Documentation Verification Report

Basic

πŸ“ Source: Mathlib/CategoryTheory/Comma/Over/Basic.lean

Statistics

MetricCount
DefinitionscostructuredArrowToOverEquivalence, functor, inverse, ofCommaFstEquivalence, ofCommaFstEquivalenceFunctor, ofCommaFstEquivalenceInverse, ofCostructuredArrowProjEquivalence, functor, inverse, ofDiagEquivalence, ofDiagEquivalence', functor, inverse, toOver, over, under, toOver, toOverCompForget, toUnder, toUnderCompForget, underPost, overPost, coeFromHom, equivalenceOfIsTerminal, forget, forgetCocone, homMk, inhabited, isLimitLiftCone, isoMk, iteratedSliceBackward, iteratedSliceEquiv, iteratedSliceEquivOverMapIso, iteratedSliceForward, iteratedSliceForwardIsoPost, iteratedSliceForwardNaturalityIso, liftCone, map, mapComp, mapCongr, mapForget, mapFunctor, mapId, mapIso, mk, mkIdTerminal, opEquivOpUnder, post, postAdjunctionRight, postComp, postCongr, postEquiv, postMap, ofCommaSndEquivalence, ofCommaSndEquivalenceFunctor, ofCommaSndEquivalenceInverse, ofDiagEquivalence, ofDiagEquivalence', functor, inverse, ofStructuredArrowProjEquivalence, functor, inverse, toUnder, Under, equivalenceOfIsInitial, forget, forgetCone, homMk, inhabited, isColimitLiftCocone, isoMk, liftCocone, map, mapComp, mapCongr, mapForget, mapFunctor, mapId, mapIso, mk, mkIdInitial, opEquivOpOver, post, postAdjunctionLeft, postComp, postCongr, postEquiv, postMap, instCategoryOver, instCategoryUnder
91
Theoremsfunctor_map, functor_obj, inverse_map, inverse_obj, instEssSurjOverToOver, instFaithfulOverToOver, instFullOverToOver, isEquivalence_toOver, ofCommaFstEquivalenceFunctor_map_left, ofCommaFstEquivalenceFunctor_map_right, ofCommaFstEquivalenceFunctor_obj_hom, ofCommaFstEquivalenceFunctor_obj_left, ofCommaFstEquivalenceFunctor_obj_right, ofCommaFstEquivalenceInverse_map_left_left, ofCommaFstEquivalenceInverse_map_left_right, ofCommaFstEquivalenceInverse_obj_hom, ofCommaFstEquivalenceInverse_obj_left_hom, ofCommaFstEquivalenceInverse_obj_left_left, ofCommaFstEquivalenceInverse_obj_left_right, ofCommaFstEquivalenceInverse_obj_right_as, ofCommaFstEquivalence_counitIso, ofCommaFstEquivalence_functor, ofCommaFstEquivalence_inverse, ofCommaFstEquivalence_unitIso, functor_map_left_left, functor_obj_hom, functor_obj_left_hom, functor_obj_left_left, functor_obj_left_right_as, functor_obj_right_as, inverse_map_left_left, inverse_obj_hom, inverse_obj_left_hom, inverse_obj_left_left, inverse_obj_left_right_as, inverse_obj_right_as, functor_map_left_left, functor_obj_hom, functor_obj_left_hom, functor_obj_left_left, functor_obj_left_right_as, functor_obj_right_as, inverse_map_left, inverse_obj_hom, inverse_obj_left, inverse_obj_right_as, toOver_map_left, toOver_map_right, toOver_obj_hom, toOver_obj_left, toOver_obj_right, of_overPost, of_underPost, essImage_overPost, essImage_underPost, toOver_comp_forget, toOver_map_left, toOver_obj_left, toUnder_comp_forget, toUnder_map_right, toUnder_obj_right, underPost_pt, underPost_ΞΉ_app, overPost_pt, overPost_Ο€_app, ext, ext_iff, coe_hom, comp_left, comp_left_assoc, epi_homMk, epi_of_epi_left, eqToHom_left, equivalenceOfIsTerminal_counitIso, equivalenceOfIsTerminal_functor, equivalenceOfIsTerminal_inverse_map, equivalenceOfIsTerminal_inverse_obj, equivalenceOfIsTerminal_unitIso, forall_iff, forgetCocone_pt, forgetCocone_ΞΉ_app, forget_faithful, forget_map, forget_obj, forget_reflects_iso, homMk_comp, homMk_eta, homMk_left, homMk_surjective, hom_left_inv_left, hom_left_inv_left_assoc, id_left, instEssSurjObjPostOfFull, instFaithfulObjPost, instFullObjPostOfFaithful, instIsEquivalenceMapOfIsIso, instIsEquivalenceObjPost, inv_left_hom_left, inv_left_hom_left_assoc, isRightAdjoint_post, isoMk_hom_left, isoMk_inv_left, iteratedSliceBackward_forget, iteratedSliceBackward_forget_forget, iteratedSliceBackward_map, iteratedSliceBackward_obj, iteratedSliceEquivOverMapIso_hom_app_left_left, iteratedSliceEquivOverMapIso_inv_app_left_left, iteratedSliceEquiv_counitIso, iteratedSliceEquiv_functor, iteratedSliceEquiv_inverse, iteratedSliceEquiv_unitIso, iteratedSliceForwardIsoPost_hom_app, iteratedSliceForwardIsoPost_inv_app, iteratedSliceForwardNaturalityIso_hom_app, iteratedSliceForwardNaturalityIso_inv_app, iteratedSliceForward_forget, iteratedSliceForward_map, iteratedSliceForward_obj, liftCone_pt, liftCone_Ο€_app, lift_map, lift_obj, mapComp_eq, mapComp_hom_app_left, mapComp_inv_app_left, mapCongr_hom_app_left, mapCongr_inv_app_left, mapCongr_rfl, mapForget_eq, mapFunctor_map, mapFunctor_obj, mapId_eq, mapId_hom_app_left, mapId_inv_app_left, mapIso_functor, mapIso_inverse, map_map_left, map_obj_hom, map_obj_left, mkIdTerminal_from_left, mk_hom, mk_left, mk_surjective, mono_homMk, mono_left_of_mono, mono_of_mono_left, opEquivOpUnder_counitIso, opEquivOpUnder_functor_map, opEquivOpUnder_functor_obj, opEquivOpUnder_inverse_map, opEquivOpUnder_inverse_obj, opEquivOpUnder_unitIso, over_right, postAdjunctionRight_counit_app, postAdjunctionRight_unit_app, postComp_hom_app_left, postComp_inv_app_left, postCongr_hom_app_left, postCongr_inv_app_left, postEquiv_counitIso, postEquiv_functor, postEquiv_inverse, postEquiv_unitIso, postMap_app, post_comp, post_map, post_obj, w, w_assoc, instEssSurjUnderToUnder, instFaithfulUnderToUnder, instFullUnderToUnder, isEquivalence_toUnder, ofCommaSndEquivalenceFunctor_map_left, ofCommaSndEquivalenceFunctor_map_right, ofCommaSndEquivalenceFunctor_obj_hom, ofCommaSndEquivalenceFunctor_obj_left, ofCommaSndEquivalenceFunctor_obj_right, ofCommaSndEquivalenceInverse_map_right_left, ofCommaSndEquivalenceInverse_map_right_right, ofCommaSndEquivalenceInverse_obj_hom, ofCommaSndEquivalenceInverse_obj_left_as, ofCommaSndEquivalenceInverse_obj_right_hom, ofCommaSndEquivalenceInverse_obj_right_left, ofCommaSndEquivalenceInverse_obj_right_right, ofCommaSndEquivalence_counitIso, ofCommaSndEquivalence_functor, ofCommaSndEquivalence_inverse, ofCommaSndEquivalence_unitIso, functor_map_right_right, functor_obj_hom, functor_obj_left_as, functor_obj_right_hom, functor_obj_right_left_as, functor_obj_right_right, inverse_map_right, inverse_obj_hom, inverse_obj_left_as, inverse_obj_right, functor_map_right_right, functor_obj_hom, functor_obj_left_as, functor_obj_right_hom, functor_obj_right_left_as, functor_obj_right_right, inverse_map_right_right, inverse_obj_hom, inverse_obj_left_as, inverse_obj_right_hom, inverse_obj_right_left_as, inverse_obj_right_right, toUnder_map_left, toUnder_map_right, toUnder_obj_hom, toUnder_obj_left, toUnder_obj_right, ext, ext_iff, comp_right, epi_homMk, epi_of_epi_right, epi_right_of_epi, eqToHom_right, equivalenceOfIsInitial_counitIso, equivalenceOfIsInitial_functor, equivalenceOfIsInitial_inverse_map, equivalenceOfIsInitial_inverse_obj, equivalenceOfIsInitial_unitIso, forall_iff, forgetCone_pt, forgetCone_Ο€_app, forget_faithful, forget_map, forget_obj, forget_reflects_iso, homMk_comp, homMk_eta, homMk_right, homMk_surjective, hom_