight, instEssSurjCompPreRight
preRightIso 📖CompOp
right 📖CompOp
1014 mathmath: CommRingCat.tensorProd_map_right, CategoryTheory.Over.associator_hom_left_snd_fst_assoc, CategoryTheory.CostructuredArrow.homMk'_id, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left_fst, CategoryTheory.Functor.LeftExtension.coconeAtFunctor_map_hom, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_hom_right, CategoryTheory.Over.prodLeftIsoPullback_hom_snd_assoc, CategoryTheory.LocalizerMorphism.IsRightDerivabilityStructure.Constructor.fromRightResolution_map, CategoryTheory.Limits.HasImage.of_arrow_iso, CategoryTheory.StructuredArrow.projectSubobject_mk, CategoryTheory.Over.μ_pullback_left_snd', CategoryTheory.WithTerminal.mkCommaObject_right, CategoryTheory.StructuredArrow.map_map_right, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceInverse_obj_right_left, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_snd_fst_assoc, CategoryTheory.Functor.leibnizPullback_obj_map, CategoryTheory.MorphismProperty.FunctorialFactorizationData.mapZ_p, CategoryTheory.WithInitial.equivComma_functor_obj_right_obj, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceFunctor_map_right, snd_obj, mapLeftEq_inv_app_right, mapLeftIso_inverse_map_right, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_functor_map_left, CategoryTheory.Functor.LeftExtension.precomp₂_obj_hom_app, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.inverse_obj_right_right, CategoryTheory.Limits.MonoFactorisation.ofArrowIso_e, opFunctor_obj, CategoryTheory.Limits.multicospanIndexEnd_fst, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left_fst, CategoryTheory.StructuredArrow.map_obj_right, CategoryTheory.CategoryOfElements.fromStructuredArrow_map, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_pullback_map, CategoryTheory.WithTerminal.equivComma_counitIso_hom_app_left_app, CategoryTheory.OverPresheafAux.unitAux_hom, CategoryTheory.CosimplicialObject.id_right_app, CategoryTheory.Over.iteratedSliceBackward_map, CategoryTheory.CostructuredArrow.ofDiagEquivalence.functor_map_left_left, CategoryTheory.Over.associator_inv_left_snd, CategoryTheory.Functor.mapArrow_obj, CategoryTheory.StructuredArrow.commaMapEquivalenceInverse_map, CategoryTheory.Under.postComp_inv_app_right, CategoryTheory.Bicategory.LeftExtension.w_assoc, map_obj_hom, CategoryTheory.CosimplicialObject.augment_right, CategoryTheory.StructuredArrow.ofDiagEquivalence.inverse_map_right, CategoryTheory.StructuredArrow.w_prod_fst, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_left_hom, CategoryTheory.SimplicialObject.comp_right, CategoryTheory.StructuredArrow.homMk'_comp, CategoryTheory.WithTerminal.equivComma_counitIso_inv_app_left_app, CategoryTheory.Under.forgetMapInitial_inv_app, CategoryTheory.Arrow.hom_inv_id_right_assoc, CategoryTheory.CostructuredArrow.w_assoc, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_inverse_map_app, CategoryTheory.MonoOver.isIso_left_iff_subobjectMk_eq, CategoryTheory.Functor.PullbackObjObj.mapArrowRight_right, CategoryTheory.Functor.PushoutObjObj.mapArrowRight_id, CategoryTheory.Functor.PullbackObjObj.mapArrowLeft_id, mapLeft_map_left, CategoryTheory.SmallObject.πObj_ιIteration_app_right, CategoryTheory.WithInitial.coconeEquiv_functor_obj_pt, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.inverse_obj_right_left_as, CategoryTheory.Under.epi_right_of_epi, CategoryTheory.CostructuredArrow.preEquivalence.functor_obj_right_as, CategoryTheory.Limits.IsImage.ofArrowIso_lift, CategoryTheory.StructuredArrow.mapIso_inverse_obj_hom, CategoryTheory.Under.postCongr_inv_app_right, CategoryTheory.Under.mono_right_of_mono, CategoryTheory.Over.whiskerLeft_left, CategoryTheory.CosimplicialObject.Augmented.leftOp_right, CategoryTheory.Limits.image.map_id, CategoryTheory.Bicategory.LeftExtension.ofCompId_right, CategoryTheory.MonoOver.isIso_iff_subobjectMk_eq, CategoryTheory.Functor.RightExtension.postcompose₂_obj_right, CategoryTheory.Functor.LeftExtension.postcomp₁_map_right_app, CategoryTheory.CostructuredArrow.IsUniversal.existsUnique, CategoryTheory.Functor.leftKanExtensionUnit_leftKanExtension_map_leftKanExtensionObjIsoColimit_hom, CategoryTheory.ParametrizedAdjunction.inr_arrowHomEquiv_symm_apply_left, CategoryTheory.CostructuredArrow.w_prod_fst, CategoryTheory.SimplicialObject.Augmented.toArrow_map_right, CategoryTheory.Square.fromArrowArrowFunctor_map_τ₃, CategoryTheory.StructuredArrow.map₂_obj_right, CommRingCat.mkUnder_ext_iff, CategoryTheory.StructuredArrow.commaMapEquivalenceCounitIso_hom_app_left_right, mapLeftIso_functor_map_left, CategoryTheory.CostructuredArrow.toOver_obj_right, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.pullbackGluedIso_inv_snd_assoc, CategoryTheory.Bicategory.LeftLift.w_assoc, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.isIso_hom_app, CategoryTheory.TwoSquare.EquivalenceJ.inverse_map, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_inverse_obj, CategoryTheory.StructuredArrow.commaMapEquivalenceUnitIso_inv_app_right_right, mapRightEq_hom_app_right, CategoryTheory.CostructuredArrow.eq_mk, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.isPullback, CategoryTheory.WithInitial.coconeEquiv_inverse_obj_pt_right, mapRightIso_counitIso_inv_app_right, CategoryTheory.MorphismProperty.Comma.comp_right, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_unitIso, CategoryTheory.StructuredArrow.map₂_map_right, CategoryTheory.Functor.PullbackObjObj.π_iso_of_iso_left_inv, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_right_as, CommRingCat.toAlgHom_comp, instIsIsoRight, CategoryTheory.StructuredArrow.preEquivalenceInverse_obj_right_hom, CategoryTheory.Limits.image.map_comp, CategoryTheory.ChosenPullbacksAlong.iso_mapPullbackAdj_unit_app, CategoryTheory.toOverPullbackIsoToOver_inv_app_left, CategoryTheory.Functor.ι_leftKanExtensionObjIsoColimit_inv, CategoryTheory.CostructuredArrow.w_prod_fst_assoc, CategoryTheory.WithInitial.ofCommaObject_obj, CategoryTheory.Functor.LeftExtension.precomp_map_right, CategoryTheory.WithTerminal.equivComma_inverse_obj_obj, CategoryTheory.StructuredArrow.ofDiagEquivalence.functor_obj_right_right, CategoryTheory.SimplicialObject.Augmented.w₀, CategoryTheory.Functor.RightExtension.coneAt_π_app, mapRightIso_functor_map_left, mapLeftIso_counitIso_inv_app_right, CategoryTheory.WithTerminal.equivComma_counitIso_hom_app_right, map_map_right, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_hom_app_comp_snd_assoc, CategoryTheory.CostructuredArrow.mapNatIso_inverse_map_right, CategoryTheory.Limits.Cocone.underPost_ι_app, CategoryTheory.Limits.multicospanIndexEnd_snd, CategoryTheory.leftAdjointOfStructuredArrowInitialsAux_apply, CategoryTheory.Over.braiding_inv_left, CategoryTheory.Functor.RightExtension.postcomp₁_map_right, CategoryTheory.Over.prodLeftIsoPullback_inv_snd, CategoryTheory.StructuredArrow.mapNatIso_functor_obj_right, CategoryTheory.leftAdjointOfStructuredArrowInitialsAux_symm_apply, CategoryTheory.Functor.LeibnizAdjunction.adj_unit_app_left, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_map_app, CategoryTheory.SimplicialObject.Augmented.toArrow_map_left, mapRight_obj_hom, CategoryTheory.MorphismProperty.FunctorialFactorizationData.functorCategory.Z_map_app, mapRightIso_inverse_map_right, CategoryTheory.SimplicialObject.Augmented.ExtraDegeneracy.s'_comp_ε, CategoryTheory.Limits.coker_map, CategoryTheory.StructuredArrow.eta_hom_right, CategoryTheory.Square.fromArrowArrowFunctor_obj_f₃₄, CategoryTheory.SmallObject.functorialFactorizationData_i_app, CategoryTheory.CostructuredArrow.prodFunctor_map, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_left_right, CategoryTheory.Abelian.coim_map, CategoryTheory.CostructuredArrow.map₂_obj_right, CategoryTheory.StructuredArrow.prodInverse_map, CategoryTheory.MorphismProperty.under_iff, CategoryTheory.StructuredArrow.eta_inv_right, CategoryTheory.Over.leftUnitor_hom_left, CategoryTheory.Functor.PullbackObjObj.mapArrowLeft_comp, CategoryTheory.WithTerminal.equivComma_functor_obj_right, CategoryTheory.MorphismProperty.Over.pullbackMapHomPullback_app, CategoryTheory.Over.tensorObj_ext_iff, mapRightIso_unitIso_inv_app_right, CategoryTheory.RetractArrow.i_w, CategoryTheory.CostructuredArrow.toOver_map_right, CategoryTheory.StructuredArrow.ofDiagEquivalence.inverse_obj_right, CategoryTheory.Functor.LeftExtension.precomp_obj_hom_app, CategoryTheory.WithTerminal.ofCommaObject_obj, CategoryTheory.Functor.LeibnizAdjunction.adj_counit_app_left, mapSnd_inv_app, CategoryTheory.StructuredArrow.eq_mk, fromProd_obj_right, TopCat.Presheaf.generateEquivalenceOpensLe_inverse'_obj_obj_right_as, mapRightIso_functor_obj_right, CategoryTheory.Limits.multicospanIndexEnd_right, CategoryTheory.NatTrans.instIsClosedUnderLimitsOfShapeOverFunctorEquifiberedHomDiscretePUnitOfHasCoproductsOfShapeHom, opFunctor_map, CategoryTheory.Limits.CokernelCofork.π_mapOfIsColimit, CategoryTheory.CostructuredArrow.commaToGrothendieckPrecompFunctor_map_fiber, CategoryTheory.ChosenPullbacksAlong.Over.tensorObj_ext_iff, CategoryTheory.OrthogonalReflection.D₁.ι_comp_t_assoc, CategoryTheory.CostructuredArrow.commaToGrothendieckPrecompFunctor_obj_fiber, CategoryTheory.Square.fromArrowArrowFunctor'_obj_X₂, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_snd, CategoryTheory.CostructuredArrow.homMk'_mk_id, CategoryTheory.Functor.LeftExtension.coconeAtWhiskerRightIso_inv_hom, CategoryTheory.WithInitial.equivComma_functor_obj_right_map, CategoryTheory.Functor.RightExtension.precomp_map_left, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left_snd_assoc, CategoryTheory.Limits.multicospanShapeEnd_snd, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtension.isLeftKanExtension, CategoryTheory.StructuredArrow.id_right, CategoryTheory.WithInitial.equivComma_counitIso_hom_app_right_app, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_mapPullbackAdj_unit_app, CategoryTheory.MonoOver.isIso_hom_left_iff_subobjectMk_eq, CategoryTheory.Under.pushout_map, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.functor_obj_right_as, CategoryTheory.StructuredArrow.preEquivalenceFunctor_obj_left_as, rightIso_hom, CategoryTheory.CosimplicialObject.Augmented.const_obj_right, CategoryTheory.Limits.image.map_ι, CategoryTheory.Abelian.Pseudoelement.pseudoZero_iff, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_inv_left_snd, CategoryTheory.CostructuredArrow.homMk'_right, CategoryTheory.Square.fromArrowArrowFunctor'_obj_X₃, CategoryTheory.Functor.ι_leftKanExtensionObjIsoColimit_inv_assoc, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_inverse_map_hom, CategoryTheory.StructuredArrow.preEquivalence_unitIso, CategoryTheory.CostructuredArrow.mapIso_inverse_obj_right, CategoryTheory.MorphismProperty.Over.pullbackCongr_hom_app_left_fst, CategoryTheory.Functor.PushoutObjObj.mapArrowRight_left, CategoryTheory.Over.whiskerRight_left_fst, CategoryTheory.MorphismProperty.FunctorialFactorizationData.functorCategory.Z_obj_map, CategoryTheory.CostructuredArrow.w_prod_snd_assoc, CategoryTheory.Over.postAdjunctionLeft_unit_app_left, CommRingCat.pushout_inr_tensorProdObjIsoPushoutObj_inv_right_assoc, CategoryTheory.MorphismProperty.Over.mapPullbackAdj_counit_app, comp_right, CategoryTheory.CostructuredArrow.costructuredArrowToOverEquivalence.functor_map, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.pullbackGluedIso_inv_fst_assoc, CategoryTheory.Functor.LeftExtension.postcompose₂_obj_right_map, CategoryTheory.Arrow.square_from_iso_invert, CategoryTheory.MonoOver.pullback_obj_arrow, CategoryTheory.Limits.multispanShapeCoend_snd, CategoryTheory.Functor.PullbackObjObj.π_iso_of_iso_right_hom, CategoryTheory.WithTerminal.commaFromOver_obj_right, CategoryTheory.Over.prodLeftIsoPullback_inv_fst, CategoryTheory.Functor.PushoutObjObj.mapArrowRight_comp_assoc, CategoryTheory.Abelian.im_map, CategoryTheory.SimplicialObject.Augmented.rightOpLeftOpIso_inv_right, CategoryTheory.StructuredArrow.map₂_map_left, CategoryTheory.Under.postAdjunctionRight_unit_app_right, CategoryTheory.Functor.PullbackObjObj.mapArrowRight_comp_assoc, CategoryTheory.Bicategory.LeftExtension.whiskering_map, CategoryTheory.Over.opEquivOpUnder_inverse_obj, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_inverse_obj_map, CategoryTheory.CostructuredArrow.mapIso_functor_map_left, CategoryTheory.StructuredArrow.prodFunctor_map, CategoryTheory.SimplicialObject.Augmented.toArrow_obj_right, CategoryTheory.Over.prodLeftIsoPullback_inv_snd_assoc, mapLeftIso_inverse_obj_right, CategoryTheory.ChosenPullbacksAlong.Over.tensorObj_hom, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_inverse_map_left, CategoryTheory.Pseudofunctor.presheafHom_obj, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_inverse_obj_obj, CategoryTheory.Over.mapPullbackAdj_counit_app, CategoryTheory.Over.iteratedSliceBackward_forget, CategoryTheory.Abelian.Pseudoelement.ModuleCat.eq_range_of_pseudoequal, mapLeftId_hom_app_right, post_obj_right, preRight_map_left, CategoryTheory.StructuredArrow.ofDiagEquivalence.inverse_obj_hom, CategoryTheory.StructuredArrow.mapNatIso_functor_obj_hom, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorToComma_obj_right, CategoryTheory.Under.map_obj_right, preLeft_obj_right, CategoryTheory.ChosenPullbacksAlong.Over.tensorObj_left, CategoryTheory.StructuredArrow.mapIso_inverse_obj_right, CategoryTheory.CostructuredArrow.commaToGrothendieckPrecompFunctor_map_base, CategoryTheory.WithInitial.mkCommaObject_right_obj, CategoryTheory.Under.post_obj, mapRightComp_inv_app_right, CategoryTheory.StructuredArrow.ofDiagEquivalence.functor_obj_right_hom, CategoryTheory.StructuredArrow.mapNatIso_inverse_map_right, CategoryTheory.CostructuredArrow.map_obj_right, CategoryTheory.CosimplicialObject.comp_right_app, CategoryTheory.Square.fromArrowArrowFunctor_obj_X₃, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_fst, CategoryTheory.Over.prodLeftIsoPullback_hom_snd, CategoryTheory.CostructuredArrow.mkPrecomp_right, CategoryTheory.StructuredArrow.IsUniversal.existsUnique, CategoryTheory.ChosenPullbacksAlong.isoInv_pullback_map_left, CategoryTheory.StructuredArrow.mapNatIso_functor_map_right, CategoryTheory.IsGrothendieckAbelian.exists_isIso_of_functor_from_monoOver, CategoryTheory.simplicialToCosimplicialAugmented_map_left, CategoryTheory.Over.whiskerRight_left_snd_assoc, CategoryTheory.Arrow.w_mk_right, CategoryTheory.Under.eqToHom_right, CategoryTheory.WithInitial.equivComma_counitIso_inv_app_right_app, CategoryTheory.ChosenPullbacksAlong.Over.snd_eq_snd', CategoryTheory.Over.associator_inv_left_fst_fst_assoc, CategoryTheory.Square.fromArrowArrowFunctor'_map_τ₃, CategoryTheory.Limits.ker.ι_app, CategoryTheory.Over.associator_hom_left_fst, CategoryTheory.SmallObject.functor_map, CategoryTheory.StructuredArrow.ofDiagEquivalence.functor_map_right_right, SSet.Augmented.stdSimplex_map_right, CategoryTheory.StructuredArrow.preEquivalence_inverse, CategoryTheory.Square.fromArrowArrowFunctor_obj_X₂, CategoryTheory.StructuredArrow.preEquivalence_functor, CategoryTheory.CostructuredArrow.toStructuredArrow'_obj, CategoryTheory.Abelian.Pseudoelement.pseudoApply_mk', CategoryTheory.StructuredArrow.homMk'_mk_comp, CategoryTheory.NatTrans.instIsClosedUnderColimitsOfShapeUnderFunctorCoequifiberedHomDiscretePUnitOfHasProductsOfShapeHom, CategoryTheory.Functor.LeftExtension.postcompose₂ObjMkIso_inv_right_app, CategoryTheory.Over.prodLeftIsoPullback_hom_fst_assoc, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left_snd_assoc, CategoryTheory.SmallObject.objMap_comp_assoc, CategoryTheory.Limits.ker_obj, CategoryTheory.SmallObject.functorialFactorizationData_Z_obj, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_snd_fst, CategoryTheory.SimplicialObject.Augmented.const_obj_right, CategoryTheory.MonoOver.image_map, CategoryTheory.Under.mapPushoutAdj_unit_app, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceFunctor_map_left, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_obj_obj, CategoryTheory.Limits.instHasImageHomMk, CategoryTheory.Limits.ImageMap.factor_map_assoc, CategoryTheory.Over.opEquivOpUnder_inverse_map, CategoryTheory.Under.post_map, CategoryTheory.ChosenPullbacksAlong.isoInv_mapPullbackAdj_unit_app_left, CategoryTheory.Square.toArrowArrowFunctor'_obj_right_right, CategoryTheory.StructuredArrow.mapNatIso_unitIso_hom_app_right, AlgebraicGeometry.opensDiagram_map, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left, map_obj_right, CategoryTheory.WithInitial.coconeEquiv_unitIso_hom_app_hom_right, CategoryTheory.Square.toArrowArrowFunctor_map_right_right, coneOfPreserves_pt_right, CategoryTheory.StructuredArrow.eqToHom_right, CategoryTheory.CosimplicialObject.Augmented.leftOp_left_map, CategoryTheory.Functor.leibnizPushout_obj_map, CategoryTheory.Functor.PushoutObjObj.mapArrowLeft_id, CategoryTheory.Functor.essImage_underPost, CategoryTheory.Over.tensorHom_left_snd_assoc, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.ι_isoColimit_hom, CategoryTheory.SmallObject.ε_app, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_inv_left_snd_assoc, CategoryTheory.Functor.LeftExtension.postcompose₂_map_right_app, CategoryTheory.Limits.kernelSubobjectIso_comp_kernel_map, CategoryTheory.Limits.image.map_homMk'_ι, CategoryTheory.Under.map_obj_hom, CategoryTheory.CommaMorphism.w_assoc, CommRingCat.Under.tensorProdEqualizer_ι, CategoryTheory.CostructuredArrow.map_map_right, AlgebraicGeometry.Scheme.kerAdjunction_counit_app, CategoryTheory.Limits.IndObjectPresentation.toCostructuredArrow_obj_right_as, AlgebraicGeometry.opensDiagramι_app, CategoryTheory.Arrow.w, CategoryTheory.StructuredArrow.homMk'_left, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_snd', AlgebraicTopology.AlternatingFaceMapComplex.ε_app_f_zero, CategoryTheory.Functor.essImage.of_underPost, equivProd_unitIso_hom_app_right, CategoryTheory.SmallObject.iterationObjRightIso_hom, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceInverse_obj_right_as, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.fst_gluedCocone_ι, CategoryTheory.SmallObject.objMap_id, preRight_map_right, CategoryTheory.Limits.coker_obj, CategoryTheory.Over.μ_pullback_left_fst_snd', CategoryTheory.Square.toArrowArrowFunctor'_map_right_left, map_map_left, CategoryTheory.ParametrizedAdjunction.inr_arrowHomEquiv_symm_apply_left_assoc, CategoryTheory.CostructuredArrow.w_prod_snd, mapRightIso_functor_obj_hom, CategoryTheory.Limits.imageSubobjectIso_comp_image_map, CommRingCat.toAlgHom_id, toIdPUnitEquiv_unitIso_inv_app_right, post_map_left, CategoryTheory.StructuredArrow.mono_iff_mono_right, CategoryTheory.CommaMorphism.w, CategoryTheory.Limits.multispanIndexCoend_snd, CategoryTheory.RetractArrow.r_w, CategoryTheory.Functor.LeftExtension.postcompose₂_obj_hom_app, CategoryTheory.SimplicialObject.Augmented.ExtraDegeneracy.s₀_comp_δ₁_assoc, CategoryTheory.Under.mono_iff_mono_right, CategoryTheory.WithInitial.liftFromUnder_obj_obj, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.functor_map_right_right, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceFunctor_obj_right, CategoryTheory.MorphismProperty.instHasPullbackHomDiscretePUnitOfHasPullbacksAlong, CategoryTheory.ChosenPullbacksAlong.iso_pullback_obj, CategoryTheory.SimplicialObject.augment_right, CategoryTheory.SimplicialObject.augment_hom_zero, CategoryTheory.SmallObject.