📁 Source: Mathlib/CategoryTheory/Comma/Final.lean
final_fst
final_snd
initial_fst
initial_snd
isCofiltered_of_initial
isConnected_comma_of_final
isConnected_comma_of_initial
isFiltered_of_final
map_final
CategoryTheory.Functor.Final
CategoryTheory.Comma
CategoryTheory.commaCategory
fst
CategoryTheory.Functor.final_comp
CategoryTheory.Functor.final_of_isRightAdjoint
CategoryTheory.Functor.isRightAdjoint_of_isEquivalence
CategoryTheory.Equivalence.isEquivalence_inverse
CategoryTheory.Equivalence.isEquivalence_functor
CategoryTheory.Functor.final_of_natIso
isEquivalenceMap
CategoryTheory.Equivalence.faithful_functor
CategoryTheory.Equivalence.full_functor
CategoryTheory.Iso.isIso_hom
snd
CategoryTheory.Functor.final_of_isFiltered_of_pUnit
CategoryTheory.Functor.isEquivalence_refl
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.Functor.Initial
CategoryTheory.Functor.final_equivalence_comp
CategoryTheory.Functor.instIsEquivalenceOppositeLeftOp
CategoryTheory.isFiltered_op_of_isCofiltered
CategoryTheory.Functor.final_op_of_initial
CategoryTheory.Functor.initial_of_final_op
CategoryTheory.IsCofiltered
CategoryTheory.IsCofiltered.of_equivalence
CategoryTheory.isCofiltered_op_of_isFiltered
CategoryTheory.IsConnected
CategoryTheory.Functor.isConnected_iff_of_final
CategoryTheory.Functor.isConnected_iff_of_initial
CategoryTheory.IsFiltered
CategoryTheory.Functor.final_const_of_isTerminal
CategoryTheory.instIsFilteredDiscretePUnit
CategoryTheory.Functor.map_id
CategoryTheory.IsFiltered.of_final
CategoryTheory.Functor.final_iff_isFiltered_structuredArrow
CategoryTheory.IsFiltered.toIsFilteredOrEmpty
CategoryTheory.IsFiltered.of_equivalence
CategoryTheory.isFiltered_of_representablyCoflat
map
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Iso.inv
CategoryTheory.Iso.isIso_inv
CategoryTheory.isConnected_iff_of_equivalence
CategoryTheory.NatTrans.ext'
CategoryTheory.Functor.whiskerRight_id'
CategoryTheory.Functor.whiskerLeft_twice
CategoryTheory.Category.assoc
CategoryTheory.IsIso.Iso.inv_inv
CategoryTheory.Functor.Final.out
CategoryTheory.StructuredArrow.final_post
CategoryTheory.StructuredArrow.final_map₂_id
CategoryTheory.StructuredArrow.final_pre
---
← Back to Index