right_inv_right, hom_right_inv_right_assoc, id_right, instEssSurjObjPostOfFull, instFaithfulObjPost, instFullObjPostOfFaithful, instIsEquivalenceMapOfIsIso, instIsEquivalenceObjPost, inv_right_hom_right, inv_right_hom_right_assoc, isLeftAdjoint_post, isoMk_hom_right, isoMk_inv_right, liftCocone_pt, liftCocone_ΞΉ_app, lift_map, lift_obj, mapComp_eq, mapComp_hom, mapComp_inv, mapCongr_hom_app, mapCongr_inv_app, mapForget_eq, mapFunctor_map, mapFunctor_obj, mapId_eq, mapId_hom, mapId_inv, mapIso_functor, mapIso_inverse, map_map_right, map_obj_hom, map_obj_right, mkIdInitial_to_right, mk_hom, mk_right, mk_surjective, mono_homMk, mono_of_mono_right, opEquivOpOver_counitIso, opEquivOpOver_functor_map, opEquivOpOver_functor_obj, opEquivOpOver_inverse_map, opEquivOpOver_inverse_obj, opEquivOpOver_unitIso, postAdjunctionLeft_counit_app, postAdjunctionLeft_unit_app, postComp_hom_app_right, postComp_inv_app_right, postCongr_hom_app_right, postCongr_inv_app_right, postEquiv_counitIso, postEquiv_functor, postEquiv_inverse, postEquiv_unitIso, postMap_app, post_comp, post_map, post_obj, under_left, w, w_assoc
302
Total393

CategoryTheory

Definitions

NameCategoryTheorems
Under πŸ“–CompOp
272 mathmath: CommRingCat.tensorProd_map_right, Limits.Cone.toUnder_pt, StructuredArrow.instFullUnderToUnder, StructuredArrow.ofCommaSndEquivalenceInverse_obj_right_left, Limits.PreservesColimitsOfSize.underPost, StructuredArrow.ofCommaSndEquivalenceFunctor_map_right, StructuredArrow.ofStructuredArrowProjEquivalence.inverse_obj_right_right, IsGrothendieckAbelian.IsPresentable.injectivityβ‚€.F_obj, Under.postComp_inv_app_right, StructuredArrow.ofDiagEquivalence.inverse_map_right, StructuredArrow.ofCommaSndEquivalence_functor, Under.forgetMapInitial_inv_app, Under.post_comp, WithInitial.isColimitEquiv_apply_desc_right, Under.equivalenceOfIsInitial_counitIso, WithInitial.coconeEquiv_functor_obj_pt, StructuredArrow.ofStructuredArrowProjEquivalence.inverse_obj_right_left_as, Under.postCongr_inv_app_right, StructuredArrow.toUnder_obj_left, Under.mapIso_functor, IsGrothendieckAbelian.IsPresentable.injectivityβ‚€.g_app, Under.instHasLimitsOfShape, Limits.pushoutCoconeEquivBinaryCofan_inverse_obj, Limits.pushoutCoconeEquivBinaryCofan_functor_obj, WithInitial.coconeEquiv_inverse_obj_pt_right, Limits.pushoutCoconeEquivBinaryCofan_unitIso, MorphismProperty.instIsClosedUnderIsomorphismsUnderUnderObjOfRespectsIso, CommRingCat.toAlgHom_comp, StructuredArrow.ofDiagEquivalence.functor_obj_right_right, Under.equivalenceOfIsInitial_functor, WithInitial.isColimitEquiv_symm_apply_desc, Limits.Cocone.underPost_ΞΉ_app, instHasColimitsOfShapeUnderOfWithInitial, Over.opEquivOpUnder_unitIso, Under.epi_of_epi_right, Under.liftCone_pt, WithInitial.liftFromUnderComp_inv_app, StructuredArrow.ofDiagEquivalence.inverse_obj_right, Under.forget_faithful, Under.mapCongr_inv_app, Under.pushoutIsLeftAdjoint, StructuredArrow.ofStructuredArrowProjEquivalence.functor_obj_left_as, MorphismProperty.ind_iff_ind_underMk, Under.mapFunctor_obj, instHasColimitsOfSizeUnder, Under.pushout_map, Under.lift_obj, WithInitial.coconeEquiv_inverse_obj_pt_hom, Limits.pushoutCoconeEquivBinaryCofan_inverse_map_hom, CommRingCat.Under.preservesFiniteLimits_of_flat, CommRingCat.pushout_inr_tensorProdObjIsoPushoutObj_inv_right_assoc, StructuredArrow.ofCommaSndEquivalence_unitIso, Under.postAdjunctionRight_unit_app_right, StructuredArrow.ofCommaSndEquivalence_counitIso, Under.map_map_right, Over.opEquivOpUnder_inverse_obj, Limits.Cone.toStructuredArrowCompToUnderCompForget_hom_app, AlgHom.toUnder_comp, StructuredArrow.ofDiagEquivalence.inverse_obj_hom, Under.map_obj_right, Under.post_obj, StructuredArrow.ofDiagEquivalence.functor_obj_right_hom, commAlgCatEquivUnder_functor_obj, StructuredArrow.ofCommaSndEquivalenceInverse_map_right_left, Under.eqToHom_right, CommRingCat.Under.instPreservesFiniteLimitsUnderTensorProdOfFlatCarrier, Under.mapId_inv, Enriched.FunctorCategory.coneFunctorEnrichedHom_Ο€_app, StructuredArrow.ofDiagEquivalence.functor_map_right_right, StructuredArrow.ofStructuredArrowProjEquivalence.inverse_obj_left_as, Presheaf.functorEnrichedHomCoyonedaObjEquiv_naturality, WithInitial.coconeEquiv_counitIso_inv_app_hom, CommRingCat.Under.instPreservesLimitsOfShapeUnderWalkingParallelPairTensorProdOfFlatCarrier, MorphismProperty.under_eq_inverseImage, WithInitial.commaFromUnder_map_left, NatTrans.instIsClosedUnderColimitsOfShapeUnderFunctorCoequifiberedHomDiscretePUnitOfHasProductsOfShapeHom, Limits.Cone.toStructuredArrow_comp_toUnder_comp_forget, Under.costar_obj_left, Under.isoMk_inv_right, Under.mapPushoutAdj_unit_app, StructuredArrow.ofCommaSndEquivalenceFunctor_map_left, Under.instIsEquivalenceMapOfIsIso, WithInitial.coconeEquiv_functor_obj_ΞΉ_app_star, Over.opEquivOpUnder_inverse_map, Under.liftCocone_ΞΉ_app, Under.post_map, AlgEquiv.toUnder_trans, WithInitial.coconeEquiv_unitIso_hom_app_hom_right, Functor.essImage_underPost, Under.instFaithfulObjPost, Under.map_obj_hom, CommRingCat.Under.tensorProdEqualizer_ΞΉ, Under.instEssSurjObjPostOfFull, CommRingCat.Under.instPreservesFiniteProductsUnderPushout, CommRingCat.toAlgHom_id, Under.mono_iff_mono_right, WithInitial.liftFromUnder_obj_obj, StructuredArrow.isEquivalence_toUnder, StructuredArrow.ofStructuredArrowProjEquivalence.functor_map_right_right, Under.forgetCone_pt, StructuredArrow.ofCommaSndEquivalenceFunctor_obj_right, Under.postEquiv_counitIso, Under.postComp_hom_app_right, Limits.PreservesFiniteColimits.underPost, WithInitial.coconeEquiv_functor_map_hom, Under.isoMk_hom_right, StructuredArrow.ofDiagEquivalence.functor_obj_right_left_as, algebraEquivUnder_inverse, WithInitial.coconeEquiv_inverse_obj_pt_left_as, underToAlgebra_obj_A, Under.mapCongr_hom_app, AlgEquiv.toUnder_inv_right_apply, StructuredArrow.ofStructuredArrowProjEquivalence.functor_obj_right_hom, Limits.Cone.mapConeToUnder_inv_hom, StructuredArrow.toUnder_map_right, Under.instIsRightAdjointForget, CommRingCat.pushout_inl_tensorProdObjIsoPushoutObj_inv_right_assoc, Under.mapFunctor_map, Under.liftCone_Ο€_app, Under.instIsLeftAdjointCostar, IsGrothendieckAbelian.IsPresentable.injectivityβ‚€.F_map, Under.forgetMapInitial_hom_app, Limits.pushoutCoconeEquivBinaryCofan_functor_map_hom, WithInitial.coconeEquiv_inverse_obj_ΞΉ_app_right, CommRingCat.monoidAlgebra_map, MorphismProperty.instFullUnderTopUnderForget, WithInitial.coconeEquiv_functor_obj_ΞΉ_app_of, Under.mapComp_hom, StructuredArrow.ofStructuredArrowProjEquivalence.inverse_obj_hom, Under.opEquivOpOver_functor_obj, WithInitial.commaFromUnder_obj_hom_app, WithInitial.commaFromUnder_obj_right, Under.forget_map, commAlgCatEquivUnder_counitIso, StructuredArrow.instFaithfulUnderToUnder, isCardinalFiltered_under, Under.equivalenceOfIsInitial_unitIso, Under.isLeftAdjoint_post, CommRingCat.pushout_inl_tensorProdObjIsoPushoutObj_inv_right, Over.opEquivOpUnder_counitIso, commAlgCatEquivUnder_inverse_obj_carrier, CommRingCat.Under.instPreservesLimitUnderDiscreteFunctorTensorProdOfFinite, Under.mapIso_inverse, Functor.toUnder_comp_forget, StructuredArrow.ofStructuredArrowProjEquivalence.functor_obj_right_right, AlgEquiv.toUnder_hom_right_apply, preservesFilteredColimits_coyoneda, StructuredArrow.ofStructuredArrowProjEquivalence.inverse_map_right_right, Enriched.FunctorCategory.functorEnrichedComp_app, commAlgCatEquivUnder_unitIso, CommRingCat.isFinitelyPresentable_under, Under.instIsEquivalenceObjPost, algebraEquivUnder_unitIso, underToAlgebra_obj_a, algebraToUnder_obj, WithInitial.commaFromUnder_map_right, StructuredArrow.ofCommaSndEquivalenceInverse_obj_hom, Enriched.FunctorCategory.functorEnrichedHom_obj, Under.postMap_app, Functor.toUnder_obj_right, Under.hom_right_inv_right, Under.mapId_hom, Under.postEquiv_inverse, StructuredArrow.toUnder_obj_hom, algebraEquivUnder_counitIso, Under.postCongr_hom_app_right, Enriched.FunctorCategory.instHasEnrichedHomUnderCompMapForget, MorphismProperty.Under.forget_comp_forget_map, StructuredArrow.ofCommaSndEquivalenceInverse_map_right_right, CommRingCat.tensorProdIsoPushout_app, Under.mapId_eq, Under.pushout_obj, WithInitial.commaFromUnder_obj_left, Limits.IsColimit.pushoutCoconeEquivBinaryCofanFunctor_desc_right, Under.instHasLimits, IsFiltered.under, commAlgCatEquivUnder_inverse_map, Under.hasColimit_of_hasColimit_liftFromUnder, Under.forget_obj, Under.liftCocone_pt, WithInitial.coconeEquiv_inverse_map_hom_right, CommRingCat.Under.instPreservesFiniteProductsUnderTensorProd, Under.mapForget_eq, underToAlgebra_map_f, Under.instFullObjPostOfFaithful, Under.final_forget, preservesColimit_coyoneda_of_finitePresentation, Functor.toUnder_map_right, Under.mono_of_mono_right, Under.mapPushoutAdj_counit_app, Under.mapComp_eq, WithInitial.liftFromUnderComp_hom_app, StructuredArrow.ofCommaSndEquivalenceFunctor_obj_left, StructuredArrow.ofDiagEquivalence.functor_obj_hom, CommRingCat.Under.equalizerFork_ΞΉ, WithInitial.coconeEquiv_counitIso_hom_app_hom, Limits.Cone.toUnder_Ο€_app, Under.postAdjunctionLeft_counit_app, Under.inv_right_hom_right, WithInitial.liftFromUnder_map_app, Under.mapComp_inv, MorphismProperty.underObj_ind_eq_ind_underObj, commAlgCatEquivUnder_functor_map, StructuredArrow.ofDiagEquivalence.inverse_obj_left_as, Under.hom_right_inv_right_assoc, Under.locallySmall, CommRingCat.instIsLeftAdjointCommMonCatUnderMonoidAlgebra, CommRingCat.monoidAlgebra_obj, Limits.Cone.mapConeToUnder_hom_hom, Under.opEquivOpOver_inverse_obj, Under.costar_map_left, Under.equivalenceOfIsInitial_inverse_map, StructuredArrow.ofCommaSndEquivalence_inverse, Under.opEquivOpOver_counitIso, StructuredArrow.toUnder_map_left, WithInitial.liftFromUnder_obj_map, Enriched.FunctorCategory.functorHomEquiv_apply_app, Under.mkIdInitial_to_right, Under.mono_homMk, Under.equivalenceOfIsInitial_inverse_obj, Under.costar_obj_hom, StructuredArrow.ofStructuredArrowProjEquivalence.functor_obj_right_left_as, Limits.PreservesColimitsOfShape.underPost, Under.postAdjunctionRight_counit_app_right, Limits.pushoutCoconeEquivBinaryCofan_counitIso, isFinitelyPresentable, Over.opEquivOpUnder_functor_map, Under.postEquiv_functor, Under.lift_map, Under.hasLimit_of_hasLimit_comp_forget, Under.opEquivOpOver_unitIso, StructuredArrow.ofCommaSndEquivalenceInverse_obj_right_hom, StructuredArrow.instEssSurjUnderToUnder, Under.inv_right_hom_right_assoc, Limits.Cone.toStructuredArrowCompToUnderCompForget_inv_app, IsGrothendieckAbelian.IsPresentable.injectivityβ‚€.hf, Under.opEquivOpOver_functor_map, Under.epi_homMk, Under.postEquiv_unitIso, StructuredArrow.ofCommaSndEquivalenceInverse_obj_left_as, algebraToUnder_map, Limits.instPreservesFilteredColimitsOfSizeUnderForget, CommRingCat.Under.instPreservesLimitUnderWalkingParallelPairParallelPairTensorProdOfFlatCarrier, Under.id_right, algebraEquivUnder_functor, Under.homMk_comp, Under.postAdjunctionLeft_unit_app, StructuredArrow.ofDiagEquivalence.functor_obj_left_as, Enriched.FunctorCategory.functorEnrichedHom_map, StructuredArrow.toUnder_obj_right, CommRingCat.preservesFilteredColimits_coyoneda, Under.isRightAdjoint_post, WithInitial.coconeEquiv_unitIso_inv_app_hom_right, Under.opEquivOpOver_inverse_map, Under.preservesLimitsOfSize_map, Limits.Cocone.underPost_pt, CommRingCat.preservesColimit_coyoneda_of_finitePresentation, Under.forgetCone_Ο€_app, StructuredArrow.ofStructuredArrowProjEquivalence.inverse_obj_right_hom, IsGrothendieckAbelian.IsPresentable.injectivityβ‚€.epi_f, StructuredArrow.ofCommaSndEquivalenceFunctor_obj_hom, Over.opEquivOpUnder_functor_obj, CommRingCat.Under.equalizer_comp, Under.forget_reflects_iso, CommRingCat.Under.equalizerFork'_ΞΉ, StructuredArrow.ofStructuredArrowProjEquivalence.functor_obj_hom, StructuredArrow.ofCommaSndEquivalenceInverse_obj_right_right, Enriched.FunctorCategory.functorEnrichedId_app, Under.comp_right, MorphismProperty.instFaithfulUnderTopUnderForget, Under.faithful_pushout, CommRingCat.pushout_inr_tensorProdObjIsoPushoutObj_inv_right
instCategoryOver πŸ“–CompOp
806 mathmath: TopCat.Presheaf.generateEquivalenceOpensLe_functor'_obj_obj, Over.associator_hom_left_snd_fst_assoc, GrothendieckTopology.overMapPullbackId_hom_app_val_app, ChosenPullbacksAlong.Over.whiskerLeft_left_fst, Over.prodLeftIsoPullback_hom_snd_assoc, Limits.IndizationClosedUnderFilteredColimitsAux.exists_nonempty_limit_obj_of_isColimit, Over.ΞΌ_pullback_left_snd', WithTerminal.coneEquiv_unitIso_hom_app_hom_left, Pseudofunctor.DescentData.subtypeCompatibleHomEquiv_toCompatible_presheafHomObjHomEquiv, CostructuredArrow.ofCommaFstEquivalenceInverse_obj_left_hom, Over.ConstructProducts.has_over_limit_discrete_of_widePullback_limit, Subobject.factors_iff, ChosenPullbacksAlong.Over.associator_hom_left_snd_fst_assoc, Over.faithful_pullback, Over.forget_faithful, Over.instHasTerminal, AlgebraicGeometry.Scheme.Cover.pullbackCoverOver_X, Over.ConstructProducts.conesEquivInverseObj_pt, MorphismProperty.over_eq_inverseImage, Over.iteratedSliceForwardNaturalityIso_hom_app, GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_mapβ‚‚, CostructuredArrow.toOver_obj_left, MonoOver.mk_coe, ChosenPullbacksAlong.Over.tensorHom_left_fst, AlgebraicGeometry.isCommMonObj_of_isProper_of_geometricallyIntegral, OverPresheafAux.costructuredArrowPresheafToOver_map, Over.forgetCocone_pt, AlgebraicGeometry.opensCone_pt, ChosenPullbacksAlong.cartesianMonoidalCategoryFst_pullback_map, MonoOver.congr_unitIso, MorphismProperty.HasFactorization.over, instGuitartExactOverObjOverPostOfHasBinaryProductOfPreservesLimitDiscreteWalkingPairPair, instHasLimitsOfSizeOver, OverPresheafAux.unitAux_hom, Over.iteratedSliceBackward_map, CostructuredArrow.ofDiagEquivalence.functor_map_left_left, IsGrothendieckAbelian.IsPresentable.injectivityβ‚€.F_obj, MonoOver.mapIso_functor, Over.associator_inv_left_snd, ExponentiableMorphism.homEquiv_symm_apply_eq, Limits.Cocone.toOver_ΞΉ_app, Over.pullback_obj_left