ιObj_naturality, CategoryTheory.Under.postEquiv_counitIso, coconeOfPreserves_pt_right, CategoryTheory.CosimplicialObject.Augmented.drop_obj, CategoryTheory.Functor.LeibnizAdjunction.adj_counit_app_right, CommRingCat.mkUnder_right, CategoryTheory.Under.postComp_hom_app_right, preRight_obj_right, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_left_app, CategoryTheory.SimplicialObject.Augmented.rightOp_right_map, SSet.Truncated.rightExtensionInclusion_right_as, CategoryTheory.WithInitial.coconeEquiv_functor_map_hom, CategoryTheory.Arrow.comp_right_assoc, mapLeftIso_unitIso_inv_app_right, CategoryTheory.WithTerminal.ofCommaMorphism_app, CategoryTheory.Functor.LeftExtension.postcomp₁_obj_hom_app, CategoryTheory.CategoryOfElements.fromStructuredArrow_obj, CategoryTheory.Arrow.inv_hom_id_right, CategoryTheory.StructuredArrow.ofDiagEquivalence.functor_obj_right_left_as, CategoryTheory.Arrow.w_mk_right_assoc, CategoryTheory.Square.toArrowArrowFunctor_obj_right_right, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_mapPullbackAdj_unit_app, CategoryTheory.CostructuredArrow.mk_right, CategoryTheory.ComposableArrows.arrowEquiv_symm_apply, CategoryTheory.Over.map_obj_hom, CategoryTheory.CosimplicialObject.Augmented.toArrow_map_right, CategoryTheory.Over.associator_hom_left_snd_fst, CategoryTheory.CostructuredArrow.toOver_map_left, CategoryTheory.Arrow.mk_right, CategoryTheory.RanIsSheafOfIsCocontinuous.fac', CategoryTheory.MorphismProperty.Comma.comp_right_assoc, CategoryTheory.Functor.mapArrow_map_left, CategoryTheory.MorphismProperty.over_iso_iff, CategoryTheory.SmallObject.ιFunctorObj_eq, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_inverse_map_right, CategoryTheory.underToAlgebra_obj_A, CategoryTheory.TwoSquare.costructuredArrowDownwardsPrecomp_obj, AlgEquiv.toUnder_inv_right_apply, eqToHom_right, CategoryTheory.Functor.LeftExtension.postcompose₂_obj_right_obj, CategoryTheory.CostructuredArrow.mapIso_functor_map_right, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.functor_obj_right_hom, CategoryTheory.StructuredArrow.toCostructuredArrow_map, CategoryTheory.Limits.ImageMap.factor_map, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left_snd, CategoryTheory.WithInitial.equivComma_inverse_map_app, left_hom_inv_right, CategoryTheory.Arrow.isIso_hom_iff_isIso_of_isIso, unopFunctor_obj, CategoryTheory.CostructuredArrow.mapNatIso_inverse_map_left, CategoryTheory.CostructuredArrow.costructuredArrowToOverEquivalence.functor_obj, mapLeftComp_inv_app_right, CategoryTheory.CostructuredArrow.map₂_map_right, toIdPUnitEquiv_unitIso_hom_app_right, CategoryTheory.RetractArrow.retract_right_assoc, CommRingCat.toAlgHom_apply, CategoryTheory.StructuredArrow.toUnder_map_right, CategoryTheory.CosimplicialObject.Augmented.toArrow_map_left, CategoryTheory.StructuredArrow.IsUniversal.hom_desc, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.functor_obj_left_right_as, mapRightIso_inverse_obj_right, CommRingCat.pushout_inl_tensorProdObjIsoPushoutObj_inv_right_assoc, CategoryTheory.Limits.Cocone.fromStructuredArrow_obj_pt, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left_snd_assoc, CategoryTheory.CostructuredArrow.pre_obj_right, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left_fst_assoc, CategoryTheory.TwoSquare.isIso_lanBaseChange_app_iff, CategoryTheory.Over.pullback_map_left, CategoryTheory.SmallObject.instIsIsoRightAppArrowMapToTypeOrdFunctorIterationFunctor, CategoryTheory.Under.forgetMapInitial_hom_app, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_fst_fst, mapRightIso_functor_map_right, limitAuxiliaryCone_π_app, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.fst_gluedCocone_ι_assoc, CategoryTheory.Pseudofunctor.presheafHom_map, CategoryTheory.MorphismProperty.costructuredArrow_iso_iff, SSet.Augmented.stdSimplex_obj_right, CategoryTheory.Limits.multispanIndexCoend_left, CategoryTheory.Functor.ranObjObjIsoLimit_inv_π_assoc, CategoryTheory.Over.sections_obj, CategoryTheory.Functor.RightExtension.precomp_obj_right, CategoryTheory.MorphismProperty.Comma.ext_iff, AlgebraicGeometry.opensDiagram_obj, CategoryTheory.Functor.PushoutObjObj.ι_iso_of_iso_right_hom, CategoryTheory.CostructuredArrow.toStructuredArrow'_map, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.ι_isoColimit_hom_assoc, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_inverse_obj_right, CategoryTheory.Abelian.coim_obj, CategoryTheory.Functor.mapArrow_map_right, CategoryTheory.MorphismProperty.overObj_iff, AlgebraicGeometry.opensCone_π_app, CategoryTheory.Over.tensorHom_left, CategoryTheory.CostructuredArrow.w, CategoryTheory.RetractArrow.retract_right, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.inverse_obj_right_as, CategoryTheory.StructuredArrow.commaMapEquivalenceInverse_obj, CategoryTheory.StructuredArrow.homMk'_id, CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtension.isIso_hom, CategoryTheory.Functor.RightExtension.mk_right_as, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.ι_isoColimit_inv_assoc, CategoryTheory.StructuredArrow.w_prod_snd, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_counitIso_inv_app_right_app, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.inverse_obj_hom, CategoryTheory.StructuredArrow.preEquivalenceInverse_obj_right_right, CategoryTheory.WithInitial.mkCommaObject_right_map, inv_right, CategoryTheory.Under.opEquivOpOver_functor_obj, CategoryTheory.StructuredArrow.preEquivalenceInverse_obj_right_left_as, toIdPUnitEquiv_functor_obj, CategoryTheory.StructuredArrow.mapNatIso_inverse_obj_hom, CategoryTheory.Over.associator_inv_left_fst_snd, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_right, CategoryTheory.Functor.LeftExtension.postcompose₂ObjMkIso_hom_right_app, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_obj_left, CategoryTheory.Limits.kernelSubobjectIso_comp_kernel_map_assoc, CategoryTheory.WithInitial.commaFromUnder_obj_right, CategoryTheory.WithInitial.equivComma_inverse_obj_map, CategoryTheory.MorphismProperty.Over.w_assoc, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_fst_assoc, CategoryTheory.SimplicialObject.Augmented.rightOp_right_obj, CategoryTheory.Functor.RightExtension.postcomp₁_map_left_app, CategoryTheory.SmallObject.πObj_ιIteration_app_right_assoc, CategoryTheory.SimplicialObject.Augmented.rightOpLeftOpIso_hom_right, CategoryTheory.WithTerminal.ofCommaObject_map, CategoryTheory.MorphismProperty.ofHoms_homFamily, CategoryTheory.Over.associator_hom_left_snd_snd_assoc, commAlgCatEquivUnder_counitIso, CategoryTheory.SimplicialObject.Truncated.rightExtensionInclusion_right_as, CategoryTheory.StructuredArrow.post_map, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_map_left, CategoryTheory.Functor.PullbackObjObj.mapArrowRight_comp, CategoryTheory.Functor.LeftExtension.postcomp₁_obj_right_map, CategoryTheory.Functor.ranObjObjIsoLimit_hom_π_assoc, CategoryTheory.Under.equivalenceOfIsInitial_unitIso, CategoryTheory.Limits.im_obj, CategoryTheory.SmallObject.πObj_naturality_assoc, CategoryTheory.Functor.PullbackObjObj.π_iso_of_iso_right_inv, CategoryTheory.MorphismProperty.FunctorialFactorizationData.functorCategory.Z_obj_obj, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_inv_app_comp_fst, CategoryTheory.CosimplicialObject.Augmented.leftOpRightOpIso_hom_right_app, CategoryTheory.Over.μ_pullback_left_fst_fst', CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceFunctor_map_right, CategoryTheory.Over.μ_pullback_left_fst_snd, CategoryTheory.Over.whiskerRight_left, CategoryTheory.CostructuredArrow.homMk'_left, CategoryTheory.StructuredArrow.homMk'_right, CategoryTheory.Abelian.coimageImageComparisonFunctor_obj, CategoryTheory.Square.fromArrowArrowFunctor'_obj_f₁₃, CategoryTheory.StructuredArrow.pre_map_left, inv_left_hom_right, CommRingCat.pushout_inl_tensorProdObjIsoPushoutObj_inv_right, CategoryTheory.Limits.imageSubobjectMap_arrow, CategoryTheory.CostructuredArrow.ofDiagEquivalence.functor_obj_right_as, CategoryTheory.Over.opEquivOpUnder_counitIso, CategoryTheory.CostructuredArrow.prodFunctor_obj, CategoryTheory.Functor.LeftExtension.coconeAtWhiskerRightIso_hom_hom, CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtensionAt.isIso_hom_app, CategoryTheory.OrthogonalReflection.D₂.multispanIndex_left, commAlgCatEquivUnder_inverse_obj_carrier, CategoryTheory.Limits.ImageFactorisation.ofArrowIso_F, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_left_app, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_inverse_obj_hom_app, CategoryTheory.Bicategory.LeftLift.ofIdComp_right, CategoryTheory.Arrow.id_right, CategoryTheory.StructuredArrow.map_map_left, CategoryTheory.Functor.PullbackObjObj.mapArrowLeft_left, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_inv_app_comp_snd, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_map_left_right, CategoryTheory.SmallObject.iterationFunctorMapSuccAppArrowIso_hom_right_right_comp_assoc, CategoryTheory.Functor.LeftExtension.precomp_obj_right, CategoryTheory.Over.w, CategoryTheory.StructuredArrow.mapIso_functor_obj_right, mapLeftEq_hom_app_right, CategoryTheory.Functor.PullbackObjObj.mapArrowLeft_comp_assoc, CategoryTheory.StructuredArrow.mapIso_unitIso_inv_app_right, CategoryTheory.Limits.MonoFactorisation.ofArrowIso_m, CategoryTheory.StructuredArrow.prodFunctor_obj, AlgHom.toUnder_right, mapLeft_obj_right, CategoryTheory.Functor.PushoutObjObj.ι_iso_of_iso_left_inv, CategoryTheory.CosimplicialObject.augment_hom_zero, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left_fst_assoc, CategoryTheory.CosimplicialObject.Augmented.toArrow_obj_right, CategoryTheory.SimplicialObject.Augmented.ExtraDegeneracy.s₀_comp_δ₁, Alexandrov.lowerCone_π_app, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtension.isIso_hom, CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtensionAt.isoLimit_inv_π, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.functor_obj_right_right, CategoryTheory.Arrow.mk_eq, CategoryTheory.MorphismProperty.Under.w, CategoryTheory.CosimplicialObject.Augmented.toArrow_obj_hom, CategoryTheory.StructuredArrow.mapIso_functor_map_left, CategoryTheory.StructuredArrow.mono_right_of_mono, AlgEquiv.toUnder_hom_right_apply, AlgebraicGeometry.Scheme.kerFunctor_map, CategoryTheory.MorphismProperty.Comma.prop, CategoryTheory.CostructuredArrow.homMk'_mk_comp, CategoryTheory.Over.associator_inv_left_fst_fst, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_functor_obj_hom_app, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.inverse_map_right_right, mapLeftIso_inverse_obj_hom, CategoryTheory.CostructuredArrow.right_eq_id, CategoryTheory.StructuredArrow.comp_right, CategoryTheory.CostructuredArrow.ofDiagEquivalence.inverse_obj_right_as, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_map_right, CategoryTheory.Over.snd_left, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_hom_app_comp_snd, CategoryTheory.Limits.ImageMap.map_ι, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left_fst_assoc, CategoryTheory.Functor.leibnizPushout_obj_obj, CategoryTheory.Over.over_right, mapRightIso_counitIso_hom_app_right, CategoryTheory.Arrow.isIso_hom_iff_isIso_hom_of_isIso, commAlgCatEquivUnder_unitIso, CategoryTheory.Over.tensorHom_left_fst, equivProd_inverse_obj_right, CategoryTheory.Square.fromArrowArrowFunctor_obj_X₄, CategoryTheory.Over.whiskerRight_left_snd, CategoryTheory.MorphismProperty.structuredArrowObj_iff, CategoryTheory.SimplicialObject.Augmented.w₀_assoc, CategoryTheory.Square.fromArrowArrowFunctor'_obj_X₄, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_fst_snd_assoc, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_fst_snd, CategoryTheory.MorphismProperty.mem_toSet_iff, CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtension.isRightKanExtension, opFunctorCompFst_hom_app, CategoryTheory.underToAlgebra_obj_a, CategoryTheory.Limits.CokernelCofork.π_mapOfIsColimit_assoc, CategoryTheory.CommSq.of_arrow, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left_fst, CategoryTheory.Under.mk_right, opFunctorCompFst_inv_app, CategoryTheory.CostructuredArrow.toStructuredArrow_obj, unopFunctor_map, CategoryTheory.Arrow.isIso_of_isIso, CategoryTheory.Arrow.rightFunc_obj, CategoryTheory.Over.tensorHom_left_fst_assoc, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_snd_assoc, CategoryTheory.Under.postMap_app, CategoryTheory.Over.prodLeftIsoPullback_inv_fst_assoc, CategoryTheory.Abelian.im_obj, CategoryTheory.RetractArrow.instIsSplitEpiRightRArrow, CategoryTheory.Functor.toUnder_obj_right, CategoryTheory.Under.hom_right_inv_right, CategoryTheory.SmallObject.iterationFunctorMapSuccAppArrowIso_hom_left, CategoryTheory.ChosenPullbacksAlong.Over.leftUnitor_hom_left, CategoryTheory.Arrow.iso_w, mapLeftIso_unitIso_hom_app_right, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_pullback_obj, CategoryTheory.Limits.Cocone.fromStructuredArrow_map_hom, CategoryTheory.Functor.RightExtension.postcomp₁_obj_right, CategoryTheory.Over.whiskerLeft_left_fst, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_mapPullbackAdj_counit_app, CategoryTheory.SmallObject.πFunctorObj_eq, CategoryTheory.StructuredArrow.mapNatIso_counitIso_hom_app_right, CategoryTheory.MonoOver.inf_map_app, mapRightId_hom_app_right, CategoryTheory.TwoSquare.costructuredArrowDownwardsPrecomp_map, CategoryTheory.SmallObject.objMap_comp, CategoryTheory.Functor.LeftExtension.postcompose₂_map_left, CategoryTheory.ChosenPullbacksAlong.isoInv_mapPullbackAdj_counit_app_left, CategoryTheory.Functor.LeftExtension.postcomp₁_obj_right_obj, CategoryTheory.Arrow.inv_left_hom_right, toPUnitIdEquiv_inverse_obj_right_as, CategoryTheory.Functor.RightExtension.postcompose₂_obj_hom_app, CategoryTheory.Functor.RightExtension.precomp_obj_hom_app, CategoryTheory.CostructuredArrow.mapNatIso_functor_obj_right, CategoryTheory.StructuredArrow.commaMapEquivalenceCounitIso_hom_app_right_right, CategoryTheory.algebraEquivUnder_counitIso, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceFunctor_map_left, CategoryTheory.Functor.RightExtension.precomp_map_right, CategoryTheory.ChosenPullbacksAlong.Over.lift_left, CategoryTheory.Square.fromArrowArrowFunctor_obj_f₁₂, CategoryTheory.Under.postCongr_hom_app_right, CategoryTheory.Limits.kernel_map_comp_kernelSubobjectIso_inv, CategoryTheory.Abelian.coimageImageComparisonFunctor_map, mapLeftIso_counitIso_hom_app_right, CategoryTheory.CostructuredArrow.map_map_left, CategoryTheory.CostructuredArrow.map₂_map_left, CategoryTheory.SimplicialObject.Augmented.ExtraDegeneracy.s'_comp_ε_assoc, CategoryTheory.WithInitial.equivComma_inverse_obj_obj, CategoryTheory.Over.isPullback_of_binaryFan_isLimit, CategoryTheory.MorphismProperty.commaObj_iff, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceFunctor_obj_right, CategoryTheory.Bicategory.LeftLift.whiskerOfIdCompIsoSelf_hom_right, CategoryTheory.Over.whiskerLeft_left_fst_assoc, CategoryTheory.CostructuredArrow.preEquivalence.inverse_obj_left_left, CategoryTheory.Under.pushout_obj, CategoryTheory.MorphismProperty.Over.w, CategoryTheory.Square.toArrowArrowFunctor_obj_right_hom, CategoryTheory.Square.toArrowArrowFunctor_obj_right_left, CategoryTheory.Functor.RightExtension.postcompose₂_map_left_app, CategoryTheory.RetractArrow.op_r_left, CategoryTheory.StructuredArrow.mk_right, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_fst_fst, CategoryTheory.CostructuredArrow.ofDiagEquivalence.functor_obj_left_right_as, CategoryTheory.StructuredArrow.preEquivalenceInverse_map_right_right, mapLeft_map_right, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_right, CategoryTheory.CostructuredArrow.IsUniversal.fac, CategoryTheory.Square.fromArrowArrowFunctor'_map_τ₄, unopFunctorCompFst_inv_app, CategoryTheory.Functor.PushoutObjObj.ι_iso_of_iso_right_inv, CategoryTheory.MonoOver.subobjectMk_le_mk_of_hom, equivProd_unitIso_inv_app_right, CategoryTheory.Over.whiskerLeft_left_snd_assoc, CategoryTheory.SmallObject.SuccStruct.toSuccArrow_right, CategoryTheory.Limits.IsColimit.pushoutCoconeEquivBinaryCofanFunctor_desc_right, CategoryTheory.Square.toArrowArrowFunctor_obj_left_right, CategoryTheory.TwoSquare.EquivalenceJ.functor_obj, CategoryTheory.StructuredArrow.mapIso_unitIso_hom_app_right, CategoryTheory.StructuredArrow.w, CategoryTheory.Functor.RightExtension.postcompose₂_map_right, commAlgCatEquivUnder_inverse_map, CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtensionAt.isoLimit_inv_π_assoc, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left, CategoryTheory.Under.forget_obj, CategoryTheory.Functor.PullbackObjObj.mapArrowRight_id, CategoryTheory.Functor.LeftExtension.precomp_map_left, mapLeftIso_functor_obj_hom, CategoryTheory.Abelian.Pseudoelement.pseudoZero_aux, CategoryTheory.StructuredArrow.commaMapEquivalenceUnitIso_hom_app_right_right, CategoryTheory.Limits.MonoFactorisation.ofArrowIso_I, CategoryTheory.MorphismProperty.comma_iso_iff, CategoryTheory.StructuredArrow.pre_map_right, CategoryTheory.StructuredArrow.w_prod_fst_assoc, CategoryTheory.Square.fromArrowArrowFunctor_obj_f₂₄, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.comp_homEquiv_symm, CategoryTheory.Functor.LeftExtension.precomp₂_obj_right, CategoryTheory.SmallObject.functorMap_π, CategoryTheory.StructuredArrow.mapIso_functor_obj_hom, CategoryTheory.Functor.PushoutObjObj.mapArrowLeft_left, CategoryTheory.StructuredArrow.mapNatIso_unitIso_inv_app_right, CategoryTheory.Functor.ranObjObjIsoLimit_hom_π, Alexandrov.projSup_obj, CategoryTheory.underToAlgebra_map_f, CategoryTheory.SimplicialObject.Augmented.rightOp_hom_app, CategoryTheory.Functor.LeftExtension.coconeAt_pt, CategoryTheory.SimplicialObject.Augmented.point_obj, CategoryTheory.Limits.ImageFactorisation.ofArrowIso_isImage, CategoryTheory.Over.associator_inv_left_fst_snd_assoc, CategoryTheory.CosimplicialObject.Augmented.leftOp_left_obj, mapRight_map_left, CategoryTheory.SimplicialObject.Augmented.rightOp_left, CategoryTheory.CosimplicialObject.Augmented.leftOpRightOpIso_inv_right_app, mapRightId_inv_app_right, CategoryTheory.Functor.LeftExtension.postcomp₁_map_left, CategoryTheory.Square.fromArrowArrowFunctor'_map_τ₂, CategoryTheory.CechNerveTerminalFrom.hasWidePullback, CategoryTheory.MorphismProperty.Over.pullback_map_left, mapRightComp_hom_app_right, CategoryTheory.Square.fromArrowArrowFunctor_map_τ₁, CategoryTheory.RetractArrow.op_i_left, CategoryTheory.OrthogonalReflection.D₁.ι_comp_t, CategoryTheory.Limits.HasImageMaps.has_image_map, CategoryTheory.Over.sections_map, mapRightIso_inverse_obj_hom, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceInverse_obj_left_right, CategoryTheory.Functor.mapArrowFunctor_map_app_right, CategoryTheory.StructuredArrow.mapIso_inverse_map_right, CategoryTheory.Over.μ_pullback_left_snd, CategoryTheory.Functor.PushoutObjObj.mapArrowLeft_right, CategoryTheory.Under.mapPushoutAdj_counit_app, CategoryTheory.Over.iteratedSliceBackward_obj, CategoryTheory.SmallObject.iterationFunctorObjObjRightIso_ιIteration_app_right, CategoryTheory.PreGaloisCategory.autEmbedding_range, CategoryTheory.CostructuredArrow.homMk'_comp, CategoryTheory.TwoSquare.structuredArrowDownwards_map, CategoryTheory.Bicategory.LeftExtension.whiskerOfCompIdIsoSelf_hom_right, CategoryTheory.Localization.structuredArrowEquiv_symm_apply, CategoryTheory.Functor.LeftExtension.mk_right, CategoryTheory.SimplicialObject.Augmented.toArrow_obj_hom, preLeft_map_left, CategoryTheory.Arrow.epi_right, CategoryTheory.OrthogonalReflection.D₂.multispanIndex_fst, CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtensionAt.isoLimit_hom_π, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceFunctor_obj_left, CategoryTheory.StructuredArrow.ofDiagEquivalence.functor_obj_hom, CategoryTheory.Functor.PushoutObjObj.mapArrowLeft_comp_assoc, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_right, CategoryTheory.TwoSquare.structuredArrowDownwards_obj, CommRingCat.Under.equalizerFork_ι, CategoryTheory.CostructuredArrow.mapNatIso_inverse_obj_right, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_fst, id_right, CategoryTheory.Under.postAdjunctionLeft_counit_app, CategoryTheory.Under.inv_right_hom_right, CategoryTheory.CostructuredArrow.mapNatIso_functor_map_left, CategoryTheory.Over.braiding_hom_left, CategoryTheory.MonoOver.instMonoHomDiscretePUnitObjOverForget, CategoryTheory.RetractArrow.instIsSplitMonoRightIArrow, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_snd, CategoryTheory.WithInitial.liftFromUnder_map_app, CategoryTheory.ChosenPullbacksAlong.iso_mapPullbackAdj_counit_app, CategoryTheory.Functor.LeibnizAdjunction.adj_unit_app_right, CategoryTheory.StructuredArrow.projectSubobject_factors, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_unitIso_hom_app_right_app, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left_snd, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_snd_snd, CategoryTheory.ChosenPullbacksAlong.isoInv_pullback_obj_right_as, CategoryTheory.FunctorToTypes.mem_fromOverSubfunctor_iff, CategoryTheory.SimplicialObject.id_right, CategoryTheory.Over.