Documentation Verification Report

Final

📁 Source: Mathlib/CategoryTheory/Comma/Final.lean

Statistics

MetricCount
Definitions0
Theoremsfinal_fst, final_snd, initial_fst, initial_snd, isCofiltered_of_initial, isConnected_comma_of_final, isConnected_comma_of_initial, isFiltered_of_final, map_final
9
Total9

CategoryTheory.Comma

Theorems

NameKindAssumesProvesValidatesDepends On
final_fst 📖mathematicalCategoryTheory.Functor.Final
CategoryTheory.Comma
CategoryTheory.commaCategory
fst
CategoryTheory.Functor.final_comp
CategoryTheory.Functor.final_of_isRightAdjoint
CategoryTheory.Functor.isRightAdjoint_of_isEquivalence
CategoryTheory.Equivalence.isEquivalence_inverse
CategoryTheory.Equivalence.isEquivalence_functor
CategoryTheory.Functor.final_of_natIso
isEquivalenceMap
CategoryTheory.Equivalence.faithful_functor
CategoryTheory.Equivalence.full_functor
CategoryTheory.Iso.isIso_hom
final_snd 📖mathematicalCategoryTheory.Functor.Final
CategoryTheory.Comma
CategoryTheory.commaCategory
snd
map_final
CategoryTheory.Functor.final_of_isFiltered_of_pUnit
CategoryTheory.Functor.final_of_isRightAdjoint
CategoryTheory.Functor.isRightAdjoint_of_isEquivalence
CategoryTheory.Functor.isEquivalence_refl
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.Functor.final_of_natIso
CategoryTheory.Functor.final_comp
CategoryTheory.Equivalence.isEquivalence_functor
initial_fst 📖mathematicalCategoryTheory.Functor.Initial
CategoryTheory.Comma
CategoryTheory.commaCategory
fst
CategoryTheory.Functor.final_equivalence_comp
CategoryTheory.Functor.instIsEquivalenceOppositeLeftOp
CategoryTheory.Equivalence.isEquivalence_functor
final_snd
CategoryTheory.isFiltered_op_of_isCofiltered
CategoryTheory.Functor.final_op_of_initial
CategoryTheory.Functor.final_of_natIso
CategoryTheory.Functor.initial_of_final_op
initial_snd 📖mathematicalCategoryTheory.Functor.Initial
CategoryTheory.Comma
CategoryTheory.commaCategory
snd
CategoryTheory.Functor.final_equivalence_comp
CategoryTheory.Functor.instIsEquivalenceOppositeLeftOp
CategoryTheory.Equivalence.isEquivalence_functor
final_fst
CategoryTheory.Functor.final_op_of_initial
CategoryTheory.Functor.final_of_natIso
CategoryTheory.Functor.initial_of_final_op
isCofiltered_of_initial 📖mathematicalCategoryTheory.IsCofiltered
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.IsCofiltered.of_equivalence
CategoryTheory.isCofiltered_op_of_isFiltered
isFiltered_of_final
CategoryTheory.isFiltered_op_of_isCofiltered
CategoryTheory.Functor.final_op_of_initial
isConnected_comma_of_final 📖mathematicalCategoryTheory.IsConnected
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.isConnected_iff_of_final
final_fst
isConnected_comma_of_initial 📖mathematicalCategoryTheory.IsConnected
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.isConnected_iff_of_initial
initial_snd
isFiltered_of_final 📖mathematicalCategoryTheory.IsFiltered
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.final_const_of_isTerminal
CategoryTheory.instIsFilteredDiscretePUnit
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
CategoryTheory.IsFiltered.of_final
map_final
CategoryTheory.Functor.final_of_isRightAdjoint
CategoryTheory.Functor.isRightAdjoint_of_isEquivalence
CategoryTheory.Functor.isEquivalence_refl
CategoryTheory.Functor.final_iff_isFiltered_structuredArrow
CategoryTheory.IsFiltered.toIsFilteredOrEmpty
CategoryTheory.IsFiltered.of_equivalence
CategoryTheory.isFiltered_of_representablyCoflat
map_final 📖mathematicalCategoryTheory.Functor.Final
CategoryTheory.Comma
CategoryTheory.commaCategory
map
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Iso.inv
CategoryTheory.Iso.isIso_inv
CategoryTheory.isConnected_iff_of_equivalence
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
CategoryTheory.NatTrans.ext'
CategoryTheory.Functor.whiskerRight_id'
CategoryTheory.Functor.whiskerLeft_twice
CategoryTheory.Category.assoc
CategoryTheory.IsIso.Iso.inv_inv
isConnected_comma_of_final
CategoryTheory.Functor.Final.out
CategoryTheory.Functor.final_of_natIso
CategoryTheory.Functor.final_comp
CategoryTheory.StructuredArrow.final_post
CategoryTheory.StructuredArrow.final_map₂_id
CategoryTheory.Functor.final_of_isRightAdjoint
CategoryTheory.Functor.isRightAdjoint_of_isEquivalence
CategoryTheory.Functor.isEquivalence_refl
CategoryTheory.Iso.isIso_hom
CategoryTheory.StructuredArrow.final_pre

---

← Back to Index