, AlgebraicGeometry.Scheme.restrictFunctorΞ“_inv_app, Over.inv_left_hom_left_assoc, Over.instIsLeftAdjointForget, AlgebraicGeometry.Scheme.overGrothendieckTopology_eq_toGrothendieck_overPretopology, TopCat.Presheaf.generateEquivalenceOpensLe_unitIso, MonoOver.mk_obj, Over.mapIso_inverse, MonoOver.isIso_left_iff_subobjectMk_eq, GrothendieckTopology.overMapPullback_comp_id, Sieve.overEquiv_pullback, Over.rightUnitor_inv_left_fst_assoc, OverPresheafAux.restrictedYoneda_map, GrothendieckTopology.overMapPullbackId_inv_app_val_app, toOver_obj_hom, MonoOver.hasColimitsOfSize_of_hasStrongEpiMonoFactorisations, Sieve.ofArrows_category', Over.comp_left_assoc, GrothendieckTopology.instIsContinuousOverStarOver, ExponentiableMorphism.id_pushforward, Iso.asOver_hom, MonoOver.instIsRightAdjointOverForget, Over.hom_left_inv_left, Over.instIsEquivalenceObjPost, Limits.PreservesLimitsOfShape.overPost, Over.monObjMkPullbackSnd_mul, Over.whiskerLeft_left, Over.forgetMapTerminal_hom_app, OverPresheafAux.restrictedYoneda_obj, Over.equivalenceOfIsTerminal_counitIso, Presheaf.isSheaf_iff_isLimit_coverage, MonoOver.isIso_iff_subobjectMk_eq, Over.epi_iff_epi_left, Over.grpObjMkPullbackSnd_one, Classifier.SubobjectRepresentableBy.iso_inv_hom_left_comp, AlgebraicGeometry.Scheme.Cover.pullbackCoverOver'_X, CostructuredArrow.ofCostructuredArrowProjEquivalence.inverse_obj_left_hom, WithTerminal.coneEquiv_inverse_obj_Ο€_app_left, Over.grpObjMkPullbackSnd_mul, CostructuredArrow.toOver_obj_right, AlgebraicGeometry.Scheme.locallyCoverDense_of_le, CostructuredArrow.ofDiagEquivalence.inverse_obj_left, ChosenPullbacksAlong.unit_pullbackComp_hom_assoc, Over.hasLimit_of_hasLimit_liftFromOver, OverClass.asOverHom_comp_assoc, MonoOver.mapIso_unitIso, toOver_obj_left, IsGrothendieckAbelian.IsPresentable.surjectivity.F_map, ChosenPullbacksAlong.iso_mapPullbackAdj_unit_app, toOverPullbackIsoToOver_inv_app_left, Over.toUnit_left, GrothendieckTopology.over_map_coverPreserving, coalgebraEquivOver_functor, ChosenPullbacksAlong.pullbackIsoOverPullback_hom_app_comp_snd_assoc, Limits.Cocone.toCostructuredArrow_comp_toOver_comp_forget, Over.braiding_inv_left, Over.mapId_eq, CostructuredArrow.overEquivPresheafCostructuredArrow_inverse_map_toOverCompCoyoneda, Over.opEquivOpUnder_unitIso, Over.prodLeftIsoPullback_inv_snd, Over.iteratedSliceForwardIsoPost_inv_app, toOverUnit_map_left, instIsContinuousOverLeftDiscretePUnitIteratedSliceForwardOver, MonoOver.mapIso_counitIso, ExponentiableMorphism.comp_pushforward, Over.leftUnitor_hom_left, Over.isCommMonObj_mk_pullbackSnd, Over.tensorObj_ext_iff, CostructuredArrow.toOver_map_right, HomotopicalAlgebra.instIsStableUnderRetractsOverFibrations, Over.iteratedSliceForward_forget, Types.monoOverEquivalenceSet_inverse_map, toOverIsoToOverUnit_inv_app_left, Over.ConstructProducts.conesEquivCounitIso_inv_app_hom_left, TopCat.Presheaf.generateEquivalenceOpensLe_inverse'_obj_obj_right_as, MorphismProperty.baseChange_map, Over.postAdjunctionRight_counit_app, Over.conePost_obj_Ο€_app, MonoOver.mkArrowIso_hom_hom_left, NatTrans.instIsClosedUnderLimitsOfShapeOverFunctorEquifiberedHomDiscretePUnitOfHasCoproductsOfShapeHom, CostructuredArrow.toOver_obj_hom, Sieve.overEquiv_le_overEquiv_iff, CostructuredArrow.instFullOverToOver, MonoOver.map_obj_left, ChosenPullbacksAlong.snd'_left, ChosenPullbacksAlong.Over.tensorObj_ext_iff, CostructuredArrow.ofDiagEquivalence.functor_obj_hom, Over.rightUnitor_inv_left_fst, Over.ConstructProducts.conesEquiv_unitIso, WithTerminal.commaFromOver_map_left, ChosenPullbacksAlong.Over.tensorHom_left_snd_assoc, ChosenPullbacksAlong.cartesianMonoidalCategorySnd_mapPullbackAdj_unit_app, MonoOver.isIso_hom_left_iff_subobjectMk_eq, Over.mapCongr_inv_app_left, CostructuredArrow.ofCostructuredArrowProjEquivalence.functor_obj_right_as, Limits.PreservesFiniteLimits.overPost, Sieve.ofArrows_category, Over.mapCongr_hom_app_left, ChosenPullbacksAlong.Over.rightUnitor_inv_left_snd, equivToOverUnit_unitIso, Over.postCongr_inv_app_left, ChosenPullbacksAlong.isoInv_pullback_obj_left, CostructuredArrow.ofCostructuredArrowProjEquivalence.inverse_obj_hom, Over.mapComp_hom_app_left, TopCat.Presheaf.generateEquivalenceOpensLe_inverse'_obj_obj_hom, essentiallySmall_monoOver, Over.whiskerRight_left_fst, Limits.colimit.toOver_ΞΉ_app, Over.postAdjunctionLeft_unit_app_left, GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_comp_val_app, CostructuredArrow.costructuredArrowToOverEquivalence.functor_map, GrothendieckTopology.pseudofunctorOver_mapComp_inv_toNatTrans_app_val_app, MonoOver.pullback_obj_arrow, Over.preservesTerminalIso_pullback, WithTerminal.commaFromOver_obj_right, Over.prodLeftIsoPullback_inv_fst, Presheaf.isLimit_iff_isSheafFor_presieve, WithTerminal.coneEquiv_functor_obj_Ο€_app_star, CostructuredArrow.ofDiagEquivalence.functor_obj_left_hom, WithTerminal.coneEquiv_counitIso_inv_app_hom, Over.opEquivOpUnder_inverse_obj, MorphismProperty.instFaithfulOverTopOverForget, CostructuredArrow.instFaithfulOverToOver, AlgebraicGeometry.Scheme.kerAdjunction_unit_app, Over.prodLeftIsoPullback_inv_snd_assoc, Over.rightUnitor_inv_left_snd, ChosenPullbacksAlong.Over.tensorObj_hom, Over.coprod_obj, AlgebraicGeometry.instIsClosedImmersionLeftSchemeDiscretePUnitOneOverSpecOf, Over.post_map, GrothendieckTopology.instIsCocontinuousOverForgetOver, regularTopology.equalizerConditionMap_iff_nonempty_isLimit, Pseudofunctor.presheafHom_obj, instInitialCostructuredArrowOverToOver, Over.mapPullbackAdj_counit_app, Over.iteratedSliceBackward_forget, Over.postCongr_hom_app_left, toOverUnit_obj_left, instInitiallySmallOverOfLocallySmall, Limits.pullbackConeEquivBinaryFan_functor_map_hom, ChosenPullbacksAlong.Over.tensorObj_left, Over.iteratedSliceBackward_forget_forget, Over.instHasColimitsOfShape, presheafHom_obj, ChosenPullbacksAlong.Over.associator_hom_left_fst, IsCofiltered.over, Over.prodLeftIsoPullback_hom_snd, Over.locallySmall, Limits.pullbackConeEquivBinaryFan_counitIso, ChosenPullbacksAlong.isoInv_pullback_map_left, CostructuredArrow.ofCommaFstEquivalence_inverse, GrothendieckTopology.coverPreserving_over_star, Over.whiskerRight_left_snd_assoc, ChosenPullbacksAlong.Over.snd_eq_snd', Limits.IsLimit.pullbackConeEquivBinaryFanFunctor_lift_left, Over.associator_inv_left_fst_fst_assoc, Sieve.overEquiv_symm_iff, AlgebraicGeometry.Scheme.isCommMonObj_asOver_pullback, GrothendieckTopology.overEquiv_symm_mem_over, Sieve.functorPushforward_over_map, GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_obj_val_obj, Over.epi_of_epi_left, CostructuredArrow.ofCommaFstEquivalenceFunctor_obj_hom, Over.associator_hom_left_fst, GrothendieckTopology.over_forget_compatiblePreserving, Limits.Cocone.toCostructuredArrowCompToOverCompForget_inv_app, Subfunctor.equivalenceMonoOver_inverse_map, AlgebraicGeometry.Scheme.isMonHom_fst_id_right, Over.forgetAdjStar_counit_app, ChosenPullbacksAlong.Over.leftUnitor_inv_left_snd, OverClass.asOverHom_inv, ChosenPullbacksAlong.Over.tensorUnit_hom, Over.prodLeftIsoPullback_hom_fst_assoc, Over.map_map_left, ChosenPullbacksAlong.Over.whiskerLeft_left_snd_assoc, CostructuredArrow.instEssSurjOverToOver, ExponentiableMorphism.pushforwardId_hom_counit_assoc, CostructuredArrow.ofDiagEquivalence.functor_obj_left_left, ChosenPullbacksAlong.Over.associator_hom_left_snd_fst, MonoOver.image_map, GrothendieckTopology.mem_over_iff, Over.tensorUnit_hom, Over.opEquivOpUnder_inverse_map, Subfunctor.equivalenceMonoOver_functor_map, CostructuredArrow.ofCostructuredArrowProjEquivalence.inverse_map_left_left, presheafHom_map_app, AlgebraicGeometry.instFaithfulOverSchemePullbackOfSurjectiveOfFlatOfQuasiCompact, Limits.instPreservesCofilteredLimitsOfSizeOverForget, Over.leftUnitor_inv_left_fst, ChosenPullbacksAlong.isoInv_mapPullbackAdj_unit_app_left, Over.inv_left_hom_left, Over.starPullbackIsoStar_hom_app_left, Over.equivalenceOfIsTerminal_inverse_map, Over.postEquiv_inverse, AlgebraicGeometry.opensDiagram_map, ChosenPullbacksAlong.Over.whiskerRight_left, HomotopicalAlgebra.cofibrations_over_iff, CostructuredArrow.ofDiagEquivalence.inverse_obj_hom, WithTerminal.coneEquiv_functor_obj_Ο€_app_of, Over.forgetMapTerminal_inv_app, HomotopicalAlgebra.trivialFibrations_over_eq, ChosenPullbacksAlong.unit_pullbackId_hom_app, Over.instIsRightAdjointStar, Subobject.inf_eq_map_pullback', Over.equivalenceOfIsTerminal_functor, Over.preservesColimitsOfSize_map, OverClass.asOverHom_id, Presheaf.isSeparated_iff_subsingleton, Over.isoMk_inv_left, Over.conePostIso_hom_app_hom, Over.eqToHom_left, Sieve.overEquiv_top, Over.mapComp_eq, Over.tensorHom_left_snd_assoc, ChosenPullbacksAlong.Over.rightUnitor_inv_left_snd_assoc, MorphismProperty.instIsClosedUnderIsomorphismsOverOverObjOfRespectsIso, Over.mono_homMk, ExponentiableMorphism.ev_coev, monoOver_terminal_to_subterminals_comp, HomotopicalAlgebra.instIsStableUnderRetractsOverCofibrations, Over.leftUnitor_inv_left_snd, ChosenPullbacksAlong.Over.leftUnitor_inv_left_fst_assoc, AlgebraicGeometry.Scheme.kerAdjunction_counit_app, AlgebraicGeometry.opensDiagramΞΉ_app, Over.prodComparisonIso_pullback_inv_left_snd', GrothendieckTopology.overMapPullback_assoc_assoc, CostructuredArrow.ofCommaFstEquivalenceInverse_obj_right_as, Over.preservesLimitsOfShape_forget_of_isConnected, MonoOver.image_obj, TopologicalSpace.Opens.coe_overEquivalence_functor_obj, OverClass.instIsIsoOverAsOverHom, Over.ΞΌ_pullback_left_fst_snd', CostructuredArrow.ofCommaFstEquivalenceInverse_obj_left_left, Over.comp_left, ChosenPullbacksAlong.Over.tensorUnit_left, Over.mapPullbackAdj_unit_app, MorphismProperty.Over.forget_comp_forget_map, Over.mapId_inv_app_left, AlgebraicGeometry.Scheme.AffineZariskiSite.restrictIsoSpec_hom_app, ChosenPullbacksAlong.Over.leftUnitor_inv_left_fst, Sieve.overEquiv_symm_pullback, Subfunctor.equivalenceMonoOver_inverse_obj, Over.leftUnitor_inv_left_snd_assoc, TopCat.Presheaf.whiskerIsoMapGenerateCocone_inv_hom, Over.ConstructProducts.conesEquivFunctor_map_hom, ChosenPullbacksAlong.iso_pullback_obj, WithTerminal.coneEquiv_inverse_obj_pt_left, Presieve.functorPushforward_overForget, Over.pullbackIsRightAdjoint, Over.conePost_map_hom, AlgebraicGeometry.Scheme.mem_overGrothendieckTopology, Over.over_hasTerminal, MonoOver.bot_left, Presieve.ofArrows_category, Over.lift_obj, TopologicalSpace.Opens.overEquivalence_unitIso_hom_app_left, AlgebraicGeometry.instIsAffineHomMapOverSchemeOpensDiagram, MonoOver.map_obj_arrow, Limits.pullbackConeEquivBinaryFan_inverse_obj, ChosenPullbacksAlong.cartesianMonoidalCategoryFst_mapPullbackAdj_unit_app, Limits.pullbackConeEquivBinaryFan_functor_obj, Over.map_obj_hom, Over.initial_forget, Over.associator_hom_left_snd_fst, CostructuredArrow.toOver_map_left, Over.postComp_inv_app_left, HomotopicalAlgebra.trivialCofibrations_over_eq, Over.toOverSectionsAdj_unit_app, subterminalsEquivMonoOverTerminal_inverse_map, Subobject.lower_comm, Functor.toOver_obj_left, GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_id_val_app, Over.post_comp, Over.equivalenceOfIsTerminal_inverse_obj, Over.rightUnitor_inv_left_snd_assoc, Over.toOverSectionsAdj_counit_app, ChosenPullbacksAlong.Over.whiskerRight_left_snd, MonoOver.w, MonoOver.bot_arrow_eq_zero, CostructuredArrow.overEquivPresheafCostructuredArrow_functor_map_toOverCompYoneda, forgetAdjToOver_unit_app, Over.iteratedSliceEquivOverMapIso_inv_app_left_left, MonoOver.hasFiniteLimits, Over.iteratedSliceEquivOverMapIso_hom_app_left_left, CostructuredArrow.costructuredArrowToOverEquivalence.functor_obj, WithTerminal.isLimitEquiv_symm_apply_lift, regularTopology.parallelPair_pullback_initial, WithTerminal.liftFromOver_obj_obj, overToCoalgebra_map_f, Over.isRightAdjoint_post, Pseudofunctor.isStackFor_iff, CostructuredArrow.ofCostructuredArrowProjEquivalence.functor_obj_left_right_as, Subfunctor.equivalenceMonoOver_functor_obj, Limits.Cocone.toOver_pt, Pseudofunctor.isPrestackFor_iff_isSheafFor, ChosenPullbacksAlong.Over.whiskerRight_left_snd_assoc, ChosenPullbacksAlong.Over.whiskerRight_left_fst_assoc, AlgebraicGeometry.Scheme.restrictFunctorΞ“_hom_app, Pseudofunctor.bijective_toDescentData_map_iff, Over.ConstructProducts.conesEquivUnitIso_inv_app_hom, Over.pullback_map_left, instIsContinuousOverLeftDiscretePUnitIteratedSliceBackwardOver, IsGrothendieckAbelian.IsPresentable.injectivityβ‚€.F_map, isEventuallyConstant_of_isArtinianObject, Over.prodComparisonIso_pullback_inv_left_fst_fst, Pseudofunctor.presheafHom_map, WithTerminal.coneEquiv_inverse_obj_pt_hom, Over.postEquiv_counitIso, ChosenPullbacksAlong.pullbackId_hom_counit, ExponentiableMorphism.ev_def, Over.ConstructProducts.conesEquivCounitIso_hom_app_hom_left, Over.sections_obj, AlgebraicGeometry.opensDiagram_obj, Over.star_obj_left, AlgebraicGeometry.Scheme.instFullOppositeIdealSheafDataOverSubschemeFunctor, WithTerminal.liftFromOverComp_hom_app, equivToOverUnit_counitIso, Over.iteratedSliceEquiv_functor, AlgebraicGeometry.opensCone_Ο€_app, Over.tensorHom_left, CostructuredArrow.ofCostructuredArrowProjEquivalence.inverse_obj_right_as, toOverIteratedSliceForwardIsoPullback_hom_app_left, MonoOver.mk'_coe', ExponentiableMorphism.ev_coev_assoc, CostructuredArrow.ofCostructuredArrowProjEquivalence.functor_obj_left_hom, Presheaf.isSheaf_iff_isLimit, Under.opEquivOpOver_functor_obj, Over.ConstructProducts.conesEquiv_counitIso, MonoOver.mono, Over.associator_inv_left_fst_snd, MonoOver.forget_obj_left, Subobject.instIsEquivalenceMonoOverRepresentative, Over.forget_obj, Over.closedUnderLimitsOfShape_pullback, toOverPullbackIsoToOver_hom_app_left, Over.star_obj_hom, Over.forgetPreservesConnectedLimits, coalgebraToOver_obj, Over.associator_hom_left_snd_snd_assoc, Limits.Cone.overPost_pt, ExponentiableMorphism.pushforwardComp_hom_counit_assoc, ExponentiableMorphism.coev_def, Over.liftCone_Ο€_app, CostructuredArrow.ofCommaFstEquivalence_functor, TopologicalSpace.Opens.overEquivalence_counitIso_inv_app, Over.instIsEquivalenceMapOfIsIso, ChosenPullbacksAlong.pullbackIsoOverPullback_inv_app_comp_fst, TopCat.Presheaf.generateEquivalenceOpensLe_functor, Over.