μ_pullback_left_fst_fst, CategoryTheory.Under.hom_right_inv_right_assoc, mapSnd_hom_app, CategoryTheory.Over.iteratedSliceForward_map, CategoryTheory.MorphismProperty.underObj_iff, CategoryTheory.CostructuredArrow.pre_map_right, CategoryTheory.CosimplicialObject.Augmented.leftOp_hom_app, CategoryTheory.Square.fromArrowArrowFunctor'_map_τ₁, CategoryTheory.StructuredArrow.commaMapEquivalenceUnitIso_hom_app_right_left, CategoryTheory.MorphismProperty.Under.w_assoc, CategoryTheory.Arrow.square_to_iso_invert, CategoryTheory.StructuredArrow.preEquivalenceFunctor_map_right, CategoryTheory.toOverIteratedSliceForwardIsoPullback_inv_app_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_hom_app_right_app, CategoryTheory.StructuredArrow.preEquivalenceInverse_obj_hom_right, CategoryTheory.Functor.PullbackObjObj.mapArrowRight_left, CategoryTheory.ChosenPullbacksAlong.iso_pullback_map, CategoryTheory.Limits.image_map_comp_imageSubobjectIso_inv, CategoryTheory.Under.opEquivOpOver_inverse_obj, Types.monoOverEquivalenceSet_unitIso, CategoryTheory.Functor.ranObjObjIsoLimit_inv_π, CategoryTheory.TwoSquare.EquivalenceJ.functor_map, CategoryTheory.CostructuredArrow.costructuredArrowToOverEquivalence.inverse_obj, CategoryTheory.Square.toArrowArrowFunctor'_map_right_right, CategoryTheory.MorphismProperty.IsCardinalForSmallObjectArgument.preservesColimit, CategoryTheory.RetractArrow.unop_i_left, CategoryTheory.MorphismProperty.instHasPullbackSndHomDiscretePUnitOfHasPullbacksAlongOfIsStableUnderBaseChangeAlong, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_obj_right_map, CategoryTheory.cosimplicialToSimplicialAugmented_map, AlgebraicGeometry.Scheme.kerFunctor_obj, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_hom_app_comp_fst_assoc, CategoryTheory.SmallObject.functor_obj, CategoryTheory.StructuredArrow.commaMapEquivalenceUnitIso_inv_app_right_left, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.ι_isoColimit_inv, mapRightEq_inv_app_right, CategoryTheory.StructuredArrow.mapIso_functor_map_right, CategoryTheory.Over.whiskerRight_left_fst_assoc, post_map_right, CategoryTheory.WithTerminal.equivComma_inverse_map_app, CategoryTheory.CostructuredArrow.mapIso_functor_obj_right, CategoryTheory.Functor.PullbackObjObj.mapArrowLeft_right, CategoryTheory.Over.tensorHom_left_snd, CategoryTheory.WithInitial.ofCommaObject_map, CategoryTheory.Bicategory.LeftExtension.whiskerHom_right, CategoryTheory.Under.opEquivOpOver_counitIso, CategoryTheory.StructuredArrow.toUnder_map_left, CategoryTheory.StructuredArrow.w_prod_snd_assoc, CategoryTheory.WithTerminal.equivComma_inverse_obj_map, CategoryTheory.CostructuredArrow.preEquivalence.inverse_obj_hom_left, CategoryTheory.StructuredArrow.prodInverse_obj, CategoryTheory.MorphismProperty.Comma.eqToHom_right, CategoryTheory.CostructuredArrow.preEquivalence.functor_map_left, CategoryTheory.StructuredArrow.preEquivalence_counitIso, CategoryTheory.Functor.RightExtension.postcomp₁_obj_hom_app, CategoryTheory.SmallObject.ιObj_naturality_assoc, CategoryTheory.Square.fromArrowArrowFunctor_map_τ₂, CategoryTheory.Functor.ι_leftKanExtensionObjIsoColimit_hom, CategoryTheory.WithInitial.liftFromUnder_obj_map, CategoryTheory.Limits.ImageMap.map_ι_assoc, CategoryTheory.Arrow.inv_right, CategoryTheory.Limits.kernel_map_comp_kernelSubobjectIso_inv_assoc, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.inverse_obj_left_right_as, CategoryTheory.StructuredArrow.preEquivalenceInverse_obj_left_as, CategoryTheory.WithTerminal.coneEquiv_inverse_map_hom_left, CategoryTheory.Arrow.left_hom_inv_right, CategoryTheory.Bicategory.LeftExtension.whiskerOfCompIdIsoSelf_inv_right, CategoryTheory.Square.toArrowArrowFunctor_map_right_left, CategoryTheory.Arrow.hom_inv_id_right, CategoryTheory.StructuredArrow.preEquivalenceFunctor_obj_right, CategoryTheory.Functor.PushoutObjObj.mapArrowRight_comp, CategoryTheory.CostructuredArrow.preEquivalence.inverse_obj_right_as, CategoryTheory.MorphismProperty.Comma.Hom.prop_hom_right, CategoryTheory.Arrow.inv_hom_id_right_assoc, TopologicalSpace.Opens.overEquivalence_inverse_obj_right_as, CategoryTheory.StructuredArrow.proj_obj, CategoryTheory.Functor.LeftExtension.coconeAt_ι_app, equivProd_functor_map, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_inv_app_comp_fst_assoc, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.functor_obj_right_left_as, CategoryTheory.Over.lift_left, CategoryTheory.Under.postAdjunctionRight_counit_app_right, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_counitIso, CategoryTheory.TwoSquare.EquivalenceJ.inverse_obj, mapLeftIso_inverse_map_left, CategoryTheory.Arrow.w_assoc, CategoryTheory.StructuredArrow.map_obj_hom, CategoryTheory.CostructuredArrow.preEquivalence.inverse_map_left_left, CategoryTheory.SmallObject.functorialFactorizationData_p_app, CategoryTheory.Over.opEquivOpUnder_functor_map, mapRight_obj_right, CategoryTheory.Functor.PushoutObjObj.mapArrowRight_right, CategoryTheory.Limits.multispanIndexCoend_fst, mapLeftIso_functor_obj_right, CategoryTheory.StructuredArrow.mapIso_inverse_map_left, mapLeft_obj_hom, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_hom_app_comp_fst, CategoryTheory.CostructuredArrow.pre_map_left, CategoryTheory.SmallObject.iterationFunctorMapSuccAppArrowIso_hom_right_right_comp, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceInverse_obj_right_hom, CategoryTheory.Under.inv_right_hom_right_assoc, CategoryTheory.LocalizerMorphism.IsRightDerivabilityStructure.Constructor.fromRightResolution_obj, CategoryTheory.ChosenPullbacksAlong.Over.fst_eq_fst', CategoryTheory.CostructuredArrow.mapNatIso_functor_map_right, CategoryTheory.ObjectProperty.LimitOfShape.toStructuredArrow_map, CategoryTheory.Under.opEquivOpOver_functor_map, CategoryTheory.Under.postEquiv_unitIso, CategoryTheory.CostructuredArrow.projectQuotient_factors, CategoryTheory.Over.fst_left, CategoryTheory.Over.prodLeftIsoPullback_hom_fst, CategoryTheory.Over.associator_hom_left_fst_assoc, CategoryTheory.SmallObject.preservesColimit, CategoryTheory.Over.isMonHom_pullbackFst_id_right, CategoryTheory.Over.forgetAdjStar_unit_app_left, preLeft_map_right, CategoryTheory.Functor.leibnizPullback_map_app, CategoryTheory.StructuredArrow.toCostructuredArrow'_map, CategoryTheory.Over.tensorObj_left, CategoryTheory.CostructuredArrow.preEquivalence.inverse_obj_left_right_as, CategoryTheory.RetractArrow.unop_r_left, CategoryTheory.StructuredArrow.post_obj, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.pullbackGluedIso_inv_snd, CategoryTheory.CostructuredArrow.mapIso_inverse_map_right, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.pullbackGluedIso_inv_fst, CategoryTheory.StructuredArrow.toCostructuredArrow'_obj, CategoryTheory.Functor.PushoutObjObj.mapArrowLeft_comp, CategoryTheory.Abelian.app_hom, CategoryTheory.SmallObject.hasColimitsOfShape_discrete, post_obj_hom, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_counitIso_hom_app_right_app, CategoryTheory.SmallObject.iterationFunctorObjObjRightIso_ιIteration_app_right_assoc, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_fst_snd', CategoryTheory.WithTerminal.equivComma_counitIso_inv_app_right, CategoryTheory.Bicategory.LeftExtension.w, CategoryTheory.SmallObject.πObj_naturality, CategoryTheory.Under.id_right, CategoryTheory.Functor.PullbackObjObj.π_iso_of_iso_left_hom, CategoryTheory.Bicategory.LeftLift.whiskerOfIdCompIsoSelf_inv_right, unopFunctorCompFst_hom_app, CategoryTheory.Functor.ι_leftKanExtensionObjIsoColimit_hom_assoc, CategoryTheory.CostructuredArrow.mapIso_inverse_map_left, CategoryTheory.StructuredArrow.IsUniversal.fac_assoc, CategoryTheory.Arrow.equivSigma_apply_snd_fst, CategoryTheory.StructuredArrow.mapNatIso_inverse_map_left, CategoryTheory.WithInitial.ofCommaMorphism_app, CategoryTheory.Limits.Cocone.equivStructuredArrow_counitIso, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_inv_left_fst_assoc, CategoryTheory.Functor.PushoutObjObj.ι_iso_of_iso_left_hom, CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtensionAt.isoLimit_hom_π_assoc, CategoryTheory.CostructuredArrow.commaToGrothendieckPrecompFunctor_obj_base, CategoryTheory.SmallObject.instIsIsoRightAppArrowιIteration, toIdPUnitEquiv_inverse_obj_right, colimitAuxiliaryCocone_ι_app, CategoryTheory.Arrow.comp_right, CategoryTheory.Square.toArrowArrowFunctor'_obj_right_left, CategoryTheory.Under.postAdjunctionLeft_unit_app, CategoryTheory.StructuredArrow.IsUniversal.fac, CategoryTheory.Square.fromArrowArrowFunctor'_obj_f₂₄, CategoryTheory.MorphismProperty.Over.pullbackComp_left_fst_fst, ext_iff, CategoryTheory.StructuredArrow.toUnder_obj_right, CategoryTheory.Over.associator_hom_left_snd_snd, CategoryTheory.Over.associator_inv_left_snd_assoc, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_obj_map, CategoryTheory.MorphismProperty.arrow_iso_iff, CategoryTheory.Functor.leibnizPullback_obj_obj, CategoryTheory.StructuredArrow.commaMapEquivalenceCounitIso_inv_app_left_right, mapRightIso_inverse_map_left, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_inv_left_fst, CategoryTheory.Under.w_assoc, CategoryTheory.Limits.image.factor_map, mapLeftId_inv_app_right, CategoryTheory.StructuredArrow.w_assoc, CategoryTheory.StructuredArrow.mapNatIso_functor_map_left, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_inv_app_comp_snd_assoc, CategoryTheory.Square.toArrowArrowFunctor'_obj_right_hom, CategoryTheory.StructuredArrow.map₂_obj_hom, CategoryTheory.StructuredArrow.mapNatIso_counitIso_inv_app_right, CategoryTheory.WithInitial.coconeEquiv_unitIso_inv_app_hom_right, CategoryTheory.Under.opEquivOpOver_inverse_map, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_obj_right, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_functor_map_right, CategoryTheory.Over.iteratedSliceForward_obj, CategoryTheory.MorphismProperty.Comma.Hom.comp_right, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.inverse_obj_right_hom, rightIso_inv, mapLeftComp_hom_app_right, CategoryTheory.CostructuredArrow.toStructuredArrow_map, CategoryTheory.Over.whiskerLeft_left_snd, CategoryTheory.Functor.leibnizPushout_map_app, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceFunctor_obj_hom, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_obj_right_obj, CategoryTheory.Over.w_assoc, mapRight_map_right, CategoryTheory.Square.toArrowArrowFunctor'_obj_left_right, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_unitIso_inv_app_right_app, CategoryTheory.StructuredArrow.homMk'_mk_id, CategoryTheory.CostructuredArrow.IsUniversal.fac_assoc, Alexandrov.projSup_map, CategoryTheory.Abelian.coimIsoIm_hom_app, CategoryTheory.Limits.diagonal_pullback_fst, CategoryTheory.Under.w, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_fst_assoc, CategoryTheory.CostructuredArrow.costructuredArrowToOverEquivalence.inverse_map, CategoryTheory.MorphismProperty.Over.pullbackCongr_hom_app_left_fst_assoc, CategoryTheory.MonoOver.mono_obj_hom, CategoryTheory.Sieve.overEquiv_iff, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left_snd, mapLeftIso_functor_map_right, CategoryTheory.Over.opEquivOpUnder_functor_obj, CategoryTheory.OrthogonalReflection.D₂.multispanIndex_snd, CategoryTheory.StructuredArrow.commaMapEquivalenceCounitIso_inv_app_right_right, CategoryTheory.StructuredArrow.mapIso_counitIso_hom_app_right, CommRingCat.Under.equalizer_comp, equivProd_functor_obj, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_inv_app_right_app, CategoryTheory.WithTerminal.coneEquiv_inverse_obj_pt_right_as, CategoryTheory.Over.tensorObj_hom, CategoryTheory.StructuredArrow.toCostructuredArrow_obj, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.comp_homEquiv_symm_assoc, CategoryTheory.CostructuredArrow.preEquivalence.inverse_obj_left_hom, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.functor_obj_hom, CategoryTheory.StructuredArrow.mapNatIso_inverse_obj_right, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceInverse_obj_right_right, CategoryTheory.Arrow.iso_w', CategoryTheory.StructuredArrow.preEquivalenceFunctor_obj_hom, CategoryTheory.StructuredArrow.mapIso_counitIso_inv_app_right, mapRightIso_unitIso_hom_app_right, CategoryTheory.Limits.ker_map, CategoryTheory.Arrow.isIso_right, CategoryTheory.Under.comp_right, CategoryTheory.Square.fromArrowArrowFunctor'_obj_f₃₄, CategoryTheory.MorphismProperty.costructuredArrowObj_iff, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_obj_hom, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_fst_fst_assoc, CategoryTheory.Abelian.coimIsoIm_inv_app, CategoryTheory.StructuredArrow.pre_obj_right, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_snd_snd_assoc, CategoryTheory.MorphismProperty.Comma.id_right, CategoryTheory.Arrow.equivSigma_symm_apply_right, CategoryTheory.Bicategory.LeftLift.w, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_functor_obj_right, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left, CategoryTheory.Square.fromArrowArrowFunctor_map_τ₄, CategoryTheory.Functor.structuredArrowMapCone_π_app, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_snd_assoc, CommRingCat.pushout_inr_tensorProdObjIsoPushoutObj_inv_right, CategoryTheory.Localization.structuredArrowEquiv_apply
rightIso 📖CompOp
2 mathmath: rightIso_hom, rightIso_inv
snd 📖CompOp
31 mathmath: snd_obj, coneOfPreserves_π_app_right, limitAuxiliaryCone_pt, mapSnd_inv_app, equivProd_counitIso_hom_app, natTrans_app, coneOfPreserves_pt_right, colimitAuxiliaryCocone_pt, coconeOfPreserves_pt_right, preservesColimitsOfShape_snd, snd_map, equivProd_counitIso_inv_app, coconeOfPreserves_ι_app_right, limitAuxiliaryCone_π_app, unopFunctorCompSnd_inv_app, coconeOfPreserves_ι_app_left, opFunctorCompSnd_hom_app, opFunctorCompFst_hom_app, opFunctorCompFst_inv_app, initial_snd, coneOfPreserves_pt_hom, unopFunctorCompFst_inv_app, final_snd, opFunctorCompSnd_inv_app, mapSnd_hom_app, unopFunctorCompSnd_hom_app, toIdPUnitEquiv_functor_iso, unopFunctorCompFst_hom_app, colimitAuxiliaryCocone_ι_app, map_snd, coneOfPreserves_π_app_left
toIdPUnitEquiv 📖CompOp
10 mathmath: toIdPUnitEquiv_inverse_map_right, toIdPUnitEquiv_unitIso_inv_app_right, toIdPUnitEquiv_unitIso_hom_app_right, toIdPUnitEquiv_functor_map, toIdPUnitEquiv_inverse_obj_left_as, toIdPUnitEquiv_functor_obj, toIdPUnitEquiv_counitIso_hom_app, toIdPUnitEquiv_counitIso_inv_app, toIdPUnitEquiv_functor_iso, toIdPUnitEquiv_inverse_obj_right
toPUnitIdEquiv 📖CompOp
10 mathmath: toPUnitIdEquiv_functor_map, toPUnitIdEquiv_counitIso_hom_app, toPUnitIdEquiv_functor_obj, toPUnitIdEquiv_unitIso_inv_app_left, toPUnitIdEquiv_inverse_map_left, toPUnitIdEquiv_functor_iso, toPUnitIdEquiv_unitIso_hom_app_left, toPUnitIdEquiv_inverse_obj_right_as, toPUnitIdEquiv_inverse_obj_left, toPUnitIdEquiv_counitIso_inv_app
unopFunctor 📖CompOp
9 mathmath: opEquiv_counitIso, unopFunctor_obj, unopFunctorCompSnd_inv_app, unopFunctor_map, opEquiv_unitIso, unopFunctorCompFst_inv_app, opEquiv_inverse, unopFunctorCompSnd_hom_app, unopFunctorCompFst_hom_app
unopFunctorCompFst 📖CompOp
2 mathmath: unopFunctorCompFst_inv_app, unopFunctorCompFst_hom_app
unopFunctorCompSnd 📖CompOp
2 mathmath: unopFunctorCompSnd_inv_app, unopFunctorCompSnd_hom_app

Theorems

NameKindAssumesProvesValidatesDepends On
comp_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.CategoryStruct.comp
CategoryTheory.Comma
CategoryTheory.Category.toCategoryStruct
CategoryTheory.commaCategory
left
comp_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Comma
CategoryTheory.Category.toCategoryStruct
CategoryTheory.commaCategory
right
eqToHom_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.eqToHom
CategoryTheory.Comma
CategoryTheory.Category.toCategoryStruct
CategoryTheory.commaCategory
left
eqToHom_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.eqToHom
CategoryTheory.Comma
CategoryTheory.Category.toCategoryStruct
CategoryTheory.commaCategory
right
equivProd_counitIso_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.prod'
CategoryTheory.Functor.comp
CategoryTheory.Comma
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.commaCategory
fromProd
CategoryTheory.Functor.prod'
fst
snd
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.counitIso
equivProd
CategoryTheory.Prod.mkHom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.id
equivProd_counitIso_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.prod'
CategoryTheory.Functor.comp
CategoryTheory.Comma
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.commaCategory
fromProd
CategoryTheory.Functor.prod'
fst
snd
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.counitIso
equivProd
CategoryTheory.Prod.mkHom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.id
equivProd_functor_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Comma
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.commaCategory
CategoryTheory.prod'
CategoryTheory.Equivalence.functor
equivProd
CategoryTheory.Prod.mkHom
CategoryTheory.Category.toCategoryStruct
left
right
CategoryTheory.CommaMorphism.left
CategoryTheory.CommaMorphism.right
equivProd_functor_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.commaCategory
CategoryTheory.prod'
CategoryTheory.Equivalence.functor
equivProd
left
right
equivProd_inverse_map_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.eqToHom
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.prod'
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.inverse
equivProd
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
equivProd_inverse_map_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.eqToHom
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.prod'
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.inverse
equivProd
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
equivProd_inverse_obj_left 📖mathematicalleft
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.obj
CategoryTheory.prod'
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.inverse
equivProd
equivProd_inverse_obj_right 📖mathematicalright
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.obj
CategoryTheory.prod'
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.inverse
equivProd
equivProd_unitIso_hom_app_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.unitIso
CategoryTheory.prod'
equivProd
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
left
equivProd_unitIso_hom_app_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.unitIso
CategoryTheory.prod'
equivProd
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
right
equivProd_unitIso_inv_app_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.unitIso
CategoryTheory.prod'
equivProd
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
left
equivProd_unitIso_inv_app_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.unitIso
CategoryTheory.prod'
equivProd
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
right
essSurj_map 📖mathematicalCategoryTheory.Functor.EssSurj
CategoryTheory.Comma
CategoryTheory.commaCategory
map
CategoryTheory.NatIso.isIso_app_of_isIso
CategoryTheory.Functor.preimage.congr_simp
CategoryTheory.NatIso.isIso_inv_app
CategoryTheory.Functor.map_preimage
CategoryTheory.Category.assoc
CategoryTheory.IsIso.inv_hom_id
CategoryTheory.Category.comp_id
CategoryTheory.IsIso.hom_inv_id_assoc
CategoryTheory.Functor.map_comp
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Functor.map_id
faithful_map 📖mathematicalCategoryTheory.Functor.Faithful
CategoryTheory.Comma
CategoryTheory.commaCategory
map
hom_ext
CategoryTheory.Functor.map_injective
fromProd_map_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.eqToHom
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.prod'
CategoryTheory.Comma
CategoryTheory.commaCategory
fromProd
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
fromProd_map_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.eqToHom
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.prod'
CategoryTheory.Comma
CategoryTheory.commaCategory
fromProd
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
fromProd_obj_hom 📖mathematicalhom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.obj
CategoryTheory.prod'
CategoryTheory.Comma
CategoryTheory.commaCategory
fromProd
CategoryTheory.Discrete.eqToHom
fromProd_obj_left 📖mathematicalleft
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.obj
CategoryTheory.prod'
CategoryTheory.Comma
CategoryTheory.commaCategory
fromProd
fromProd_obj_right 📖mathematicalright
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.obj
CategoryTheory.prod'
CategoryTheory.Comma
CategoryTheory.commaCategory
fromProd
fst_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Comma
CategoryTheory.commaCategory
fst
CategoryTheory.CommaMorphism.left
fst_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
fst
left
full_map 📖mathematicalCategoryTheory.Functor.Full
CategoryTheory.Comma
CategoryTheory.commaCategory
map
CategoryTheory.Functor.map_injective
CategoryTheory.cancel_mono
CategoryTheory.IsIso.mono_of_iso
CategoryTheory.NatIso.isIso_app_of_isIso
CategoryTheory.cancel_epi
CategoryTheory.IsIso.epi_of_iso
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
CategoryTheory.NatTrans.naturality_assoc
CategoryTheory.NatTrans.naturality
CategoryTheory.Functor.map_preimage
CategoryTheory.CommaMorphism.w
hom_ext
hom_ext 📖CategoryTheory.CommaMorphism.left
CategoryTheory.CommaMorphism.right
CategoryTheory.CommaMorphism.ext
hom_ext_iff 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.CommaMorphism.right
hom_ext
id_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.CategoryStruct.id
CategoryTheory.Comma
CategoryTheory.Category.toCategoryStruct
CategoryTheory.commaCategory
left
id_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.CategoryStruct.id
CategoryTheory.Comma
CategoryTheory.Category.toCategoryStruct
CategoryTheory.commaCategory
right
instEssSurjCompPostOfFull 📖mathematicalCategoryTheory.Functor.EssSurj
CategoryTheory.Comma
CategoryTheory.Functor.comp
CategoryTheory.commaCategory
post
CategoryTheory.Functor.essSurj_of_iso
essSurj_map
CategoryTheory.Functor.instEssSurjId
CategoryTheory.Iso.isIso_hom
CategoryTheory.Iso.isIso_inv
instEssSurjCompPreLeft 📖mathematicalCategoryTheory.Functor.EssSurj
CategoryTheory.Comma
CategoryTheory.Functor.comp
CategoryTheory.commaCategory
preLeft
CategoryTheory.Functor.essSurj_of_iso
essSurj_map
CategoryTheory.Functor.instEssSurjId
CategoryTheory.Functor.Full.id
CategoryTheory.Iso.isIso_inv
CategoryTheory.IsIso.comp_isIso
CategoryTheory.Iso.isIso_hom
instEssSurjCompPreRight 📖mathematicalCategoryTheory.Functor.EssSurj
CategoryTheory.Comma
CategoryTheory.Functor.comp
CategoryTheory.commaCategory
preRight
CategoryTheory.Functor.essSurj_of_iso
essSurj_map
CategoryTheory.Functor.instEssSurjId
CategoryTheory.Functor.Full.id
CategoryTheory.IsIso.comp_isIso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Iso.isIso_inv
instFaithfulCompPost 📖mathematicalCategoryTheory.Functor.Faithful
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.comp
post
CategoryTheory.Functor.Faithful.of_iso
faithful_map
CategoryTheory.Functor.Faithful.id
instFaithfulCompPreLeft 📖mathematicalCategoryTheory.Functor.Faithful
CategoryTheory.Comma
CategoryTheory.Functor.comp
CategoryTheory.commaCategory
preLeft
CategoryTheory.Functor.Faithful.of_iso
faithful_map
CategoryTheory.Functor.Faithful.id
instFaithfulCompPreRight 📖mathematicalCategoryTheory.Functor.Faithful
CategoryTheory.Comma
CategoryTheory.Functor.comp
CategoryTheory.commaCategory
preRight
CategoryTheory.Functor.Faithful.of_iso
faithful_map
CategoryTheory.Functor.Faithful.id
instFullCompPostOfFaithful 📖mathematicalCategoryTheory.Functor.Full
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.comp
post
CategoryTheory.Functor.Full.of_iso
full_map
CategoryTheory.Functor.Full.id
CategoryTheory.Iso.isIso_hom
CategoryTheory.Iso.isIso_inv
instFullCompPreLeft 📖mathematicalCategoryTheory.Functor.Full
CategoryTheory.Comma
CategoryTheory.Functor.comp
CategoryTheory.commaCategory
preLeft
CategoryTheory.Functor.Full.of_iso
full_map
CategoryTheory.Functor.Faithful.id
CategoryTheory.Functor.Full.id
CategoryTheory.Iso.isIso_inv
CategoryTheory.IsIso.comp_isIso
CategoryTheory.Iso.isIso_hom
instFullCompPreRight 📖mathematicalCategoryTheory.Functor.Full
CategoryTheory.Comma
CategoryTheory.Functor.comp
CategoryTheory.commaCategory
preRight
CategoryTheory.Functor.Full.of_iso
full_map
CategoryTheory.Functor.Faithful.id
CategoryTheory.Functor.Full.id
CategoryTheory.IsIso.comp_isIso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Iso.isIso_inv
instIsIsoLeft 📖mathematicalCategoryTheory.IsIso
left
CategoryTheory.CommaMorphism.left
CategoryTheory.Functor.map_isIso
instIsIsoRight 📖mathematicalCategoryTheory.IsIso
right
CategoryTheory.CommaMorphism.right
CategoryTheory.Functor.map_isIso
inv_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.inv
CategoryTheory.Comma
CategoryTheory.commaCategory
left
instIsIsoLeft
CategoryTheory.IsIso.eq_inv_of_hom_inv_id
instIsIsoLeft
comp_left
CategoryTheory.IsIso.hom_inv_id
id_left
inv_left_hom_right 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
left
right
CategoryTheory.Functor.map
CategoryTheory.inv
CategoryTheory.CommaMorphism.left
instIsIsoLeft
hom
CategoryTheory.CommaMorphism.right
instIsIsoLeft
CategoryTheory.Functor.map_isIso
CategoryTheory.Functor.map_inv
CategoryTheory.CommaMorphism.w
inv_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.inv
CategoryTheory.Comma
CategoryTheory.commaCategory
right
instIsIsoRight
CategoryTheory.IsIso.eq_inv_of_hom_inv_id
instIsIsoRight
comp_right
CategoryTheory.IsIso.hom_inv_id
id_right
isEquivalenceMap 📖mathematicalCategoryTheory.Functor.IsEquivalence
CategoryTheory.Comma
CategoryTheory.commaCategory
map
faithful_map
CategoryTheory.Functor.IsEquivalence.faithful
full_map
CategoryTheory.Functor.IsEquivalence.full
essSurj_map
CategoryTheory.Functor.IsEquivalence.essSurj
isEquivalence_post 📖mathematicalCategoryTheory.Functor.IsEquivalence
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.comp
post
instFaithfulCompPost
instFullCompPostOfFaithful
CategoryTheory.Functor.IsEquivalence.faithful
instEssSurjCompPostOfFull
CategoryTheory.Functor.IsEquivalence.full
isEquivalence_preLeft 📖mathematicalCategoryTheory.Functor.IsEquivalence
CategoryTheory.Comma
CategoryTheory.Functor.comp
CategoryTheory.commaCategory
preLeft
instFaithfulCompPreLeft
CategoryTheory.Functor.IsEquivalence.faithful
instFullCompPreLeft
CategoryTheory.Functor.IsEquivalence.full
instEssSurjCompPreLeft
CategoryTheory.Functor.IsEquivalence.essSurj
isEquivalence_preRight 📖mathematicalCategoryTheory.Functor.IsEquivalence
CategoryTheory.Comma
CategoryTheory.Functor.comp
CategoryTheory.commaCategory
preRight
instFaithfulCompPreRight
CategoryTheory.Functor.IsEquivalence.faithful
instFullCompPreRight
CategoryTheory.Functor.IsEquivalence.full
instEssSurjCompPreRight
CategoryTheory.Functor.IsEquivalence.essSurj
isoMk_hom_left 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
left
right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
hom
CategoryTheory.CommaMorphism.left
CategoryTheory.Comma
CategoryTheory.commaCategory
isoMk
isoMk_hom_right 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
left
right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
hom
CategoryTheory.CommaMorphism.right
CategoryTheory.Comma
CategoryTheory.commaCategory
isoMk
isoMk_inv_left 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
left
right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
hom
CategoryTheory.CommaMorphism.left
CategoryTheory.Iso.inv
CategoryTheory.Comma
CategoryTheory.commaCategory
isoMk
isoMk_inv_right 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
left
right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
hom
CategoryTheory.CommaMorphism.right
CategoryTheory.Iso.inv
CategoryTheory.Comma
CategoryTheory.commaCategory
isoMk
leftIso_hom 📖mathematicalCategoryTheory.Iso.hom
left
leftIso
CategoryTheory.CommaMorphism.left
CategoryTheory.Comma
CategoryTheory.commaCategory
leftIso_inv 📖mathematicalCategoryTheory.Iso.inv
left
leftIso
CategoryTheory.CommaMorphism.left
CategoryTheory.Comma
CategoryTheory.commaCategory
left_hom_inv_right 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
left
right
CategoryTheory.Functor.map
CategoryTheory.CommaMorphism.left
hom
CategoryTheory.inv
CategoryTheory.CommaMorphism.right
instIsIsoRight
instIsIsoRight
CategoryTheory.Functor.map_isIso
CategoryTheory.Functor.map_inv
CategoryTheory.CommaMorphism.w_assoc
CategoryTheory.IsIso.hom_inv_id
CategoryTheory.Category.comp_id
mapFst_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.comp
map
fst
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
mapFst
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
left
mapFst_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.comp
fst
map
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
mapFst
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
left
mapLeftComp_hom_app_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
mapLeft
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
mapLeftComp
CategoryTheory.CategoryStruct.id
left
mapLeftComp_hom_app_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
mapLeft
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
mapLeftComp
CategoryTheory.CategoryStruct.id
right
mapLeftComp_inv_app_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.comp
mapLeft
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
mapLeftComp
CategoryTheory.CategoryStruct.id
left
mapLeftComp_inv_app_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.comp
mapLeft
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
mapLeftComp
CategoryTheory.CategoryStruct.id
right
mapLeftEq_hom_app_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
mapLeft
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
mapLeftEq
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
left
mapLeftEq_hom_app_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
mapLeft
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
mapLeftEq
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
right
mapLeftEq_inv_app_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
mapLeft
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
mapLeftEq
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
left
mapLeftEq_inv_app_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
mapLeft
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
mapLeftEq
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
right
mapLeftId_hom_app_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
mapLeft
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
mapLeftId
left
mapLeftId_hom_app_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
mapLeft
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
mapLeftId
right
mapLeftId_inv_app_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.id
mapLeft
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
mapLeftId
left
mapLeftId_inv_app_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.id
mapLeft
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
mapLeftId
right
mapLeftIso_counitIso_hom_app_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.comp
mapLeft
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Iso.inv
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Equivalence.counitIso
mapLeftIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
left
CategoryTheory.Category.comp_id
mapLeftIso_counitIso_hom_app_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.comp
mapLeft
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Iso.inv
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Equivalence.counitIso
mapLeftIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
right
CategoryTheory.Category.comp_id
mapLeftIso_counitIso_inv_app_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
mapLeft
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Iso.inv
CategoryTheory.NatTrans.app
CategoryTheory.Equivalence.counitIso
mapLeftIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
left
CategoryTheory.Category.comp_id
mapLeftIso_counitIso_inv_app_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
mapLeft
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Iso.inv
CategoryTheory.NatTrans.app
CategoryTheory.Equivalence.counitIso
mapLeftIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
right
CategoryTheory.Category.comp_id
mapLeftIso_functor_map_left 📖mathematicalCategoryTheory.CommaMorphism.left
left
right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
hom
CategoryTheory.Functor.map
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.functor
mapLeftIso
mapLeftIso_functor_map_right 📖mathematicalCategoryTheory.CommaMorphism.right
left
right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
hom
CategoryTheory.Functor.map
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.functor
mapLeftIso
mapLeftIso_functor_obj_hom 📖mathematicalhom
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.functor
mapLeftIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
left
right
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
mapLeftIso_functor_obj_left 📖mathematicalleft
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.functor
mapLeftIso
mapLeftIso_functor_obj_right 📖mathematicalright
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.functor
mapLeftIso
mapLeftIso_inverse_map_left 📖mathematicalCategoryTheory.CommaMorphism.left
left
right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
hom
CategoryTheory.Functor.map
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.inverse
mapLeftIso
mapLeftIso_inverse_map_right 📖mathematicalCategoryTheory.CommaMorphism.right
left
right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
hom
CategoryTheory.Functor.map
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.inverse
mapLeftIso
mapLeftIso_inverse_obj_hom 📖mathematicalhom
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.inverse
mapLeftIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
left
right
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
mapLeftIso_inverse_obj_left 📖mathematicalleft
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.inverse
mapLeftIso
mapLeftIso_inverse_obj_right 📖mathematicalright
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.inverse
mapLeftIso
mapLeftIso_unitIso_hom_app_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
mapLeft
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Iso.hom
CategoryTheory.NatTrans.app
CategoryTheory.Equivalence.unitIso
mapLeftIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
left
CategoryTheory.Category.comp_id
mapLeftIso_unitIso_hom_app_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
mapLeft
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Iso.hom
CategoryTheory.NatTrans.app
CategoryTheory.Equivalence.unitIso
mapLeftIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
right
CategoryTheory.Category.comp_id
mapLeftIso_unitIso_inv_app_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.comp
mapLeft
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Iso.hom
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Equivalence.unitIso
mapLeftIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
left
CategoryTheory.Category.comp_id
mapLeftIso_unitIso_inv_app_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.comp
mapLeft
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Iso.hom
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Equivalence.unitIso
mapLeftIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
right
CategoryTheory.Category.comp_id
mapLeft_map_left 📖mathematicalCategoryTheory.CommaMorphism.left
left
right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
hom
CategoryTheory.Functor.map
CategoryTheory.Comma
CategoryTheory.commaCategory
mapLeft
mapLeft_map_right 📖mathematicalCategoryTheory.CommaMorphism.right
left
right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
hom
CategoryTheory.Functor.map
CategoryTheory.Comma
CategoryTheory.commaCategory
mapLeft
mapLeft_obj_hom 📖mathematicalhom
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
mapLeft
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
left
right
CategoryTheory.NatTrans.app
mapLeft_obj_left 📖mathematicalleft
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
mapLeft
mapLeft_obj_right 📖mathematicalright
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
mapLeft
mapRightComp_hom_app_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
mapRight
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
mapRightComp
CategoryTheory.CategoryStruct.id
left
mapRightComp_hom_app_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
mapRight
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
mapRightComp
CategoryTheory.CategoryStruct.id
right
mapRightComp_inv_app_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.comp
mapRight
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
mapRightComp
CategoryTheory.CategoryStruct.id
left
mapRightComp_inv_app_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.comp
mapRight
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
mapRightComp
CategoryTheory.CategoryStruct.id
right
mapRightEq_hom_app_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
mapRight
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
mapRightEq
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
left
mapRightEq_hom_app_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
mapRight
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
mapRightEq
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
right
mapRightEq_inv_app_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
mapRight
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
mapRightEq
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
left
mapRightEq_inv_app_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
mapRight
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
mapRightEq
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
right
mapRightId_hom_app_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
mapRight
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
mapRightId
left
mapRightId_hom_app_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
mapRight
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
mapRightId
right
mapRightId_inv_app_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.id
mapRight
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
mapRightId
left
mapRightId_inv_app_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.id
mapRight
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
mapRightId
right
mapRightIso_counitIso_hom_app_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.comp
mapRight
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Iso.hom
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Equivalence.counitIso
mapRightIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
left
CategoryTheory.Category.comp_id
mapRightIso_counitIso_hom_app_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.comp
mapRight
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Iso.hom
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Equivalence.counitIso
mapRightIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
right
CategoryTheory.Category.comp_id
mapRightIso_counitIso_inv_app_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
mapRight
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Iso.hom
CategoryTheory.NatTrans.app
CategoryTheory.Equivalence.counitIso
mapRightIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
left
CategoryTheory.Category.comp_id
mapRightIso_counitIso_inv_app_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
mapRight
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Iso.hom
CategoryTheory.NatTrans.app
CategoryTheory.Equivalence.counitIso
mapRightIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
right
CategoryTheory.Category.comp_id
mapRightIso_functor_map_left 📖mathematicalCategoryTheory.CommaMorphism.left
left