ΞΌ_pullback_left_fst_fst', ChosenPullbacksAlong.cartesianMonoidalCategoryToUnit_pullback_obj, CostructuredArrow.ofCommaFstEquivalenceFunctor_map_right, Types.monoOverEquivalenceSet_functor_map, Over.ΞΌ_pullback_left_fst_snd, Over.whiskerRight_left, Over.monObjMkPullbackSnd_one, TopologicalSpace.Opens.overEquivalence_unitIso_inv_app_left, AlgebraicGeometry.Scheme.IdealSheafData.subschemeFunctor_obj, ExponentiableMorphism.ev_naturality_assoc, CostructuredArrow.ofDiagEquivalence.functor_obj_right_as, Over.opEquivOpUnder_counitIso, Over.hasFiniteLimits, AlgebraicGeometry.instIsOpenImmersionMapSchemeCompOverOverTopMorphismPropertyForgetForget, GrothendieckTopology.overMapPullbackCongr_eq_eqToIso, Over.hasColimit_of_hasColimit_comp_forget, ChosenPullbacksAlong.pullbackIsoOverPullback_inv_app_comp_snd, CostructuredArrow.ofCommaFstEquivalenceInverse_map_left_left, toOverIsoToOverUnit_hom_app_left, ChosenPullbacksAlong.cartesianMonoidalCategorySnd_pullback_map, TopCat.Presheaf.generateEquivalenceOpensLe_counitIso, SheafOfModules.instIsLeftAdjointOverOverRingCatPushforwardIdSheafOver, Sieve.yonedaFamily_fromCocone_compatible, subterminalsEquivMonoOverTerminal_inverse_obj_obj, ChosenPullbacksAlong.Over.whiskerLeft_left_fst_assoc, AlgebraicGeometry.Scheme.monObjAsOverPullback_mul, coalgebraEquivOver_counitIso, Over.closedUnderLimitsOfShape_discrete_empty, Types.monoOverEquivalenceSet_functor_obj, MonoOver.hasLimitsOfShape, AlgebraicGeometry.Scheme.kerFunctor_map, ChosenPullbacksAlong.pullbackId_hom_counit_assoc, MonoOver.congr_functor, Pseudofunctor.IsStack.essSurj_of_sieve, Over.associator_inv_left_fst_fst, Presieve.isSheafFor_over_map_op_comp_ofArrows_iff, Presieve.isSheafFor_over_map_op_comp_iff, CostructuredArrow.ofDiagEquivalence.inverse_obj_right_as, MonoOver.isIso_iff_isIso_hom_left, instHasLimitsOfShapeOverOfWithTerminal, Over.snd_left, CostructuredArrow.ofCostructuredArrowProjEquivalence.functor_map_left_left, ChosenPullbacksAlong.pullbackIsoOverPullback_hom_app_comp_snd, MonoOver.congr_inverse, ChosenPullbacksAlong.Over.tensorHom_left_fst_assoc, instIsCocontinuousOverLeftDiscretePUnitIteratedSliceBackwardOver, Over.tensorHom_left_fst, Sieve.overEquiv_symm_generate, Over.whiskerRight_left_snd, AlgebraicGeometry.Scheme.Cover.pullbackCoverOver_f, Over.conePostIso_inv_app_hom, ChosenPullbacksAlong.cartesianMonoidalCategoryToUnit_mapPullbackAdj_unit_app, ChosenPullbacksAlong.pullbackComp_hom_counit, TopCat.Presheaf.whiskerIsoMapGenerateCocone_hom_hom, ChosenPullbacksAlong.Over.associator_inv_left_fst_snd_assoc, ChosenPullbacksAlong.Over.associator_inv_left_fst_snd, WithTerminal.commaFromOver_obj_hom_app, AlgebraicGeometry.Scheme.Cover.toPresieveOver_le_arrows_iff, Over.iteratedSliceEquiv_unitIso, Classifier.SubobjectRepresentableBy.iso_inv_left_Ο€_assoc, Over.isoMk_hom_left, HomotopicalAlgebra.fibrations_over_def, ChosenPullbacksAlong.Over.whiskerRight_left_fst, Functor.toOver_map_left, Over.star_map_left, Over.tensorHom_left_fst_assoc, ChosenPullbacksAlong.Over.associator_inv_left_snd_assoc, forgetAdjToOver.homEquiv_symm, AlgebraicGeometry.Scheme.Cover.overEquiv_generate_toPresieveOver_eq_ofArrows, CostructuredArrow.ofCostructuredArrowProjEquivalence.functor_obj_hom, Over.prodLeftIsoPullback_inv_fst_assoc, ChosenPullbacksAlong.Over.rightUnitor_hom_left, GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_map_val_app, HomotopicalAlgebra.cofibrations_over_def, Subobject.lowerEquivalence_counitIso, Pseudofunctor.IsPrestack.isSheaf, subterminalsEquivMonoOverTerminal_functor_map, Over.Ξ·_pullback_left, GrothendieckTopology.overMapPullback_comp_id_assoc, Pseudofunctor.presheafHomObjHomEquiv_apply, ExponentiableMorphism.coev_ev_assoc, Over.postAdjunctionRight_unit_app, Over.conePost_obj_pt, Over.id_left, ChosenPullbacksAlong.Over.leftUnitor_hom_left, ChosenPullbacksAlong.cartesianMonoidalCategoryFst_pullback_obj, Over.postComp_hom_app_left, HasLiftingProperty.over, IsGrothendieckAbelian.generatingMonomorphisms.functorToMonoOver_map, Over.instHasFiniteColimits, Over.whiskerLeft_left_fst, CostructuredArrow.ofCommaFstEquivalence_counitIso, ChosenPullbacksAlong.cartesianMonoidalCategoryFst_mapPullbackAdj_counit_app, MonoOver.inf_map_app, MonoOver.isThin, CostructuredArrow.ofCommaFstEquivalenceFunctor_obj_left, ChosenPullbacksAlong.isoInv_mapPullbackAdj_counit_app_left, Over.post_obj, Over.ConstructProducts.conesEquiv_functor, MonoOver.mkArrowIso_inv_hom_left, Over.epi_homMk, Limits.Cocone.toCostructuredArrowCompToOverCompForget_hom_app, MorphismProperty.Over.instPreservesFiniteLimitsTopOverForget, Pseudofunctor.isPrestackFor_iff, CostructuredArrow.ofCommaFstEquivalenceFunctor_map_left, ChosenPullbacksAlong.Over.lift_left, Over.mapId_hom_app_left, Limits.PreservesLimitsOfSize.overPost, Presieve.map_functorPullback_overForget, WithTerminal.commaFromOver_map_right, MonoOver.w_assoc, Over.forget_reflects_iso, Over.isPullback_of_binaryFan_isLimit, Pseudofunctor.IsStackFor.isEquivalence, Classifier.SubobjectRepresentableBy.iso_inv_hom_left_comp_assoc, Over.ConstructProducts.over_products_of_widePullbacks, MorphismProperty.instFullOverTopOverForget, CostructuredArrow.ofCommaFstEquivalenceFunctor_obj_right, Over.whiskerLeft_left_fst_assoc, MonoOver.pullback_obj_left, CostructuredArrow.ofCostructuredArrowProjEquivalence.functor_obj_left_left, AlgebraicGeometry.instIsOpenImmersionAppOverSchemeOpensDiagramΞΉ, Over.instFaithfulObjPost, Subobject.lowerEquivalence_unitIso, GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_obj_val_map, Over.coprodObj_obj, GrothendieckTopology.overMapPullbackComp_inv_app_val_app, AlgebraicGeometry.isClosedImmersion_equalizer_ΞΉ_left, Iso.asOver_inv, ChosenPullbacksAlong.Over.associator_inv_left_fst_fst, ChosenPullbacksAlong.cartesianMonoidalCategorySnd_pullback_obj, CostructuredArrow.ofDiagEquivalence.functor_obj_left_right_as, Subfunctor.equivalenceMonoOver_unitIso, Over.prodComparisonIso_pullback_Spec_inv_left_fst_fst', AlgebraicGeometry.Scheme.instLocallyCoverDenseOverTopMorphismPropertyOverForgetOverGrothendieckTopology, MonoOver.subobjectMk_le_mk_of_hom, Over.ConstructProducts.over_binaryProduct_of_pullback, Over.whiskerLeft_left_snd_assoc, ChosenPullbacksAlong.unit_pullbackId_hom, Over.equivalenceOfIsTerminal_unitIso, TopologicalSpace.Opens.coe_overEquivalence_inverse_obj_left, Over.iteratedSliceEquiv_counitIso, HomotopicalAlgebra.instHasFactorizationOverTrivialCofibrationsFibrations, Over.leftUnitor_inv_left_fst_assoc, ChosenPullbacksAlong.Over.whiskerLeft_left, Sieve.forallYonedaIsSheaf_iff_colimit, WithTerminal.liftFromOver_obj_map, equivToOverUnit_inverse, Over.liftCocone_ΞΉ_app, Over.instHasFiniteCoproducts, HomotopicalAlgebra.instHasTwoOutOfThreePropertyOverWeakEquivalences, ExponentiableMorphism.coev_naturality_assoc, Limits.Cocone.mapCoconeToOver_inv_hom, ChosenPullbacksAlong.cartesianMonoidalCategoryToUnit_mapPullbackAdj_counit_app, WithTerminal.isLimitEquiv_apply_lift_left, subterminalsEquivMonoOverTerminal_unitIso, overToCoalgebra_obj_A, Over.postEquiv_unitIso, coalgebraToOver_map, ExponentiableMorphism.pushforwardComp_hom_counit, Pseudofunctor.IsStackFor.essSurj, GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_Ξ±, Over.associator_inv_left_fst_snd_assoc, ChosenPullbacksAlong.cartesianMonoidalCategorySnd_mapPullbackAdj_counit_app, MonoOver.forget_obj_hom, Classifier.SubobjectRepresentableBy.iso_inv_left_comp, Over.rightUnitor_hom_left, Functor.over_forget_locallyCoverDense, Over.instHasPullbacks, Over.ConstructProducts.conesEquivFunctor_obj_pt, toOver_map_left, Over.sections_map, ChosenPullbacksAlong.fst'_left, CostructuredArrow.ofCommaFstEquivalenceInverse_obj_left_right, MonoOver.commSqOfHasStrongEpiMonoFactorisation, Over.ConstructProducts.over_finiteProducts_of_finiteWidePullbacks, ExponentiableMorphism.coev_naturality, Over.ΞΌ_pullback_left_snd, Over.iteratedSliceBackward_obj, subterminalsEquivMonoOverTerminal_counitIso, CostructuredArrow.ofDiagEquivalence.inverse_map_left, ChosenPullbacksAlong.Over.toUnit_left, Over.mapFunctor_obj, WithTerminal.coneEquiv_unitIso_inv_app_hom_left, Classifier.SubobjectRepresentableBy.iso_inv_left_Ο€, Over.map_obj_left, AlgebraicGeometry.instIsLocallyDirectedCompSchemeOverOverTopMorphismPropertyForgetForgetForget, Types.monoOverEquivalenceSet_inverse_obj, ExponentiableMorphism.unit_pushforwardId_hom, Sieve.overEquiv_symm_top, MonoOver.hasLimit, PresheafHom.IsSheafFor.app_cond, coalgebraEquivOver_inverse, Over.instFullObjPostOfFaithful, Over.instEssSurjObjPostOfFull, Over.ConstructProducts.conesEquivUnitIso_hom_app_hom, Over.braiding_hom_left, MonoOver.instMonoHomDiscretePUnitObjOverForget, ChosenPullbacksAlong.Over.associator_inv_left_snd, ChosenPullbacksAlong.isoInv_pullback_obj_hom, ChosenPullbacksAlong.iso_mapPullbackAdj_counit_app, GrothendieckTopology.overMapPullbackComp_hom_app_val_app, IsGrothendieckAbelian.IsPresentable.surjectivity.F_obj, ChosenPullbacksAlong.Over.whiskerLeft_left_snd, ChosenPullbacksAlong.Over.associator_hom_left_snd_snd, overToCoalgebra_obj_a, ChosenPullbacksAlong.isoInv_pullback_obj_right_as, FunctorToTypes.mem_fromOverSubfunctor_iff, Over.ΞΌ_pullback_left_fst_fst, Over.starPullbackIsoStar_inv_app_left, GrothendieckTopology.instIsContinuousOverForgetOver, Over.iteratedSliceForward_map, GrothendieckTopology.overMapPullback_id_comp_assoc, AlgebraicGeometry.Scheme.instFullEtaleOverForget, MonoOver.inf_obj, AlgebraicGeometry.Scheme.Cover.pullbackCoverOver'_f, MonoOver.top_left, Over.tensorUnit_left, toOverIteratedSliceForwardIsoPullback_inv_app_left, Over.hom_left_inv_left_assoc, MorphismProperty.faithful_overPullback_of_isomorphisms_descendAlong, ChosenPullbacksAlong.iso_pullback_map, Under.opEquivOpOver_inverse_obj, PresheafHom.IsSheafFor.exists_app, CostructuredArrow.overEquivPresheafCostructuredArrow_functor_map_toOverCompCoyoneda, Over.ConstructProducts.conesEquivInverse_obj, GrothendieckTopology.pseudofunctorOver_mapComp_hom_toNatTrans_app_val_app, OverClass.asOverHom_comp, Types.monoOverEquivalenceSet_unitIso, CostructuredArrow.ofCommaFstEquivalence_unitIso, CostructuredArrow.costructuredArrowToOverEquivalence.inverse_obj, Over.iteratedSliceEquiv_inverse, TopCat.Presheaf.generateEquivalenceOpensLe_inverse'_obj_obj_left, ExponentiableMorphism.unit_pushforwardId_hom_assoc, AlgebraicGeometry.Scheme.kerFunctor_obj, ChosenPullbacksAlong.pullbackIsoOverPullback_hom_app_comp_fst_assoc, ExponentiableMorphism.ev_naturality, IsGrothendieckAbelian.generatingMonomorphisms.functorToMonoOver_obj, Over.forgetCocone_ΞΉ_app, WithTerminal.liftFromOverComp_inv_app, coalgebraEquivOver_unitIso, Over.whiskerRight_left_fst_assoc, Over.tensorHom_left_snd, Limits.Cone.overPost_Ο€_app, Under.opEquivOpOver_counitIso, equivToOverUnit_functor, Over.forget_map, GrothendieckTopology.overMapPullbackCongr_hom_app_val_app, Subobject.representative_coe, MonoOver.full_map, CostructuredArrow.isEquivalence_toOver, CostructuredArrow.ofCostructuredArrowProjEquivalence.inverse_obj_left_right_as, WithTerminal.liftFromOver_map_app, ChosenPullbacksAlong.unit_pullbackComp_hom, Sieve.overEquiv_generate, WithTerminal.coneEquiv_inverse_map_hom_left, Subobject.inf_eq_map_pullback, Over.postMap_app, GrothendieckTopology.instIsContinuousOverMapOver, Over.ConstructProducts.conesEquivInverseObj_Ο€_app, ExponentiableMorphism.unit_pushforwardComp_hom, TopologicalSpace.Opens.overEquivalence_inverse_obj_right_as, AlgebraicGeometry.instIsQuasicoherentOpensCarrierCarrierCommRingCatSpecTilde, MonoOver.mapIso_inverse, Presheaf.isLimit_iff_isSheafFor, Over.instHasEqualizers, ChosenPullbacksAlong.pullbackIsoOverPullback_inv_app_comp_fst_assoc, Over.lift_left, AlgebraicGeometry.Scheme.restrictFunctor_obj_left, MonoOver.congr_counitIso, Over.opEquivOpUnder_functor_map, AlgebraicGeometry.instPreservesColimitOverSchemeTopMorphismPropertyOverForget, PresheafHom.isAmalgamation_iff, Subobject.lowerEquivalence_inverse, Subobject.lowerEquivalence_functor, OverPresheafAux.costructuredArrowPresheafToOver_obj, GrothendieckTopology.over_map_compatiblePreserving, AlgebraicGeometry.instMonoObjWalkingSpanCompOverSchemeTopMorphismPropertySpanOverForgetForgetForgetNoneWalkingPairSomeMapInitOfIsOpenImmersionLeftDiscretePUnit, Over.mapIso_functor, AlgebraicGeometry.Scheme.monObjAsOverPullback_one, ChosenPullbacksAlong.cartesianMonoidalCategoryToUnit_pullback_map, Limits.IndizationClosedUnderFilteredColimitsAux.exists_nonempty_limit_obj_of_colimit, AlgebraicGeometry.Scheme.restrictFunctor_map_left, ChosenPullbacksAlong.pullbackIsoOverPullback_hom_app_comp_fst, CostructuredArrow.overEquivPresheafCostructuredArrow_inverse_map_toOverCompYoneda, TopCat.Presheaf.generateEquivalenceOpensLe_functor'_map, Limits.Cocone.mapCoconeToOver_hom_hom, HomotopicalAlgebra.weakEquivalences_over_iff, Under.opEquivOpOver_unitIso, Over.ConstructProducts.over_product_of_widePullback, sheafHomSectionsEquiv_symm_apply_coe_apply, Over.mkIdTerminal_from_left, ChosenPullbacksAlong.Over.fst_eq_fst', WithTerminal.coneEquiv_functor_obj_pt, Under.opEquivOpOver_functor_map, Over.ConstructProducts.conesEquiv_inverse, HomotopicalAlgebra.instHasFactorizationOverCofibrationsTrivialFibrations, Functor.essImage_overPost, WithTerminal.commaFromOver_obj_left, TopologicalSpace.Opens.overEquivalence_counitIso_hom_app, Over.fst_left, Over.prodLeftIsoPullback_hom_fst, GrothendieckTopology.overMapPullback_assoc, Over.associator_hom_left_fst_assoc, ExponentiableMorphism.pushforwardId_hom_counit, Limits.pullbackConeEquivBinaryFan_unitIso, Pseudofunctor.presheafHomObjHomEquiv_symm_apply, Over.isMonHom_pullbackFst_id_right, over_toGrothendieck_eq_toGrothendieck_comap_forget, Over.pullback_obj_hom, FunctorToTypes.instIsCofilteredElementsOverFromOverFunctor, Over.forgetAdjStar_unit_app_left, Pseudofunctor.isPrestackFor_iff_isSheafFor', Over.mapFunctor_map, Over.mapCongr_rfl, isEventuallyConstant_of_isNoetherianObject, GrothendieckTopology.overMapPullback_id_comp, Over.tensorObj_left, MonoOver.faithful_exists, isNoetherianObject_iff_isEventuallyConstant, Types.monoOverEquivalenceSet_counitIso, instIsCocontinuousOverLeftDiscretePUnitIteratedSliceForwardOver, CostructuredArrow.ofCostructuredArrowProjEquivalence.inverse_obj_left_left, Over.prodComparisonIso_pullback_inv_left_fst_snd', toOverUnitPullback_hom_app_left, ExponentiableMorphism.coev_ev, subterminalsEquivMonoOverTerminal_functor_obj_obj, GrothendieckTopology.pseudofunctorOver_mapId_inv_toNatTrans_app_val_app, instIsDenseSubsiteOverLeftDiscretePUnitOverInverseIteratedSliceEquiv, Over.