right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
hom
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.map
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.functor
mapRightIso
mapRightIso_functor_map_right 📖mathematicalCategoryTheory.CommaMorphism.right
left
right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
hom
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.map
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.functor
mapRightIso
mapRightIso_functor_obj_hom 📖mathematicalhom
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.functor
mapRightIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
left
right
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
mapRightIso_functor_obj_left 📖mathematicalleft
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.functor
mapRightIso
mapRightIso_functor_obj_right 📖mathematicalright
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.functor
mapRightIso
mapRightIso_inverse_map_left 📖mathematicalCategoryTheory.CommaMorphism.left
left
right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
hom
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.map
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.inverse
mapRightIso
mapRightIso_inverse_map_right 📖mathematicalCategoryTheory.CommaMorphism.right
left
right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
hom
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.map
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.inverse
mapRightIso
mapRightIso_inverse_obj_hom 📖mathematicalhom
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.inverse
mapRightIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
left
right
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
mapRightIso_inverse_obj_left 📖mathematicalleft
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.inverse
mapRightIso
mapRightIso_inverse_obj_right 📖mathematicalright
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.inverse
mapRightIso
mapRightIso_unitIso_hom_app_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
mapRight
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Iso.inv
CategoryTheory.NatTrans.app
CategoryTheory.Equivalence.unitIso
mapRightIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
left
CategoryTheory.Category.comp_id
mapRightIso_unitIso_hom_app_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
mapRight
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Iso.inv
CategoryTheory.NatTrans.app
CategoryTheory.Equivalence.unitIso
mapRightIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
right
CategoryTheory.Category.comp_id
mapRightIso_unitIso_inv_app_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.comp
mapRight
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Iso.inv
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Equivalence.unitIso
mapRightIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
left
CategoryTheory.Category.comp_id
mapRightIso_unitIso_inv_app_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.comp
mapRight
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Iso.inv
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Equivalence.unitIso
mapRightIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
right
CategoryTheory.Category.comp_id
mapRight_map_left 📖mathematicalCategoryTheory.CommaMorphism.left
left
right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
hom
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
CategoryTheory.Comma
CategoryTheory.commaCategory
mapRight
mapRight_map_right 📖mathematicalCategoryTheory.CommaMorphism.right
left
right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
hom
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
CategoryTheory.Comma
CategoryTheory.commaCategory
mapRight
mapRight_obj_hom 📖mathematicalhom
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
mapRight
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
left
right
CategoryTheory.NatTrans.app
mapRight_obj_left 📖mathematicalleft
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
mapRight
mapRight_obj_right 📖mathematicalright
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
mapRight
mapSnd_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.comp
map
snd
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
mapSnd
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
right
mapSnd_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.comp
snd
map
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
mapSnd
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
right
map_fst 📖mathematicalCategoryTheory.Functor.comp
CategoryTheory.Comma
CategoryTheory.commaCategory
map
fst
map_map_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Functor.obj
left
right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
hom
CategoryTheory.Comma
CategoryTheory.commaCategory
map
map_map_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Functor.obj
left
right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
hom
CategoryTheory.Comma
CategoryTheory.commaCategory
map
map_obj_hom 📖mathematicalhom
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
map
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
left
CategoryTheory.Functor.comp
right
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
map_obj_left 📖mathematicalleft
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
map
map_obj_right 📖mathematicalright
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
map
map_snd 📖mathematicalCategoryTheory.Functor.comp
CategoryTheory.Comma
CategoryTheory.commaCategory
map
snd
natTrans_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.comp
fst
snd
natTrans
hom
opEquiv_counitIso 📖mathematicalCategoryTheory.Equivalence.counitIso
CategoryTheory.Comma
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
CategoryTheory.commaCategory
opEquiv
CategoryTheory.NatIso.ofComponents
CategoryTheory.Functor.comp
CategoryTheory.Functor.leftOp
unopFunctor
opFunctor
CategoryTheory.Functor.id
CategoryTheory.Iso.refl
CategoryTheory.Functor.obj
opEquiv_functor 📖mathematicalCategoryTheory.Equivalence.functor
CategoryTheory.Comma
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
CategoryTheory.commaCategory
opEquiv
opFunctor
opEquiv_inverse 📖mathematicalCategoryTheory.Equivalence.inverse
CategoryTheory.Comma
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
CategoryTheory.commaCategory
opEquiv
CategoryTheory.Functor.leftOp
unopFunctor
opEquiv_unitIso 📖mathematicalCategoryTheory.Equivalence.unitIso
CategoryTheory.Comma
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
CategoryTheory.commaCategory
opEquiv
CategoryTheory.NatIso.ofComponents
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
opFunctor
CategoryTheory.Functor.leftOp
unopFunctor
CategoryTheory.Iso.refl
CategoryTheory.Functor.obj
opFunctorCompFst_hom_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
CategoryTheory.Comma
CategoryTheory.Category.opposite
CategoryTheory.commaCategory
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
CategoryTheory.Functor.leftOp
opFunctor
fst
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
snd
opFunctorCompFst
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
Opposite.op
right
Opposite.unop
opFunctorCompFst_inv_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
CategoryTheory.Comma
CategoryTheory.Category.opposite
CategoryTheory.commaCategory
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
CategoryTheory.Functor.leftOp
opFunctor
fst
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
snd
opFunctorCompFst
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
Opposite.op
right
Opposite.unop
opFunctorCompSnd_hom_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
CategoryTheory.Comma
CategoryTheory.Category.opposite
CategoryTheory.commaCategory
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
CategoryTheory.Functor.leftOp
opFunctor
snd
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
fst
opFunctorCompSnd
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
Opposite.op
left
Opposite.unop
opFunctorCompSnd_inv_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
CategoryTheory.Comma
CategoryTheory.Category.opposite
CategoryTheory.commaCategory
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
CategoryTheory.Functor.leftOp
opFunctor
snd
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
fst
opFunctorCompSnd
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
Opposite.op
left
Opposite.unop
opFunctor_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Comma
CategoryTheory.commaCategory
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
opFunctor
Opposite.op
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.unop
right
left
CategoryTheory.Functor.obj
hom
CategoryTheory.CommaMorphism.right
CategoryTheory.CommaMorphism.left
opFunctor_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
opFunctor
Opposite.op
right
left
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.unop
hom
post_map_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Functor.comp
left
right
CategoryTheory.Functor.map
CategoryTheory.Functor.obj
hom
CategoryTheory.Comma
CategoryTheory.commaCategory
post
post_map_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Functor.comp
left
right
CategoryTheory.Functor.map
CategoryTheory.Functor.obj
hom
CategoryTheory.Comma
CategoryTheory.commaCategory
post
post_obj_hom 📖mathematicalhom
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
post
CategoryTheory.Functor.map
left
right
post_obj_left 📖mathematicalleft
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
post
post_obj_right 📖mathematicalright
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
post
preLeft_map_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Functor.obj
left
CategoryTheory.Functor.comp
right
hom
CategoryTheory.Functor.map
CategoryTheory.Comma
CategoryTheory.commaCategory
preLeft
preLeft_map_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Functor.obj
left
CategoryTheory.Functor.comp
right
hom
CategoryTheory.Functor.map
CategoryTheory.Comma
CategoryTheory.commaCategory
preLeft
preLeft_obj_hom 📖mathematicalhom
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.Functor.comp
CategoryTheory.commaCategory
preLeft
preLeft_obj_left 📖mathematicalleft
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.Functor.comp
CategoryTheory.commaCategory
preLeft
preLeft_obj_right 📖mathematicalright
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.Functor.comp
CategoryTheory.commaCategory
preLeft
preRight_map_left 📖mathematicalCategoryTheory.CommaMorphism.left
left
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
right
hom
CategoryTheory.Functor.map
CategoryTheory.Comma
CategoryTheory.commaCategory
preRight
preRight_map_right 📖mathematicalCategoryTheory.CommaMorphism.right
left
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
right
hom
CategoryTheory.Functor.map
CategoryTheory.Comma
CategoryTheory.commaCategory
preRight
preRight_obj_hom 📖mathematicalhom
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.Functor.comp
CategoryTheory.commaCategory
preRight
preRight_obj_left 📖mathematicalleft
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.Functor.comp
CategoryTheory.commaCategory
preRight
preRight_obj_right 📖mathematicalright
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.Functor.comp
CategoryTheory.commaCategory
preRight
rightIso_hom 📖mathematicalCategoryTheory.Iso.hom
right
rightIso
CategoryTheory.CommaMorphism.right
CategoryTheory.Comma
CategoryTheory.commaCategory
rightIso_inv 📖mathematicalCategoryTheory.Iso.inv
right
rightIso
CategoryTheory.CommaMorphism.right
CategoryTheory.Comma
CategoryTheory.commaCategory
snd_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Comma
CategoryTheory.commaCategory
snd
CategoryTheory.CommaMorphism.right
snd_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
snd
right
toIdPUnitEquiv_counitIso_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Comma
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.commaCategory
CategoryTheory.prod'
CategoryTheory.Equivalence.inverse
CategoryTheory.prod.leftUnitorEquivalence
equivProd
CategoryTheory.Equivalence.functor
CategoryTheory.Functor.id
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.counitIso
toIdPUnitEquiv
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Category.comp_id
toIdPUnitEquiv_counitIso_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Comma
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.commaCategory
CategoryTheory.prod'
CategoryTheory.Equivalence.inverse
CategoryTheory.prod.leftUnitorEquivalence
equivProd
CategoryTheory.Equivalence.functor
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.counitIso
toIdPUnitEquiv
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Category.comp_id
toIdPUnitEquiv_functor_iso 📖mathematicalCategoryTheory.Equivalence.functor
CategoryTheory.Comma
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.commaCategory
toIdPUnitEquiv
snd
toIdPUnitEquiv_functor_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Comma
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.commaCategory
CategoryTheory.Equivalence.functor
toIdPUnitEquiv
CategoryTheory.CommaMorphism.right
toIdPUnitEquiv_functor_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.commaCategory
CategoryTheory.Equivalence.functor
toIdPUnitEquiv
right
toIdPUnitEquiv_inverse_map_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.obj
CategoryTheory.prod'
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.inverse
equivProd
CategoryTheory.prod.leftUnitorEquivalence
CategoryTheory.Functor.map
toIdPUnitEquiv
toIdPUnitEquiv_inverse_obj_left_as 📖mathematicalCategoryTheory.Discrete.as
left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.inverse
toIdPUnitEquiv
toIdPUnitEquiv_inverse_obj_right 📖mathematicalright
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.inverse
toIdPUnitEquiv
toIdPUnitEquiv_unitIso_hom_app_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.prod'
CategoryTheory.Equivalence.functor
equivProd
CategoryTheory.prod.leftUnitorEquivalence
CategoryTheory.Equivalence.inverse
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.unitIso
toIdPUnitEquiv
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
right
CategoryTheory.Category.comp_id
toIdPUnitEquiv_unitIso_inv_app_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.comp
CategoryTheory.prod'
CategoryTheory.Equivalence.functor
equivProd
CategoryTheory.prod.leftUnitorEquivalence
CategoryTheory.Equivalence.inverse
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.unitIso
toIdPUnitEquiv
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
right
CategoryTheory.Category.comp_id
toPUnitIdEquiv_counitIso_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Comma
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.commaCategory
CategoryTheory.prod'
CategoryTheory.Equivalence.inverse
CategoryTheory.prod.rightUnitorEquivalence
equivProd
CategoryTheory.Equivalence.functor
CategoryTheory.Functor.id
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.counitIso
toPUnitIdEquiv
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Category.comp_id
toPUnitIdEquiv_counitIso_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Comma
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.commaCategory
CategoryTheory.prod'
CategoryTheory.Equivalence.inverse
CategoryTheory.prod.rightUnitorEquivalence
equivProd
CategoryTheory.Equivalence.functor
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.counitIso
toPUnitIdEquiv
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Category.comp_id
toPUnitIdEquiv_functor_iso 📖mathematicalCategoryTheory.Equivalence.functor
CategoryTheory.Comma
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.commaCategory
toPUnitIdEquiv
fst
toPUnitIdEquiv_functor_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Comma
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.commaCategory
CategoryTheory.Equivalence.functor
toPUnitIdEquiv
CategoryTheory.CommaMorphism.left
toPUnitIdEquiv_functor_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.commaCategory
CategoryTheory.Equivalence.functor
toPUnitIdEquiv
left
toPUnitIdEquiv_inverse_map_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.obj
CategoryTheory.prod'
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.inverse
equivProd
CategoryTheory.prod.rightUnitorEquivalence
CategoryTheory.Functor.map
toPUnitIdEquiv
toPUnitIdEquiv_inverse_obj_left 📖mathematicalleft
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.inverse
toPUnitIdEquiv
toPUnitIdEquiv_inverse_obj_right_as 📖mathematicalCategoryTheory.Discrete.as
right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.inverse
toPUnitIdEquiv
toPUnitIdEquiv_unitIso_hom_app_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.prod'
CategoryTheory.Equivalence.functor
equivProd
CategoryTheory.prod.rightUnitorEquivalence
CategoryTheory.Equivalence.inverse
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.unitIso
toPUnitIdEquiv
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
left
CategoryTheory.Category.comp_id
toPUnitIdEquiv_unitIso_inv_app_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.comp
CategoryTheory.prod'
CategoryTheory.Equivalence.functor
equivProd
CategoryTheory.prod.rightUnitorEquivalence
CategoryTheory.Equivalence.inverse
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.unitIso
toPUnitIdEquiv
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
left
CategoryTheory.Category.comp_id
unopFunctorCompFst_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Comma
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
CategoryTheory.commaCategory
CategoryTheory.Functor.comp
unopFunctor
fst
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
snd
unopFunctorCompFst
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
right
unopFunctorCompFst_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Comma
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
CategoryTheory.commaCategory
CategoryTheory.Functor.comp
unopFunctor
fst
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
snd
unopFunctorCompFst
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
right
unopFunctorCompSnd_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Comma
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
CategoryTheory.commaCategory
CategoryTheory.Functor.comp
unopFunctor
snd
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
fst
unopFunctorCompSnd
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
left
unopFunctorCompSnd_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Comma
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
CategoryTheory.commaCategory
CategoryTheory.Functor.comp
unopFunctor
snd
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
fst
unopFunctorCompSnd
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
left
unopFunctor_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Comma
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
CategoryTheory.commaCategory
unopFunctor
Opposite.op
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.unop
right
left
Quiver.Hom.unop
CategoryTheory.Functor.obj
hom
CategoryTheory.CommaMorphism.right
CategoryTheory.CommaMorphism.left
unopFunctor_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Comma
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
CategoryTheory.commaCategory
unopFunctor
Opposite.op
Opposite.unop
right
left
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
hom

CategoryTheory.CommaMorphism

Definitions

NameCategoryTheorems
inhabited 📖CompOp
left 📖CompOp
664 mathmath: CategoryTheory.Limits.kernelSubobjectMap_arrow_assoc, CategoryTheory.Over.associator_hom_left_snd_fst_assoc, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left_fst, CategoryTheory.SimplicialObject.id_left_app, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_hom_right, CategoryTheory.Over.prodLeftIsoPullback_hom_snd_assoc, CategoryTheory.CosimplicialObject.Augmented.leftOpRightOpIso_hom_left, CategoryTheory.Over.μ_pullback_left_snd', CategoryTheory.WithTerminal.coneEquiv_unitIso_hom_app_hom_left, CategoryTheory.Bicategory.RightExtension.w_assoc, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_snd_fst_assoc, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_hom_app_left, CategoryTheory.SmallObject.SuccStruct.prop.arrowIso_hom_left, CategoryTheory.CostructuredArrow.hom_eq_iff, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_functor_map_left, CategoryTheory.Over.iteratedSliceForwardNaturalityIso_hom_app, CategoryTheory.MorphismProperty.Comma.Hom.ext_iff, CategoryTheory.Limits.MonoFactorisation.ofArrowIso_e, CategoryTheory.SmallObject.SuccStruct.prop.arrowIso_inv_left, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left_fst, CategoryTheory.CategoryOfElements.fromStructuredArrow_map, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_pullback_map, CategoryTheory.WithTerminal.equivComma_counitIso_hom_app_left_app, CategoryTheory.MorphismProperty.FunctorialFactorizationData.i_mapZ_assoc, CategoryTheory.Over.iteratedSliceBackward_map, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_unitIso, CategoryTheory.CostructuredArrow.ofDiagEquivalence.functor_map_left_left, CategoryTheory.Over.associator_inv_left_snd, CategoryTheory.Comma.toPUnitIdEquiv_functor_map, CategoryTheory.StructuredArrow.commaMapEquivalenceInverse_map, CategoryTheory.Over.inv_left_hom_left_assoc, AlgebraicGeometry.Scheme.OpenCover.map_glueMorphismsOverOfLocallyDirected_left_assoc, CategoryTheory.Arrow.mapCechNerve_app, CategoryTheory.WithTerminal.equivComma_counitIso_inv_app_left_app, CategoryTheory.RetractArrow.retract_left_assoc, CategoryTheory.CostructuredArrow.w_assoc, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_inverse_map_app, CategoryTheory.MonoOver.isIso_left_iff_subobjectMk_eq, CategoryTheory.Functor.PullbackObjObj.mapArrowRight_right, CategoryTheory.RetractArrow.left_r, CategoryTheory.Sieve.overEquiv_pullback, CategoryTheory.Over.rightUnitor_inv_left_fst_assoc, CategoryTheory.Comma.mapLeft_map_left, CategoryTheory.OverPresheafAux.restrictedYoneda_map, CategoryTheory.Bicategory.RightLift.w_assoc, CategoryTheory.Over.comp_left_assoc, CategoryTheory.Over.hom_left_inv_left, CategoryTheory.MorphismProperty.Comma.eqToHom_left, CategoryTheory.Abelian.PreservesCoimageImageComparison.iso_inv_left, CategoryTheory.Over.whiskerLeft_left, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorToComma_map_left, CategoryTheory.ParametrizedAdjunction.inr_arrowHomEquiv_symm_apply_left, CategoryTheory.CostructuredArrow.w_prod_fst, CategoryTheory.Square.fromArrowArrowFunctor_map_τ₃, CategoryTheory.Over.epi_iff_epi_left, CategoryTheory.ParametrizedAdjunction.inl_arrowHomEquiv_symm_apply_left, CategoryTheory.Over.OverMorphism.ext_iff, CategoryTheory.StructuredArrow.commaMapEquivalenceCounitIso_hom_app_left_right, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_hom_left_comp, CategoryTheory.Comma.mapLeftIso_functor_map_left, CategoryTheory.Comma.mapLeftIso_unitIso_inv_app_left, CategoryTheory.WithTerminal.coneEquiv_inverse_obj_π_app_left, CategoryTheory.Limits.KernelFork.mapOfIsLimit_ι_assoc, CategoryTheory.Arrow.comp_left, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.pullbackGluedIso_inv_snd_assoc, CategoryTheory.MorphismProperty.Over.pullbackComp_hom_app_left, CategoryTheory.Comma.mapRightIso_counitIso_inv_app_left, CategoryTheory.TwoSquare.EquivalenceJ.inverse_map, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.isPullback, CategoryTheory.RetractArrow.r_w_assoc, CategoryTheory.Comma.mapLeftEq_hom_app_left, CategoryTheory.Limits.Cone.fromCostructuredArrow_map_hom, AlgebraicGeometry.instIsOpenImmersionLeftSchemeDiscretePUnitMapWalkingSpanOverTopMorphismPropertySpan, CategoryTheory.Arrow.mapAugmentedCechNerve_left, CategoryTheory.MorphismProperty.CostructuredArrow.homMk_left, CategoryTheory.ChosenPullbacksAlong.iso_mapPullbackAdj_unit_app, CategoryTheory.toOverPullbackIsoToOver_inv_app_left, CategoryTheory.Comma.eqToHom_left, CategoryTheory.CostructuredArrow.w_prod_fst_assoc, CategoryTheory.Over.toUnit_left, CategoryTheory.Comma.mapRightIso_functor_map_left, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_hom_app_comp_snd_assoc, CategoryTheory.CostructuredArrow.unop_left_comp_ofMkLEMk_unop, CategoryTheory.Over.braiding_inv_left, CategoryTheory.MorphismProperty.Over.mapCongr_inv_app_left, CategoryTheory.Over.prodLeftIsoPullback_inv_snd, CategoryTheory.Functor.LeibnizAdjunction.adj_unit_app_left, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_map_app, CategoryTheory.Over.iteratedSliceForwardIsoPost_inv_app, CategoryTheory.SimplicialObject.Augmented.toArrow_map_left, CategoryTheory.MorphismProperty.FunctorialFactorizationData.functorCategory.Z_map_app, CategoryTheory.toOverUnit_map_left, CategoryTheory.CostructuredArrow.mapNatIso_unitIso_inv_app_left, CategoryTheory.Comma.inv_left, CategoryTheory.WithTerminal.mkCommaMorphism_left_app, CategoryTheory.CostructuredArrow.prodFunctor_map, CategoryTheory.Abelian.coim_map, CategoryTheory.Over.leftUnitor_hom_left, CategoryTheory.CostructuredArrow.mapIso_unitIso_hom_app_left, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_left, CategoryTheory.RetractArrow.i_w, CategoryTheory.Functor.LeibnizAdjunction.adj_counit_app_left, CategoryTheory.toOverIsoToOverUnit_inv_app_left, CategoryTheory.Over.ConstructProducts.conesEquivCounitIso_inv_app_hom_left, CategoryTheory.MorphismProperty.Over.map_map_left, groupHomology.d₁₀ArrowIso_hom_left, CategoryTheory.MonoOver.mkArrowIso_hom_hom_left, CategoryTheory.Comma.opFunctor_map, CategoryTheory.CostructuredArrow.commaToGrothendieckPrecompFunctor_map_fiber, CategoryTheory.ChosenPullbacksAlong.snd'_left, CategoryTheory.MorphismProperty.Comma.isoMk_hom_left, AlgebraicGeometry.Scheme.OpenCover.map_glueMorphismsOverOfLocallyDirected_left, CategoryTheory.Over.rightUnitor_inv_left_fst, CategoryTheory.WithTerminal.commaFromOver_map_left, CategoryTheory.Functor.RightExtension.precomp_map_left, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left_snd_assoc, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_mapPullbackAdj_unit_app, CategoryTheory.MonoOver.isIso_hom_left_iff_subobjectMk_eq, CategoryTheory.Over.mapCongr_inv_app_left, CategoryTheory.MorphismProperty.Over.Hom.ext_iff, CategoryTheory.MorphismProperty.Comma.comp_left_assoc, CategoryTheory.Over.mapCongr_hom_app_left, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_inv_left_snd, CategoryTheory.Over.postCongr_inv_app_left, CategoryTheory.Over.mapComp_hom_app_left, CategoryTheory.Comma.equivProd_unitIso_hom_app_left, CategoryTheory.MorphismProperty.Over.pullbackCongr_hom_app_left_fst, CategoryTheory.Functor.PushoutObjObj.mapArrowRight_left, CategoryTheory.Over.whiskerRight_left_fst, CategoryTheory.CostructuredArrow.w_prod_snd_assoc, CategoryTheory.Over.postAdjunctionLeft_unit_app_left, CategoryTheory.CostructuredArrow.costructuredArrowToOverEquivalence.functor_map, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.pullbackGluedIso_inv_fst_assoc, AlgebraicGeometry.Scheme.Cover.pullbackCoverOverProp_f, CategoryTheory.Abelian.PreservesCoimageImageComparison.iso_hom_left, CategoryTheory.Arrow.square_from_iso_invert, CategoryTheory.Over.prodLeftIsoPullback_inv_fst, CategoryTheory.StructuredArrow.map₂_map_left, CategoryTheory.TwoSquare.costructuredArrowRightwards_map, CategoryTheory.CostructuredArrow.mkPrecomp_left, CategoryTheory.Arrow.mono_left, CategoryTheory.CostructuredArrow.mapIso_functor_map_left, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_inv_app_left, CategoryTheory.Over.prodLeftIsoPullback_inv_snd_assoc, CategoryTheory.Over.rightUnitor_inv_left_snd, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_inverse_map_left, AlgebraicGeometry.instIsClosedImmersionLeftSchemeDiscretePUnitOneOverSpecOf, CategoryTheory.Over.post_map, CategoryTheory.Comma.mapRightId_inv_app_left, CategoryTheory.Over.postCongr_hom_app_left, CategoryTheory.Comma.preRight_map_left, CategoryTheory.CostructuredArrow.post_map, CategoryTheory.CostructuredArrow.mapIso_unitIso_inv_app_left, CategoryTheory.RetractArrow.op_r_right, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_fst, CategoryTheory.Over.prodLeftIsoPullback_hom_snd, CategoryTheory.CostructuredArrow.preEquivalence.functor_obj_hom, CategoryTheory.MorphismProperty.Over.isoMk_inv_left, CategoryTheory.Limits.pullbackConeEquivBinaryFan_counitIso, CategoryTheory.ChosenPullbacksAlong.isoInv_pullback_map_left, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceInverse_map_right_left, CategoryTheory.simplicialToCosimplicialAugmented_map_left, CategoryTheory.Over.whiskerRight_left_snd_assoc, CategoryTheory.Arrow.w_mk_right, CategoryTheory.Limits.IsLimit.pullbackConeEquivBinaryFanFunctor_lift_left, CategoryTheory.CostructuredArrow.eta_hom_left, CategoryTheory.Over.associator_inv_left_fst_fst_assoc, CategoryTheory.Sieve.overEquiv_symm_iff, CategoryTheory.Square.fromArrowArrowFunctor'_map_τ₃, CategoryTheory.CosimplicialObject.Augmented.leftOpRightOpIso_inv_left, CategoryTheory.Over.associator_hom_left_fst, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_map_left, CategoryTheory.Comma.comp_left, CategoryTheory.ChosenPullbacksAlong.Over.leftUnitor_inv_left_snd, CategoryTheory.WithInitial.mkCommaMorphism_left, CategoryTheory.WithInitial.commaFromUnder_map_left, CategoryTheory.SimplicialObject.Augmented.const_map_left, CategoryTheory.Over.prodLeftIsoPullback_hom_fst_assoc, CategoryTheory.Over.map_map_left, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left_snd_assoc, CategoryTheory.MorphismProperty.Over.mapId_inv_app_left, groupCohomology.dArrowIso₀₁_inv_left, CategoryTheory.CosimplicialObject.Augmented.whiskering_map_app_left, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_snd_fst, CategoryTheory.MonoOver.image_map, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceFunctor_map_left, CategoryTheory.Comma.mapLeftComp_inv_app_left, CategoryTheory.Limits.ImageMap.factor_map_assoc, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.inverse_map_left_left, CategoryTheory.StructuredArrow.mkPostcomp_left, CategoryTheory.StructuredArrow.left_eq_id, CategoryTheory.Over.leftUnitor_inv_left_fst, CategoryTheory.ChosenPullbacksAlong.isoInv_mapPullbackAdj_unit_app_left, CategoryTheory.Over.inv_left_hom_left, CategoryTheory.Over.starPullbackIsoStar_hom_app_left, AlgebraicGeometry.opensDiagram_map, CategoryTheory.CostructuredArrow.id_left, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left, HomotopicalAlgebra.cofibrations_over_iff, CategoryTheory.WithTerminal.coneEquiv_functor_obj_π_app_of, CategoryTheory.MorphismProperty.Over.mapCongr_hom_app_left, CategoryTheory.Over.isoMk_inv_left, CategoryTheory.Over.eqToHom_left, CategoryTheory.Comma.equivProd_inverse_map_left, CategoryTheory.MorphismProperty.Comma.isoMk_inv_left, CategoryTheory.Arrow.isoMk_inv_left, CategoryTheory.Over.tensorHom_left_snd_assoc, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_inv_left_snd_assoc, CategoryTheory.Limits.kernelSubobjectIso_comp_kernel_map, w_assoc, CategoryTheory.Over.leftUnitor_inv_left_snd, CategoryTheory.ChosenPullbacksAlong.Over.leftUnitor_inv_left_fst_assoc, CategoryTheory.Arrow.w, CategoryTheory.StructuredArrow.homMk'_left, HomotopicalAlgebra.instCofibrationLeftDiscretePUnitOfOver, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_snd', AlgebraicGeometry.Scheme.Cover.ColimitGluingData.fst_gluedCocone_ι, CategoryTheory.Over.μ_pullback_left_fst_snd', CategoryTheory.Over.comp_left, CategoryTheory.MorphismProperty.Over.forget_comp_forget_map, CategoryTheory.Square.toArrowArrowFunctor'_map_right_left, CategoryTheory.Over.mapId_inv_app_left, CategoryTheory.Comma.map_map_left, CategoryTheory.ParametrizedAdjunction.inr_arrowHomEquiv_symm_apply_left_assoc, CategoryTheory.CostructuredArrow.w_prod_snd, CategoryTheory.MorphismProperty.Over.pullbackComp_inv_app_left, CategoryTheory.Comma.post_map_left, w, CategoryTheory.Comma.toPUnitIdEquiv_unitIso_inv_app_left, CategoryTheory.ChosenPullbacksAlong.Over.leftUnitor_inv_left_fst, CategoryTheory.Sieve.overEquiv_symm_pullback, CategoryTheory.Over.leftUnitor_inv_left_snd_assoc, CategoryTheory.MorphismProperty.Comma.Hom.prop_hom_left, groupCohomology.dArrowIso₀₁_hom_left, CategoryTheory.RetractArrow.r_w, CategoryTheory.Arrow.inv_left, CategoryTheory.SmallObject.ιObj_naturality, CategoryTheory.SmallObject.ιFunctorObj_naturality, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_left_app, CategoryTheory.WithTerminal.ofCommaMorphism_app, CategoryTheory.CostructuredArrow.mapNatIso_counitIso_inv_app_left, CategoryTheory.SmallObject.functorMapSrc_functorObjTop, TopologicalSpace.Opens.overEquivalence_unitIso_hom_app_left, CategoryTheory.Comma.mapLeftIso_unitIso_hom_app_left, CategoryTheory.Arrow.w_mk_right_assoc, CategoryTheory.MorphismProperty.FunctorialFactorizationData.i_mapZ, CategoryTheory.Limits.pullbackConeEquivBinaryFan_inverse_obj, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_mapPullbackAdj_unit_app, CategoryTheory.CostructuredArrow.mapIso_counitIso_hom_app_left, CategoryTheory.WithInitial.equivComma_functor_map_left, CategoryTheory.OverPresheafAux.restrictedYonedaObj_map, CategoryTheory.Over.associator_hom_left_snd_fst, CategoryTheory.CostructuredArrow.toOver_map_left, CategoryTheory.Over.postComp_inv_app_left, CategoryTheory.Comma.mapRightEq_inv_app_left, CategoryTheory.Functor.mapArrow_map_left, CategoryTheory.subterminalsEquivMonoOverTerminal_inverse_map, CategoryTheory.CostructuredArrow.eta_inv_left, CategoryTheory.Comma.hom_ext_iff, CategoryTheory.RetractArrow.retract_left, CategoryTheory.Arrow.squareToSnd_left, CategoryTheory.Over.rightUnitor_inv_left_snd_assoc, CategoryTheory.SimplicialObject.Augmented.hom_ext_iff, CategoryTheory.Limits.ImageMap.factor_map, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left_snd, CategoryTheory.MonoOver.w, CategoryTheory.WithInitial.equivComma_inverse_map_app, CategoryTheory.Comma.left_hom_inv_right, CategoryTheory.Arrow.isIso_left, CategoryTheory.SimplicialObject.Augmented.rightOpLeftOpIso_inv_left_app, CategoryTheory.Over.iteratedSliceEquivOverMapIso_inv_app_left_left, CategoryTheory.CostructuredArrow.mapNatIso_inverse_map_left, CategoryTheory.Over.iteratedSliceEquivOverMapIso_hom_app_left_left, CategoryTheory.CostructuredArrow.costructuredArrowToOverEquivalence.functor_obj, CategoryTheory.WithInitial.equivComma_counitIso_hom_app_left, CategoryTheory.overToCoalgebra_map_f, CategoryTheory.CosimplicialObject.Augmented.toArrow_map_left, CategoryTheory.Over.homMk_left, CategoryTheory.SimplicialObject.Augmented.rightOpLeftOpIso_hom_left_app, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left_snd_assoc, AlgebraicGeometry.Scheme.Cover.pullbackCoverOverProp'_f, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left_fst_assoc, CategoryTheory.Comma.mapLeftIso_counitIso_hom_app_left, CategoryTheory.Over.pullback_map_left, CategoryTheory.Arrow.mapAugmentedCechConerve_left, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_fst_fst, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.fst_gluedCocone_ι_assoc, CategoryTheory.Pseudofunctor.presheafHom_map, CategoryTheory.Limits.IndObjectPresentation.toCostructuredArrow_map_left, CategoryTheory.Over.ConstructProducts.conesEquivCounitIso_hom_app_hom_left, CategoryTheory.CostructuredArrow.toStructuredArrow'_map, CategoryTheory.RetractArrow.op_i_right, CategoryTheory.Over.tensorHom_left, CategoryTheory.CostructuredArrow.w, CategoryTheory.MorphismProperty.Over.mapComp_hom_app_left, CategoryTheory.toOverIteratedSliceForwardIsoPullback_hom_app_left, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_map_left_app, CategoryTheory.Over.associator_inv_left_fst_snd, CategoryTheory.SimplicialObject.comp_left_app, CategoryTheory.Square.toArrowArrowFunctor_obj_hom_left, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_obj_left, CategoryTheory.Limits.kernelSubobjectIso_comp_kernel_map_assoc, CategoryTheory.CostructuredArrow.grothendieckProj_map, CategoryTheory.MorphismProperty.Over.w_assoc, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_fst_assoc, CategoryTheory.toOverPullbackIsoToOver_hom_app_left, CategoryTheory.Functor.RightExtension.postcomp₁_map_left_app, CategoryTheory.Over.associator_hom_left_snd_snd_assoc, CategoryTheory.Comma.mapRightComp_hom_app_left, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_hom_app_left, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_map_left, CategoryTheory.RetractArrow.map_r_left, CategoryTheory.Arrow.mapCechConerve_app, CategoryTheory.Comma.toPUnitIdEquiv_inverse_map_left, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_inv_app_comp_fst, CategoryTheory.CostructuredArrow.epi_left_of_epi, CategoryTheory.Over.μ_pullback_left_fst_fst', CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceFunctor_map_right, CategoryTheory.Over.μ_pullback_left_fst_snd, CategoryTheory.Over.whiskerRight_left, CategoryTheory.CostructuredArrow.homMk'_left, CategoryTheory.Square.toArrowArrowFunctor'_map_left_right, TopologicalSpace.Opens.overEquivalence_unitIso_inv_app_left, CategoryTheory.Arrow.id_left, CategoryTheory.Square.fromArrowArrowFunctor'_obj_f₁₃, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_counitIso, CategoryTheory.StructuredArrow.pre_map_left, CategoryTheory.Comma.inv_left_hom_right, CategoryTheory.Over.opEquivOpUnder_counitIso, CategoryTheory.SimplicialObject.Augmented.whiskering_map_app_left, CategoryTheory.Comma.coconeOfPreserves_ι_app_left, ext_iff, CategoryTheory.CostructuredArrow.mapNatIso_unitIso_hom_app_left, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_left_app, CategoryTheory.CategoryOfElements.fromCostructuredArrow_map_coe, CategoryTheory.Comma.isoMk_inv_left, CategoryTheory.CostructuredArrow.proj_map, CategoryTheory.RetractArrow.unop_r_right, CategoryTheory.StructuredArrow.map_map_left, CategoryTheory.Functor.PullbackObjObj.mapArrowLeft_left, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_inv_app_comp_snd, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_map_left_right, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceInverse_map_left_left, CategoryTheory.toOverIsoToOverUnit_hom_app_left, CategoryTheory.rightAdjointOfCostructuredArrowTerminalsAux_apply, CategoryTheory.Over.w, CategoryTheory.MorphismProperty.CostructuredArrow.toOver_map, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_pullback_map, CategoryTheory.MorphismProperty.Comma.Hom.comp_left, CategoryTheory.OverClass.asOverHom_left, CategoryTheory.CostructuredArrow.comp_left, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left_fst_assoc, CategoryTheory.StructuredArrow.mapIso_functor_map_left, CategoryTheory.CostructuredArrow.homMk_left, CategoryTheory.Over.associator_inv_left_fst_fst, CategoryTheory.MonoOver.isIso_iff_isIso_hom_left, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_map_right, CategoryTheory.Comma.mapLeftId_hom_app_left, CategoryTheory.Over.snd_left, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.functor_map_left_left, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_hom_app_comp_snd, CategoryTheory.CostructuredArrow.prodInverse_map, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left_fst_assoc, CategoryTheory.Comma.mapLeftId_inv_app_left, CategoryTheory.Arrow.inv_hom_id_left_assoc, CategoryTheory.Over.tensorHom_left_fst, CategoryTheory.Over.whiskerRight_left_snd, AlgebraicGeometry.Scheme.Cover.pullbackCoverOver_f, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryToUnit_mapPullbackAdj_unit_app, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_fst_snd_assoc, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_fst_snd, HomotopicalAlgebra.instFibrationLeftDiscretePUnitOfOver, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_left_π_assoc, CategoryTheory.Over.isoMk_hom_left, CategoryTheory.Comma.toPUnitIdEquiv_unitIso_hom_app_left, CategoryTheory.CommSq.of_arrow, CategoryTheory.Comma.mapRightIso_unitIso_hom_app_left, CategoryTheory.Comma.fromProd_map_left, CategoryTheory.ChosenPullbacksAlong.Over.whiskerRight_left_fst, CategoryTheory.SmallObject.functorMapSrc_functorObjTop_assoc, CategoryTheory.Functor.toOver_map_left, CategoryTheory.Over.star_map_left, CategoryTheory.Comma.unopFunctor_map, CategoryTheory.Over.tensorHom_left_fst_assoc, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_snd_assoc, CategoryTheory.forgetAdjToOver.homEquiv_symm, CategoryTheory.Over.prodLeftIsoPullback_inv_fst_assoc, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_hom_left, CategoryTheory.CosimplicialObject.Augmented.const_map_left, CategoryTheory.Over.η_pullback_left, CategoryTheory.MorphismProperty.Comma.comp_left, CategoryTheory.SmallObject.iterationFunctorMapSuccAppArrowIso_hom_left, CategoryTheory.Over.id_left, CategoryTheory.ChosenPullbacksAlong.Over.leftUnitor_hom_left, CategoryTheory.CostructuredArrow.isoMk_inv_left, CategoryTheory.Arrow.iso_w, CategoryTheory.Arrow.comp_left_assoc, CategoryTheory.Over.postComp_hom_app_left, CategoryTheory.CosimplicialObject.Augmented.hom_ext_iff, CategoryTheory.Over.whiskerLeft_left_fst, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_mapPullbackAdj_counit_app, CategoryTheory.MonoOver.inf_map_app, CategoryTheory.TwoSquare.costructuredArrowDownwardsPrecomp_map, CategoryTheory.Functor.LeftExtension.postcompose₂_map_left, CategoryTheory.ChosenPullbacksAlong.isoInv_mapPullbackAdj_counit_app_left, CategoryTheory.Comma.mapLeftIso_counitIso_inv_app_left, CategoryTheory.MonoOver.mkArrowIso_inv_hom_left, CategoryTheory.Arrow.inv_left_hom_right, CategoryTheory.Comma.mapRightIso_counitIso_hom_app_left, CategoryTheory.Comma.mapRightId_hom_app_left, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceFunctor_map_left, CategoryTheory.ChosenPullbacksAlong.Over.lift_left, CategoryTheory.Square.fromArrowArrowFunctor_obj_f₁₂, CategoryTheory.Over.mapId_hom_app_left, CategoryTheory.Comma.mapLeftEq_inv_app_left, CategoryTheory.Square.toArrowArrowFunctor_map_left_left, CategoryTheory.Limits.kernel_map_comp_kernelSubobjectIso_inv, CategoryTheory.Abelian.coimageImageComparisonFunctor_map, CategoryTheory.MonoOver.w_assoc, CategoryTheory.CostructuredArrow.map_map_left, CategoryTheory.RetractArrow.map_i_left, CategoryTheory.MorphismProperty.over_iff, CategoryTheory.CostructuredArrow.map₂_map_left, CategoryTheory.MorphismProperty.Comma.mapRight_map_left, CategoryTheory.Over.isPullback_of_binaryFan_isLimit, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_hom_left_comp_assoc, CategoryTheory.Arrow.isoMk_hom_left, CategoryTheory.SimplicialObject.equivalenceRightToLeft_left, CategoryTheory.CosimplicialObject.Augmented.point_map, CategoryTheory.Over.whiskerLeft_left_fst_assoc, CategoryTheory.Functor.RightExtension.postcompose₂ObjMkIso_inv_left_app, CategoryTheory.MorphismProperty.Over.w, CategoryTheory.Functor.RightExtension.postcompose₂_map_left_app, AlgebraicGeometry.isClosedImmersion_equalizer_ι_left, CategoryTheory.RetractArrow.op_r_left, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.trans_app_left, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_fst_fst, CategoryTheory.Square.fromArrowArrowFunctor'_map_τ₄, CategoryTheory.Over.prodComparisonIso_pullback_Spec_inv_left_fst_fst', CategoryTheory.Comma.leftIso_hom, CategoryTheory.Over.whiskerLeft_left_snd_assoc, CategoryTheory.ParametrizedAdjunction.inl_arrowHomEquiv_symm_apply_left_assoc, CategoryTheory.TwoSquare.EquivalenceJ.functor_obj, CategoryTheory.CosimplicialObject.equivalenceRightToLeft_right_app, CategoryTheory.Square.toArrowArrowFunctor'_map_left_left, CategoryTheory.Over.leftUnitor_inv_left_fst_assoc, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left, CategoryTheory.WithTerminal.liftFromOver_obj_map, CategoryTheory.Functor.LeftExtension.precomp_map_left, CategoryTheory.CostructuredArrow.mapNatIso_counitIso_hom_app_left, HomologicalComplex.Hom.sqFrom_left, CategoryTheory.Arrow.hom_inv_id_left, CategoryTheory.Comma.leftIso_inv, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompToArrowIso_inv_app_left, CategoryTheory.Functor.PushoutObjObj.mapArrowLeft_left, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryToUnit_mapPullbackAdj_counit_app, CategoryTheory.WithTerminal.isLimitEquiv_apply_lift_left, CategoryTheory.subterminalsEquivMonoOverTerminal_unitIso, CategoryTheory.MorphismProperty.CostructuredArrow.Hom.ext_iff, CategoryTheory.WithInitial.equivComma_counitIso_inv_app_left, CategoryTheory.Over.associator_inv_left_fst_snd_assoc, CategoryTheory.Comma.mapRight_map_left, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_mapPullbackAdj_counit_app, CategoryTheory.Arrow.inv_hom_id_left, CategoryTheory.Functor.LeftExtension.postcomp₁_map_left, CategoryTheory.Square.fromArrowArrowFunctor'_map_τ₂, CategoryTheory.Functor.RightExtension.coneAtFunctor_map_hom, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_left_comp, CategoryTheory.Over.rightUnitor_hom_left, CategoryTheory.MorphismProperty.Over.pullback_map_left, CategoryTheory.Square.fromArrowArrowFunctor_map_τ₁, CategoryTheory.RetractArrow.op_i_left, SSet.Augmented.stdSimplex_map_left, CategoryTheory.toOver_map_left, CategoryTheory.Over.sections_map, CategoryTheory.ChosenPullbacksAlong.fst'_left, CategoryTheory.CosimplicialObject.equivalenceLeftToRight_left, CategoryTheory.MonoOver.commSqOfHasStrongEpiMonoFactorisation, CategoryTheory.Over.μ_pullback_left_snd, CategoryTheory.subterminalsEquivMonoOverTerminal_counitIso, CategoryTheory.Comma.id_left, CategoryTheory.CostructuredArrow.ofDiagEquivalence.inverse_map_left, CategoryTheory.ChosenPullbacksAlong.Over.toUnit_left, CategoryTheory.WithTerminal.coneEquiv_unitIso_inv_app_hom_left, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_left_π, CategoryTheory.Over.epi_left_of_epi, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompToArrowIso_hom_app_left, CategoryTheory.WithTerminal.equivComma_functor_map_left_app, CategoryTheory.Comma.preLeft_map_left, CategoryTheory.CostructuredArrow.eqToHom_left, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_fst, CategoryTheory.MorphismProperty.Comma.Hom.hom_left, CategoryTheory.CostructuredArrow.mapNatIso_functor_map_left, CategoryTheory.instHomIsOverLeftDiscretePUnit, CategoryTheory.Comma.mapRightIso_unitIso_inv_app_left, CategoryTheory.Over.braiding_hom_left, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_snd, CategoryTheory.ChosenPullbacksAlong.iso_mapPullbackAdj_counit_app, CategoryTheory.ChosenPullbacksAlong.Over.whiskerLeft_left_snd, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_snd_snd, CategoryTheory.MorphismProperty.Over.mapComp_inv_app_left, CategoryTheory.CostructuredArrow.hom_ext_iff, CategoryTheory.Over.μ_pullback_left_fst_fst, CategoryTheory.Over.starPullbackIsoStar_inv_app_left, CategoryTheory.Over.iteratedSliceForward_map, CategoryTheory.simplicialToCosimplicialAugmented_map_right, AlgebraicGeometry.Scheme.Cover.pullbackCoverOver'_f, HomologicalComplex.Hom.sqTo_left, CategoryTheory.Square.fromArrowArrowFunctor'_map_τ₁, CategoryTheory.SmallObject.ιFunctorObj_naturality_assoc, CategoryTheory.StructuredArrow.commaMapEquivalenceUnitIso_hom_app_right_left, CategoryTheory.Arrow.square_to_iso_invert, CategoryTheory.toOverIteratedSliceForwardIsoPullback_inv_app_left, CategoryTheory.Over.hom_left_inv_left_assoc, CategoryTheory.Functor.PullbackObjObj.mapArrowRight_left, CategoryTheory.ChosenPullbacksAlong.iso_pullback_map, CategoryTheory.TwoSquare.EquivalenceJ.functor_map, CategoryTheory.RetractArrow.unop_i_left, CategoryTheory.cosimplicialToSimplicialAugmented_map, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_hom_app_comp_fst_assoc, CategoryTheory.Comma.mapRightEq_hom_app_left, CategoryTheory.StructuredArrow.commaMapEquivalenceUnitIso_inv_app_right_left, CategoryTheory.CosimplicialObject.equivalenceRightToLeft_left, CategoryTheory.Arrow.leftFunc_map, CategoryTheory.Under.costar_map_left, CategoryTheory.Over.whiskerRight_left_fst_assoc, CategoryTheory.WithTerminal.equivComma_inverse_map_app, CategoryTheory.Functor.PullbackObjObj.mapArrowLeft_right, CategoryTheory.Over.tensorHom_left_snd, CategoryTheory.Under.opEquivOpOver_counitIso, CategoryTheory.MorphismProperty.Over.isoMk_hom_left, CategoryTheory.StructuredArrow.toUnder_map_left, CategoryTheory.CostructuredArrow.preEquivalence.inverse_obj_hom_left, CategoryTheory.SimplicialObject.Augmented.drop_map, CategoryTheory.Functor.mapArrowFunctor_map_app_left, CategoryTheory.Pretriangulated.exists_iso_of_arrow_iso, CategoryTheory.CostructuredArrow.preEquivalence.functor_map_left, CategoryTheory.SmallObject.ιObj_naturality_assoc, CategoryTheory.Over.forget_map, CategoryTheory.Square.fromArrowArrowFunctor_map_τ₂, CategoryTheory.RetractArrow.unop_i_right, CategoryTheory.Limits.kernel_map_comp_kernelSubobjectIso_inv_assoc, CategoryTheory.Square.toArrowArrowFunctor_map_left_right, CategoryTheory.WithTerminal.liftFromOver_map_app, CategoryTheory.WithTerminal.coneEquiv_inverse_map_hom_left, CategoryTheory.Arrow.left_hom_inv_right, CategoryTheory.Square.toArrowArrowFunctor_map_right_left, CategoryTheory.Comma.instIsIsoLeft, CategoryTheory.RetractArrow.left_i, CategoryTheory.Over.ConstructProducts.conesEquivInverseObj_π_app, CategoryTheory.RetractArrow.instIsSplitEpiLeftRArrow, CategoryTheory.Comma.equivProd_functor_map, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_inv_app_comp_fst_assoc, CategoryTheory.Over.lift_left, CategoryTheory.Comma.mapLeftIso_inverse_map_left, CategoryTheory.Arrow.w_assoc, CategoryTheory.CostructuredArrow.preEquivalence.inverse_map_left_left, CategoryTheory.Over.opEquivOpUnder_functor_map, CategoryTheory.Comma.mapLeftComp_hom_app_left, CategoryTheory.Functor.LeftExtension.precomp₂_map_left, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryToUnit_pullback_map, CategoryTheory.StructuredArrow.mapIso_inverse_map_left, CategoryTheory.SimplicialObject.augmentedCechNerve_map_left_app, AlgebraicGeometry.Scheme.restrictFunctor_map_left, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_hom_app_comp_fst, TopCat.Presheaf.generateEquivalenceOpensLe_functor'_map, CategoryTheory.CostructuredArrow.pre_map_left, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.functor_map, HomotopicalAlgebra.weakEquivalences_over_iff, CategoryTheory.CostructuredArrow.ext_iff, CategoryTheory.Over.mkIdTerminal_from_left, CategoryTheory.Square.toArrowArrowFunctor'_obj_hom_left, CategoryTheory.Over.fst_left, CategoryTheory.Over.prodLeftIsoPullback_hom_fst, CategoryTheory.Arrow.hom_ext_iff, CategoryTheory.Over.associator_hom_left_fst_assoc, CategoryTheory.Comma.equivProd_unitIso_inv_app_left, CategoryTheory.Limits.pullbackConeEquivBinaryFan_unitIso, CategoryTheory.Over.forgetAdjStar_unit_app_left, HomotopicalAlgebra.instWeakEquivalenceLeftDiscretePUnitOfOver, CategoryTheory.CostructuredArrow.epi_iff_epi_left, CategoryTheory.Arrow.homMk_left, CategoryTheory.MorphismProperty.Comma.mapLeft_map_left, CategoryTheory.RetractArrow.i_w_assoc, CategoryTheory.RetractArrow.unop_r_left, CategoryTheory.CostructuredArrow.unop_left_comp_underlyingIso_hom_unop, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.pullbackGluedIso_inv_snd, AlgebraicGeometry.Scheme.Cover.ColimitGluingData.pullbackGluedIso_inv_fst, CategoryTheory.Over.prodComparisonIso_pullback_inv_left_fst_snd', CategoryTheory.toOverUnitPullback_hom_app_left, CategoryTheory.Arrow.hom.congr_left, CategoryTheory.Over.ε_pullback_left, groupHomology.d₁₀ArrowIso_inv_left, CategoryTheory.Over.coprod_map_app, CategoryTheory.CostructuredArrow.mapIso_inverse_map_left, CategoryTheory.StructuredArrow.mapNatIso_inverse_map_left, CategoryTheory.WithInitial.ofCommaMorphism_app, CategoryTheory.ChosenPullbacksAlong.Over.leftUnitor_inv_left_snd_assoc, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_inv_left_fst_assoc, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_inverse_map, AlgebraicGeometry.Scheme.mem_toGrothendieck_smallPretopology, CategoryTheory.RetractArrow.instIsSplitMonoLeftIArrow, CategoryTheory.MorphismProperty.Over.mapId_hom_app_left, CategoryTheory.CosimplicialObject.comp_left, CategoryTheory.MorphismProperty.Over.pullbackComp_left_fst_fst, CategoryTheory.Limits.kernelSubobjectMap_arrow, CategoryTheory.Over.associator_hom_left_snd_snd, CategoryTheory.Over.associator_inv_left_snd_assoc, CategoryTheory.Over.coprodObj_map, CategoryTheory.Comma.fst_map, CategoryTheory.StructuredArrow.commaMapEquivalenceCounitIso_inv_app_left_right, CategoryTheory.toOverUnitPullback_inv_app_left, CategoryTheory.Comma.mapRightIso_inverse_map_left, CategoryTheory.ChosenPullbacksAlong.Over.rightUnitor_inv_left_fst, CategoryTheory.Limits.image.factor_map, CategoryTheory.Arrow.hom_inv_id_left_assoc, CategoryTheory.StructuredArrow.mapNatIso_functor_map_left, CategoryTheory.Arrow.homMk'_left, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_inv_app_comp_snd_assoc, CategoryTheory.Under.opEquivOpOver_inverse_map, CategoryTheory.Over.iteratedSliceForward_obj, CategoryTheory.Functor.RightExtension.postcompose₂ObjMkIso_hom_left_app, CategoryTheory.CostructuredArrow.projectQuotient_mk, CategoryTheory.MorphismProperty.Comma.id_left, CategoryTheory.CostructuredArrow.toStructuredArrow_map, CategoryTheory.Over.whiskerLeft_left_snd, CategoryTheory.Over.w_assoc, CategoryTheory.Comma.isoMk_hom_left, CategoryTheory.SimplicialObject.equivalenceLeftToRight_left_app, CategoryTheory.Limits.diagonal_pullback_fst, CategoryTheory.Bicategory.RightLift.w, CategoryTheory.Over.iteratedSliceForwardNaturalityIso_inv_app, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_fst_assoc, CategoryTheory.CostructuredArrow.costructuredArrowToOverEquivalence.inverse_map, CategoryTheory.CostructuredArrow.mapIso_counitIso_inv_app_left, CategoryTheory.MorphismProperty.Over.pullbackCongr_hom_app_left_fst_assoc, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left_snd, CategoryTheory.CostructuredArrow.isoMk_hom_left, CategoryTheory.Limits.KernelFork.mapOfIsLimit_ι, HomotopicalAlgebra.fibrations_over_iff, CategoryTheory.Over.ConstructProducts.conesEquivInverse_map_hom, CategoryTheory.Over.iteratedSliceForwardIsoPost_hom_app, CategoryTheory.Bicategory.RightExtension.w, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_inv_app_left, CategoryTheory.Over.postAdjunctionLeft_counit_app_left, CategoryTheory.Comma.mapRightComp_inv_app_left, CategoryTheory.Limits.pullbackConeEquivBinaryFan_inverse_map_hom, CategoryTheory.Arrow.iso_w', CategoryTheory.Limits.kernelSubobjectMap_arrow_apply, CategoryTheory.Over.mapComp_inv_app_left, CategoryTheory.CosimplicialObject.id_left, CategoryTheory.Limits.ker_map, CategoryTheory.Over.mono_left_of_mono, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_obj_hom, CategoryTheory.ChosenPullbacksAlong.Over.associator_inv_left_fst_fst_assoc, CategoryTheory.MonoOver.isIso_iff_isIso_left, CategoryTheory.ChosenPullbacksAlong.Over.associator_hom_left_snd_snd_assoc, CategoryTheory.MonoOver.instIsIsoLeftDiscretePUnitHomFullSubcategoryOverIsMono, CategoryTheory.WithTerminal.coneEquiv_functor_map_hom, CategoryTheory.ChosenPullbacksAlong.Over.tensorHom_left, CategoryTheory.Square.fromArrowArrowFunctor_map_τ₄, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceInverse_map_left_right, CategoryTheory.OverPresheafAux.counitForward_naturality₂, CategoryTheory.Comma.coneOfPreserves_π_app_left
right 📖CompOp
462 mathmath: CommRingCat.tensorProd_map_right, CategoryTheory.Functor.LeftExtension.coconeAtFunctor_map_hom, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_hom_right, CategoryTheory.StructuredArrow.projectSubobject_mk, CategoryTheory.StructuredArrow.map_map_right, CategoryTheory.MorphismProperty.FunctorialFactorizationData.mapZ_p, CategoryTheory.StructuredArrow.isoMk_inv_right, CategoryTheory.RetractArrow.right_r, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceFunctor_map_right, CategoryTheory.Comma.mapLeftEq_inv_app_right, CategoryTheory.Comma.mapLeftIso_inverse_map_right, CategoryTheory.MorphismProperty.Comma.Hom.ext_iff, CategoryTheory.CategoryOfElements.fromStructuredArrow_map, CategoryTheory.Bicategory.LeftLift.whiskering_map, CategoryTheory.CosimplicialObject.id_right_app, CategoryTheory.Functor.LeftExtension.precomp₂_map_right, CategoryTheory.StructuredArrow.commaMapEquivalenceInverse_map, CategoryTheory.Under.postComp_inv_app_right, CategoryTheory.Bicategory.LeftExtension.w_assoc, CategoryTheory.StructuredArrow.ofDiagEquivalence.inverse_map_right, CategoryTheory.StructuredArrow.w_prod_fst, CategoryTheory.Arrow.mapCechNerve_app, CategoryTheory.SimplicialObject.comp_right, CategoryTheory.SimplicialObject.Augmented.point_map, CategoryTheory.Arrow.hom_inv_id_right_assoc, CategoryTheory.Comma.toIdPUnitEquiv_inverse_map_right, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_inverse_map_app, CategoryTheory.WithInitial.isColimitEquiv_apply_desc_right, CategoryTheory.Functor.PullbackObjObj.mapArrowRight_right, CategoryTheory.SmallObject.πObj_ιIteration_app_right, CategoryTheory.Under.epi_right_of_epi, CategoryTheory.Under.postCongr_inv_app_right, CategoryTheory.Under.mono_right_of_mono, CategoryTheory.Functor.LeftExtension.postcomp₁_map_right_app, CategoryTheory.ParametrizedAdjunction.inr_arrowHomEquiv_symm_apply_left, CategoryTheory.SimplicialObject.Augmented.toArrow_map_right, CategoryTheory.Square.fromArrowArrowFunctor_map_τ₃, CategoryTheory.Arrow.mapAugmentedCechConerve_right, CommRingCat.mkUnder_ext_iff, CategoryTheory.StructuredArrow.commaMapEquivalenceCounitIso_hom_app_left_right, CategoryTheory.Square.toArrowArrowFunctor_obj_hom_right, CategoryTheory.Bicategory.LeftLift.w_assoc, CategoryTheory.TwoSquare.EquivalenceJ.inverse_map, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_inverse_obj, CategoryTheory.StructuredArrow.commaMapEquivalenceUnitIso_inv_app_right_right, CategoryTheory.Comma.mapRightEq_hom_app_right, CategoryTheory.RetractArrow.r_w_assoc, CategoryTheory.Comma.mapRightIso_counitIso_inv_app_right, CategoryTheory.MorphismProperty.Comma.comp_right, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_unitIso, CategoryTheory.StructuredArrow.map₂_map_right, CategoryTheory.Comma.instIsIsoRight, CategoryTheory.Comma.coneOfPreserves_π_app_right, CategoryTheory.Functor.LeftExtension.precomp_map_right, CategoryTheory.Comma.mapLeftIso_counitIso_inv_app_right, CategoryTheory.WithTerminal.equivComma_counitIso_hom_app_right, CategoryTheory.Comma.map_map_right, groupCohomology.dArrowIso₀₁_inv_right, CategoryTheory.CostructuredArrow.mapNatIso_inverse_map_right, CategoryTheory.Functor.RightExtension.postcomp₁_map_right, CategoryTheory.leftAdjointOfStructuredArrowInitialsAux_symm_apply, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_map_app, CategoryTheory.MorphismProperty.FunctorialFactorizationData.functorCategory.Z_map_app, CategoryTheory.Comma.mapRightIso_inverse_map_right, CategoryTheory.Limits.coker_map, CategoryTheory.StructuredArrow.eta_hom_right, CategoryTheory.Square.fromArrowArrowFunctor_obj_f₃₄, CategoryTheory.RetractArrow.map_r_right, CategoryTheory.StructuredArrow.prodInverse_map, CategoryTheory.MorphismProperty.under_iff, CategoryTheory.StructuredArrow.eta_inv_right, CategoryTheory.Comma.mapRightIso_unitIso_inv_app_right, CategoryTheory.RetractArrow.i_w, CategoryTheory.CostructuredArrow.toOver_map_right, CategoryTheory.CategoryOfElements.to_comma_map_right, CategoryTheory.Comma.opFunctor_map, CategoryTheory.Limits.CokernelCofork.π_mapOfIsColimit, CategoryTheory.CostructuredArrow.commaToGrothendieckPrecompFunctor_map_fiber, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_snd, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_symm_apply_right, CategoryTheory.Under.homMk_right, CategoryTheory.StructuredArrow.id_right, CategoryTheory.WithInitial.equivComma_counitIso_hom_app_right_app, CategoryTheory.Under.pushout_map, CategoryTheory.Comma.rightIso_hom, CategoryTheory.Limits.image.map_ι, CategoryTheory.CostructuredArrow.homMk'_right, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_inverse_map_hom, CategoryTheory.Functor.PushoutObjObj.mapArrowRight_left, CommRingCat.pushout_inr_tensorProdObjIsoPushoutObj_inv_right_assoc, groupCohomology.dArrowIso₀₁_hom_right, CategoryTheory.Comma.comp_right, CategoryTheory.Arrow.square_from_iso_invert, CategoryTheory.Abelian.im_map, CategoryTheory.SimplicialObject.Augmented.rightOpLeftOpIso_inv_right, CategoryTheory.Under.postAdjunctionRight_unit_app_right, CategoryTheory.Bicategory.LeftExtension.whiskering_map, CategoryTheory.Under.map_map_right, CategoryTheory.WithInitial.mkCommaMorphism_right_app, CategoryTheory.StructuredArrow.prodFunctor_map, CategoryTheory.Comma.mapLeftId_hom_app_right, CategoryTheory.CostructuredArrow.commaToGrothendieckPrecompFunctor_map_base, CategoryTheory.Comma.mapRightComp_inv_app_right, CategoryTheory.StructuredArrow.mapNatIso_inverse_map_right, CategoryTheory.CosimplicialObject.comp_right_app, CategoryTheory.SimplicialObject.Augmented.whiskering_map_app_right, CategoryTheory.RetractArrow.op_r_right, CategoryTheory.CostructuredArrow.mkPrecomp_right, CategoryTheory.Abelian.PreservesCoimageImageComparison.iso_hom_right, CategoryTheory.StructuredArrow.mapNatIso_functor_map_right, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceInverse_map_right_left, CategoryTheory.simplicialToCosimplicialAugmented_map_left, CategoryTheory.Arrow.w_mk_right, CategoryTheory.Under.eqToHom_right, CategoryTheory.WithInitial.equivComma_counitIso_inv_app_right_app, CategoryTheory.SmallObject.SuccStruct.prop.arrowIso_inv_right, CategoryTheory.Square.fromArrowArrowFunctor'_map_τ₃, CategoryTheory.SmallObject.functor_map, CategoryTheory.StructuredArrow.ofDiagEquivalence.functor_map_right_right, SSet.Augmented.stdSimplex_map_right, CategoryTheory.WithTerminal.equivComma_functor_map_right, CategoryTheory.MorphismProperty.Under.isoMk_inv_right, CategoryTheory.Functor.LeftExtension.postcompose₂ObjMkIso_inv_right_app, CategoryTheory.MorphismProperty.Comma.isoMk_hom_right, CategoryTheory.Under.isoMk_inv_right, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceFunctor_map_left, CategoryTheory.Over.opEquivOpUnder_inverse_map, CategoryTheory.MorphismProperty.Under.isoMk_hom_right, CategoryTheory.Under.post_map, CategoryTheory.StructuredArrow.mapNatIso_unitIso_hom_app_right, CategoryTheory.WithInitial.coconeEquiv_unitIso_hom_app_hom_right, CategoryTheory.Square.toArrowArrowFunctor_map_right_right, CategoryTheory.StructuredArrow.eqToHom_right, CategoryTheory.Bicategory.Lan.CommuteWith.lanCompIsoWhisker_hom_right, CategoryTheory.Functor.LeftExtension.postcompose₂_map_right_app, CategoryTheory.Limits.kernelSubobjectIso_comp_kernel_map, w_assoc, CategoryTheory.CostructuredArrow.map_map_right, AlgebraicGeometry.AffineTargetMorphismProperty.arrow_mk_iso_iff, CategoryTheory.Arrow.w, CategoryTheory.Comma.equivProd_unitIso_hom_app_right, CategoryTheory.SmallObject.iterationObjRightIso_hom, CategoryTheory.Comma.preRight_map_right, CategoryTheory.SmallObject.SuccStruct.prop.arrowIso_hom_right, CategoryTheory.Square.toArrowArrowFunctor'_map_right_left, CategoryTheory.ParametrizedAdjunction.inr_arrowHomEquiv_symm_apply_left_assoc, CategoryTheory.Comma.toIdPUnitEquiv_unitIso_inv_app_right, CategoryTheory.StructuredArrow.mono_iff_mono_right, w, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_hom_app_right, CategoryTheory.RetractArrow.r_w, CategoryTheory.Under.mono_iff_mono_right, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.functor_map_right_right, CategoryTheory.StructuredArrow.hom_eq_iff, CategoryTheory.Functor.LeibnizAdjunction.adj_counit_app_right, CategoryTheory.Under.postComp_hom_app_right, CategoryTheory.Comma.snd_map, CategoryTheory.WithInitial.coconeEquiv_functor_map_hom, CategoryTheory.Arrow.comp_right_assoc, CategoryTheory.Comma.mapLeftIso_unitIso_inv_app_right, CategoryTheory.WithTerminal.ofCommaMorphism_app, CategoryTheory.Under.isoMk_hom_right, CategoryTheory.WithTerminal.mkCommaMorphism_right, CategoryTheory.RetractArrow.right_i, CategoryTheory.Arrow.inv_hom_id_right, CategoryTheory.Arrow.isoMk_inv_right, CategoryTheory.Arrow.w_mk_right_assoc, CategoryTheory.SmallObject.functorMap_π_assoc, CategoryTheory.CosimplicialObject.Augmented.toArrow_map_right, CategoryTheory.CosimplicialObject.Augmented.const_map_right, CategoryTheory.Bicategory.LeftExtension.whiskerIdCancel_right, groupHomology.d₁₀ArrowIso_inv_right, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompToArrowIso_inv_app_right, CategoryTheory.MorphismProperty.Comma.comp_right_assoc, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_inverse_map_right, CategoryTheory.StructuredArrow.isoMk_hom_right, CategoryTheory.Comma.hom_ext_iff, CategoryTheory.TwoSquare.costructuredArrowDownwardsPrecomp_obj, AlgEquiv.toUnder_inv_right_apply, CategoryTheory.Comma.eqToHom_right, CategoryTheory.CostructuredArrow.mapIso_functor_map_right, CategoryTheory.SimplicialObject.Augmented.hom_ext_iff, CategoryTheory.StructuredArrow.toCostructuredArrow_map, CategoryTheory.WithInitial.equivComma_inverse_map_app, CategoryTheory.Comma.left_hom_inv_right, CategoryTheory.Comma.mapLeftComp_inv_app_right, CategoryTheory.CostructuredArrow.map₂_map_right, CategoryTheory.Comma.coconeOfPreserves_ι_app_right, CategoryTheory.Comma.toIdPUnitEquiv_unitIso_hom_app_right, CategoryTheory.RetractArrow.retract_right_assoc, CommRingCat.toAlgHom_apply, CategoryTheory.StructuredArrow.toUnder_map_right, CommRingCat.pushout_inl_tensorProdObjIsoPushoutObj_inv_right_assoc, CategoryTheory.Bicategory.LeftExtension.IsKan.uniqueUpToIso_hom_right, CategoryTheory.SmallObject.instIsIsoRightAppArrowMapToTypeOrdFunctorIterationFunctor, CategoryTheory.MorphismProperty.Comma.mapLeft_map_right, CategoryTheory.Comma.mapRightIso_functor_map_right, CategoryTheory.WithInitial.equivComma_functor_map_right_app, CategoryTheory.WithInitial.coconeEquiv_inverse_obj_ι_app_right, CategoryTheory.Comma.toIdPUnitEquiv_functor_map, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_map_right, CategoryTheory.MorphismProperty.Comma.Hom.hom_right, CategoryTheory.StructuredArrow.homMk_right, CategoryTheory.RetractArrow.op_i_right, CategoryTheory.SimplicialObject.Augmented.const_map_right, CategoryTheory.Functor.mapArrow_map_right, CategoryTheory.WithInitial.coconeEquiv_functor_obj_ι_app_of, CategoryTheory.RetractArrow.retract_right, CategoryTheory.StructuredArrow.commaMapEquivalenceInverse_obj, CategoryTheory.StructuredArrow.w_prod_snd, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_counitIso_inv_app_right_app, CategoryTheory.Comma.inv_right, CategoryTheory.Bicategory.Lan.CommuteWith.lanCompIsoWhisker_inv_right, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_right, CategoryTheory.Functor.LeftExtension.postcompose₂ObjMkIso_hom_right_app, CategoryTheory.Limits.kernelSubobjectIso_comp_kernel_map_assoc, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_fst_assoc, CategoryTheory.SmallObject.πObj_ιIteration_app_right_assoc, CategoryTheory.SimplicialObject.Augmented.rightOpLeftOpIso_hom_right, CategoryTheory.Under.forget_map, CategoryTheory.StructuredArrow.post_map, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_map_left, CategoryTheory.Arrow.mapCechConerve_app, CategoryTheory.SmallObject.πObj_naturality_assoc, CategoryTheory.Bicategory.LeftLift.whiskerHom_right, CategoryTheory.CosimplicialObject.Augmented.leftOpRightOpIso_hom_right_app, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceFunctor_map_right, CategoryTheory.Square.toArrowArrowFunctor'_map_left_right, CategoryTheory.StructuredArrow.homMk'_right, CategoryTheory.Comma.inv_left_hom_right, CommRingCat.pushout_inl_tensorProdObjIsoPushoutObj_inv_right, CategoryTheory.Limits.imageSubobjectMap_arrow, CategoryTheory.Limits.imageSubobjectMap_arrow_assoc, CategoryTheory.Over.opEquivOpUnder_counitIso, ext_iff, CategoryTheory.Comma.equivProd_inverse_map_right, CategoryTheory.MorphismProperty.FunctorialFactorizationData.mapZ_p_assoc, CategoryTheory.RetractArrow.unop_r_right, CategoryTheory.Arrow.id_right, CategoryTheory.Functor.PullbackObjObj.mapArrowLeft_left, CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_map_left_right, CategoryTheory.SmallObject.iterationFunctorMapSuccAppArrowIso_hom_right_right_comp_assoc, CategoryTheory.StructuredArrow.mkPostcomp_right, CategoryTheory.Comma.mapLeftEq_hom_app_right, CategoryTheory.SimplicialObject.equivalenceRightToLeft_right, CategoryTheory.StructuredArrow.mapIso_unitIso_inv_app_right, CategoryTheory.Limits.MonoFactorisation.ofArrowIso_m, AlgHom.toUnder_right, CategoryTheory.StructuredArrow.proj_map, CategoryTheory.MorphismProperty.Under.w, CategoryTheory.StructuredArrow.mono_right_of_mono, AlgEquiv.toUnder_hom_right_apply, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.inverse_map_right_right, CategoryTheory.CostructuredArrow.right_eq_id, CategoryTheory.StructuredArrow.comp_right, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_map_right, CategoryTheory.Limits.ImageMap.map_ι, CategoryTheory.Comma.mapRightIso_counitIso_hom_app_right, CategoryTheory.MorphismProperty.Comma.mapRight_map_right, CategoryTheory.Comma.fromProd_map_right, CategoryTheory.Limits.CokernelCofork.π_mapOfIsColimit_assoc, CategoryTheory.CommSq.of_arrow, CategoryTheory.TransfiniteCompositionOfShape.ofArrowIso_incl, CategoryTheory.WithInitial.commaFromUnder_map_right, CategoryTheory.Comma.unopFunctor_map, CategoryTheory.Abelian.PreservesCoimageImageComparison.iso_inv_right, CategoryTheory.Bicategory.LeftExtension.IsKan.uniqueUpToIso_inv_right, CategoryTheory.MorphismProperty.Under.Hom.ext_iff, CategoryTheory.RetractArrow.instIsSplitEpiRightRArrow, CategoryTheory.Arrow.hom.congr_right, CategoryTheory.Under.hom_right_inv_right, CategoryTheory.Arrow.iso_w, CategoryTheory.Comma.mapLeftIso_unitIso_hom_app_right, CategoryTheory.MorphismProperty.Comma.isoMk_inv_right, CategoryTheory.Limits.Cocone.fromStructuredArrow_map_hom, CategoryTheory.CosimplicialObject.Augmented.hom_ext_iff, CategoryTheory.StructuredArrow.mapNatIso_counitIso_hom_app_right, CategoryTheory.Comma.mapRightId_hom_app_right, CategoryTheory.TwoSquare.costructuredArrowDownwardsPrecomp_map, CategoryTheory.Arrow.inv_left_hom_right, CategoryTheory.Arrow.homMk_right, CategoryTheory.StructuredArrow.commaMapEquivalenceCounitIso_hom_app_right_right, CategoryTheory.Functor.RightExtension.precomp_map_right, CategoryTheory.Under.postCongr_hom_app_right, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_inv_app_right, CategoryTheory.Limits.kernel_map_comp_kernelSubobjectIso_inv, CategoryTheory.Abelian.coimageImageComparisonFunctor_map, CategoryTheory.WithTerminal.commaFromOver_map_right, CategoryTheory.Comma.mapLeftIso_counitIso_hom_app_right, CategoryTheory.MorphismProperty.Under.forget_comp_forget_map, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceInverse_map_right_right, CategoryTheory.Bicategory.LeftLift.whiskerOfIdCompIsoSelf_hom_right, CategoryTheory.RetractArrow.op_r_left, CategoryTheory.StructuredArrow.preEquivalenceInverse_map_right_right, CategoryTheory.Comma.mapLeft_map_right, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_right, CategoryTheory.Square.fromArrowArrowFunctor'_map_τ₄, CategoryTheory.Comma.equivProd_unitIso_inv_app_right, CategoryTheory.Limits.IsColimit.pushoutCoconeEquivBinaryCofanFunctor_desc_right, CategoryTheory.CosimplicialObject.equivalenceRightToLeft_right_app, CategoryTheory.StructuredArrow.mapIso_unitIso_hom_app_right, CategoryTheory.StructuredArrow.w, CategoryTheory.Functor.RightExtension.postcompose₂_map_right, HomologicalComplex.Hom.sqTo_right, CategoryTheory.StructuredArrow.commaMapEquivalenceUnitIso_hom_app_right_right, CategoryTheory.StructuredArrow.pre_map_right, CategoryTheory.StructuredArrow.w_prod_fst_assoc, CategoryTheory.WithInitial.coconeEquiv_inverse_map_hom_right, CategoryTheory.SmallObject.functorMap_π, CategoryTheory.Functor.PushoutObjObj.mapArrowLeft_left, CategoryTheory.StructuredArrow.mapNatIso_unitIso_inv_app_right, CategoryTheory.underToAlgebra_map_f, CategoryTheory.CosimplicialObject.Augmented.leftOpRightOpIso_inv_right_app, CategoryTheory.Comma.mapRightId_inv_app_right, CategoryTheory.Square.fromArrowArrowFunctor'_map_τ₂, CategoryTheory.Comma.mapRightComp_hom_app_right, CategoryTheory.Square.fromArrowArrowFunctor_map_τ₁, CategoryTheory.RetractArrow.op_i_left, CategoryTheory.Comma.isoMk_hom_right, CategoryTheory.Functor.toUnder_map_right, CategoryTheory.Bicategory.LeftLift.whiskerIdCancel_right, CategoryTheory.Functor.mapArrowFunctor_map_app_right, CategoryTheory.StructuredArrow.mapIso_inverse_map_right, HomologicalComplex.Hom.sqFrom_right, CategoryTheory.Functor.PushoutObjObj.mapArrowLeft_right, CategoryTheory.SmallObject.iterationFunctorObjObjRightIso_ιIteration_app_right, CategoryTheory.TwoSquare.structuredArrowDownwards_map, CategoryTheory.Bicategory.LeftExtension.whiskerOfCompIdIsoSelf_hom_right, CategoryTheory.Arrow.epi_right, CategoryTheory.CosimplicialObject.Augmented.whiskering_map_app_right, CategoryTheory.RetractArrow.map_i_right, CategoryTheory.Bicategory.LeftLift.IsKan.uniqueUpToIso_hom_right, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_fst, CategoryTheory.Comma.id_right, CategoryTheory.Under.inv_right_hom_right, CategoryTheory.TransfiniteCompositionOfShape.ofArrowIso_isColimit, CategoryTheory.RetractArrow.instIsSplitMonoRightIArrow, CategoryTheory.WithInitial.liftFromUnder_map_app, CategoryTheory.Functor.LeibnizAdjunction.adj_unit_app_right, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_unitIso_hom_app_right_app, CategoryTheory.SimplicialObject.id_right, CategoryTheory.Under.hom_right_inv_right_assoc, CategoryTheory.simplicialToCosimplicialAugmented_map_right, CategoryTheory.CostructuredArrow.pre_map_right, CategoryTheory.Square.fromArrowArrowFunctor'_map_τ₁, CategoryTheory.StructuredArrow.commaMapEquivalenceUnitIso_hom_app_right_left, CategoryTheory.MorphismProperty.Under.w_assoc, CategoryTheory.Arrow.square_to_iso_invert, CategoryTheory.StructuredArrow.preEquivalenceFunctor_map_right, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_hom_app_right_app, CategoryTheory.StructuredArrow.preEquivalenceInverse_obj_hom_right, CategoryTheory.TwoSquare.EquivalenceJ.functor_map, CategoryTheory.Under.UnderMorphism.ext_iff, CategoryTheory.Square.toArrowArrowFunctor'_map_right_right, CategoryTheory.RetractArrow.unop_i_left, CategoryTheory.cosimplicialToSimplicialAugmented_map, CategoryTheory.StructuredArrow.commaMapEquivalenceUnitIso_inv_app_right_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompToArrowIso_hom_app_right, CategoryTheory.Arrow.homMk'_right, CategoryTheory.Comma.mapRightEq_inv_app_right, CategoryTheory.StructuredArrow.mapIso_functor_map_right, CategoryTheory.Comma.post_map_right, CategoryTheory.WithTerminal.equivComma_inverse_map_app, CategoryTheory.Bicategory.LanLift.CommuteWith.lanLiftCompIsoWhisker_inv_right, CategoryTheory.Functor.PullbackObjObj.mapArrowLeft_right, CategoryTheory.Bicategory.LeftExtension.whiskerHom_right, CategoryTheory.Under.opEquivOpOver_counitIso, CategoryTheory.StructuredArrow.w_prod_snd_assoc, CategoryTheory.MorphismProperty.Comma.eqToHom_right, CategoryTheory.Pretriangulated.exists_iso_of_arrow_iso, CategoryTheory.StructuredArrow.ext_iff, CategoryTheory.Square.fromArrowArrowFunctor_map_τ₂, CategoryTheory.WithInitial.liftFromUnder_obj_map, CategoryTheory.RetractArrow.unop_i_right, CategoryTheory.Limits.ImageMap.map_ι_assoc, CategoryTheory.Square.toArrowArrowFunctor'_obj_hom_right, CategoryTheory.Arrow.inv_right, CategoryTheory.Limits.kernel_map_comp_kernelSubobjectIso_inv_assoc, CategoryTheory.Square.toArrowArrowFunctor_map_left_right, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_map_right_app, groupHomology.d₁₀ArrowIso_hom_right, CategoryTheory.Arrow.left_hom_inv_right, CategoryTheory.Bicategory.LeftExtension.whiskerOfCompIdIsoSelf_inv_right, CategoryTheory.Square.toArrowArrowFunctor_map_right_left, CategoryTheory.Arrow.hom_inv_id_right, CategoryTheory.Under.mkIdInitial_to_right, CategoryTheory.MorphismProperty.Comma.Hom.prop_hom_right, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorToComma_map_right, CategoryTheory.Arrow.inv_hom_id_right_assoc, CategoryTheory.Bicategory.LeftLift.IsKan.uniqueUpToIso_inv_right, CategoryTheory.Comma.equivProd_functor_map, CategoryTheory.Over.lift_left, CategoryTheory.Under.postAdjunctionRight_counit_app_right, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_counitIso, CategoryTheory.TwoSquare.EquivalenceJ.inverse_obj, CategoryTheory.Arrow.w_assoc, CategoryTheory.Functor.PushoutObjObj.mapArrowRight_right, CategoryTheory.SimplicialObject.augmentedCechNerve_map_left_app, CategoryTheory.SmallObject.iterationFunctorMapSuccAppArrowIso_hom_right_right_comp, CategoryTheory.Under.inv_right_hom_right_assoc, CategoryTheory.CostructuredArrow.mapNatIso_functor_map_right, CategoryTheory.Under.opEquivOpOver_functor_map, CategoryTheory.Arrow.hom_ext_iff, CategoryTheory.CosimplicialObject.equivalenceLeftToRight_right, CategoryTheory.Comma.preLeft_map_right, CategoryTheory.StructuredArrow.toCostructuredArrow'_map, CategoryTheory.RetractArrow.i_w_assoc, CategoryTheory.RetractArrow.unop_r_left, CategoryTheory.CostructuredArrow.mapIso_inverse_map_right, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_counitIso_hom_app_right_app, CategoryTheory.SmallObject.iterationFunctorObjObjRightIso_ιIteration_app_right_assoc, CategoryTheory.WithTerminal.equivComma_counitIso_inv_app_right, CategoryTheory.Bicategory.LeftExtension.w, CategoryTheory.SmallObject.πObj_naturality, CategoryTheory.Under.id_right, CategoryTheory.Bicategory.LeftLift.whiskerOfIdCompIsoSelf_inv_right, CategoryTheory.Comma.isoMk_inv_right, CategoryTheory.WithInitial.ofCommaMorphism_app, CategoryTheory.SmallObject.instIsIsoRightAppArrowιIteration, CategoryTheory.Arrow.comp_right, CategoryTheory.Square.fromArrowArrowFunctor'_obj_f₂₄, CategoryTheory.StructuredArrow.commaMapEquivalenceCounitIso_inv_app_left_right, CategoryTheory.Under.w_assoc, CategoryTheory.Comma.mapLeftId_inv_app_right, CategoryTheory.StructuredArrow.w_assoc, CategoryTheory.StructuredArrow.mapNatIso_counitIso_inv_app_right, CategoryTheory.WithInitial.coconeEquiv_unitIso_inv_app_hom_right, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_obj_right, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_functor_map_right, CategoryTheory.MorphismProperty.Comma.Hom.comp_right, CategoryTheory.Comma.rightIso_inv, CategoryTheory.Comma.mapLeftComp_hom_app_right, CategoryTheory.Comma.mapRight_map_right, CategoryTheory.Functor.leftExtensionEquivalenceOfIso₁_unitIso_inv_app_right_app, CategoryTheory.SimplicialObject.equivalenceLeftToRight_left_app, CategoryTheory.Under.w, CategoryTheory.Comma.mapLeftIso_functor_map_right, CategoryTheory.SimplicialObject.augmentedCechNerve_map_right, CategoryTheory.Arrow.mapAugmentedCechNerve_right, CategoryTheory.StructuredArrow.commaMapEquivalenceCounitIso_inv_app_right_right, CategoryTheory.StructuredArrow.mapIso_counitIso_hom_app_right, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_inv_app_right_app, CategoryTheory.Arrow.isoMk_hom_right, CategoryTheory.StructuredArrow.hom_ext_iff, CategoryTheory.Arrow.iso_w', CategoryTheory.StructuredArrow.preEquivalenceFunctor_obj_hom, CategoryTheory.StructuredArrow.mapIso_counitIso_inv_app_right, CategoryTheory.Comma.mapRightIso_unitIso_hom_app_right, CategoryTheory.SimplicialObject.equivalenceLeftToRight_right, CategoryTheory.CosimplicialObject.Augmented.drop_map, CategoryTheory.Bicategory.LanLift.CommuteWith.lanLiftCompIsoWhisker_hom_right, CategoryTheory.Arrow.isIso_right, CategoryTheory.Under.comp_right, CategoryTheory.Arrow.squareToSnd_right, CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_obj_hom, CategoryTheory.MorphismProperty.Comma.id_right, CategoryTheory.Bicategory.LeftLift.w, CategoryTheory.Square.fromArrowArrowFunctor_map_τ₄, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceInverse_map_left_right, CategoryTheory.ParametrizedAdjunction.arrowHomEquiv_apply_right_snd_assoc, CategoryTheory.Arrow.rightFunc_map, CommRingCat.pushout_inr_tensorProdObjIsoPushoutObj_inv_right

Theorems

NameKindAssumesProvesValidatesDepends On
ext 📖left
right
ext_iff 📖mathematicalleft
right
ext
w 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Functor.map
left
CategoryTheory.Comma.hom
right
w_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.Functor.map
left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
right
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
w

---

← Back to Index