Ξ΅_pullback_left, ChosenPullbacksAlong.pullbackComp_hom_counit_assoc, isArtinianObject_iff_isEventuallyConstant, Over.coprod_map_app, Limits.colimit.toOver_pt, MonoOver.faithful_map, Presheaf.subsingleton_iff_isSeparatedFor, Over.liftCone_pt, ChosenPullbacksAlong.unit_pullbackId_hom_app_assoc, ChosenPullbacksAlong.Over.leftUnitor_inv_left_snd_assoc, ChosenPullbacksAlong.Over.rightUnitor_inv_left_fst_assoc, TopCat.Presheaf.generateEquivalenceOpensLe_inverse'_map, Over.homMk_comp, MonoOver.hasLimitsOfSize, GrothendieckTopology.pseudofunctorOver_mapId_hom_toNatTrans_app_val_app, subterminals_to_monoOver_terminal_comp_forget, Over.hasLimits, AlgebraicGeometry.Scheme.restrictFunctor_obj_hom, HomotopicalAlgebra.instIsStableUnderRetractsOverWeakEquivalences, AlgebraicGeometry.Scheme.instFaithfulEtaleOverForget, AlgebraicGeometry.Scheme.IdealSheafData.subschemeFunctor_map, CostructuredArrow.ofCommaFstEquivalenceInverse_obj_hom, Subobject.representative_arrow, ExponentiableMorphism.homEquiv_apply_eq, Over.associator_hom_left_snd_snd, Over.associator_inv_left_snd_assoc, Over.coprodObj_map, toOverUnitPullback_inv_app_left, GrothendieckTopology.overMapPullbackCongr_inv_app_val_app, ChosenPullbacksAlong.unit_pullbackId_hom_assoc, ChosenPullbacksAlong.Over.rightUnitor_inv_left_fst, GrothendieckTopology.over_forget_coverPreserving, ChosenPullbacksAlong.pullbackIsoOverPullback_inv_app_comp_snd_assoc, Under.opEquivOpOver_inverse_map, AlgebraicGeometry.isCommMonObj_of_isProper_of_isIntegral_tensorObj_of_isAlgClosed, Over.iteratedSliceForward_obj, Functor.toOver_comp_forget, Over.postEquiv_functor, Over.coreHomEquivToOverSections_homEquiv, Over.whiskerLeft_left_snd, Pseudofunctor.IsPrestackFor.nonempty_fullyFaithful, Over.liftCocone_pt, Subfunctor.equivalenceMonoOver_counitIso, toOver_map, WithTerminal.coneEquiv_counitIso_hom_app_hom, presheafHom_map_app_op_mk_id, Limits.diagonal_pullback_fst, Over.iteratedSliceForwardNaturalityIso_inv_app, Over.isLeftAdjoint_post, ChosenPullbacksAlong.Over.associator_hom_left_fst_assoc, forgetAdjToOver_counit_app, CostructuredArrow.costructuredArrowToOverEquivalence.inverse_map, MorphismProperty.baseChange_obj, MonoOver.mono_obj_hom, Over.ConstructProducts.conesEquivFunctor_obj_Ο€_app, Sieve.overEquiv_iff, ChosenPullbacksAlong.Over.tensorHom_left_snd, Over.opEquivOpUnder_functor_obj, AlgebraicGeometry.Scheme.AffineZariskiSite.restrictIsoSpec_inv_app, AlgebraicGeometry.instFaithfulOverSchemePullbackOfSurjectiveOfFlatOfLocallyOfFinitePresentation, HomotopicalAlgebra.fibrations_over_iff, MonoOver.instIsClosedUnderLimitsOfShapeOverIsMono, Over.ConstructProducts.conesEquivInverse_map_hom, Over.iteratedSliceForwardIsoPost_hom_app, Over.mono_of_mono_left, Over.mapForget_eq, ExponentiableMorphism.unit_pushforwardComp_hom_assoc, WithTerminal.coneEquiv_inverse_obj_pt_right_as, Over.lift_map, Over.tensorObj_hom, toOverUnit_obj_hom, Over.postAdjunctionLeft_counit_app_left, Over.hasLimitsOfShape_of_isConnected, Limits.pullbackConeEquivBinaryFan_inverse_map_hom, TopCat.Presheaf.generateEquivalenceOpensLe_inverse, Over.mapComp_inv_app_left, Pseudofunctor.sheafHom_val, Over.instHasColimits, ChosenPullbacksAlong.Over.associator_inv_left_fst_fst_assoc, MonoOver.isIso_iff_isIso_left, ChosenPullbacksAlong.Over.associator_hom_left_snd_snd_assoc, HomotopicalAlgebra.weakEquivalences_over_def, MonoOver.instIsIsoLeftDiscretePUnitHomFullSubcategoryOverIsMono, WithTerminal.coneEquiv_functor_map_hom, ChosenPullbacksAlong.Over.tensorHom_left, Presheaf.isSheaf_iff_isLimit_pretopology, essentiallySmall_monoOver_iff_small_subobject, CostructuredArrow.ofCommaFstEquivalenceInverse_map_left_right
instCategoryUnder πŸ“–CompOp
272 mathmath: CommRingCat.tensorProd_map_right, Limits.Cone.toUnder_pt, StructuredArrow.instFullUnderToUnder, StructuredArrow.ofCommaSndEquivalenceInverse_obj_right_left, Limits.PreservesColimitsOfSize.underPost, StructuredArrow.ofCommaSndEquivalenceFunctor_map_right, StructuredArrow.ofStructuredArrowProjEquivalence.inverse_obj_right_right, IsGrothendieckAbelian.IsPresentable.injectivityβ‚€.F_obj, Under.postComp_inv_app_right, StructuredArrow.ofDiagEquivalence.inverse_map_right, StructuredArrow.ofCommaSndEquivalence_functor, Under.forgetMapInitial_inv_app, Under.post_comp, WithInitial.isColimitEquiv_apply_desc_right, Under.equivalenceOfIsInitial_counitIso, WithInitial.coconeEquiv_functor_obj_pt, StructuredArrow.ofStructuredArrowProjEquivalence.inverse_obj_right_left_as, Under.postCongr_inv_app_right, StructuredArrow.toUnder_obj_left, Under.mapIso_functor, IsGrothendieckAbelian.IsPresentable.injectivityβ‚€.g_app, Under.instHasLimitsOfShape, Limits.pushoutCoconeEquivBinaryCofan_inverse_obj, Limits.pushoutCoconeEquivBinaryCofan_functor_obj, WithInitial.coconeEquiv_inverse_obj_pt_right, Limits.pushoutCoconeEquivBinaryCofan_unitIso, MorphismProperty.instIsClosedUnderIsomorphismsUnderUnderObjOfRespectsIso, CommRingCat.toAlgHom_comp, StructuredArrow.ofDiagEquivalence.functor_obj_right_right, Under.equivalenceOfIsInitial_functor, WithInitial.isColimitEquiv_symm_apply_desc, Limits.Cocone.underPost_ΞΉ_app, instHasColimitsOfShapeUnderOfWithInitial, Over.opEquivOpUnder_unitIso, Under.epi_of_epi_right, Under.liftCone_pt, WithInitial.liftFromUnderComp_inv_app, StructuredArrow.ofDiagEquivalence.inverse_obj_right, Under.forget_faithful, Under.mapCongr_inv_app, Under.pushoutIsLeftAdjoint, StructuredArrow.ofStructuredArrowProjEquivalence.functor_obj_left_as, MorphismProperty.ind_iff_ind_underMk, Under.mapFunctor_obj, instHasColimitsOfSizeUnder, Under.pushout_map, Under.lift_obj, WithInitial.coconeEquiv_inverse_obj_pt_hom, Limits.pushoutCoconeEquivBinaryCofan_inverse_map_hom, CommRingCat.Under.preservesFiniteLimits_of_flat, CommRingCat.pushout_inr_tensorProdObjIsoPushoutObj_inv_right_assoc, StructuredArrow.ofCommaSndEquivalence_unitIso, Under.postAdjunctionRight_unit_app_right, StructuredArrow.ofCommaSndEquivalence_counitIso, Under.map_map_right, Over.opEquivOpUnder_inverse_obj, Limits.Cone.toStructuredArrowCompToUnderCompForget_hom_app, AlgHom.toUnder_comp, StructuredArrow.ofDiagEquivalence.inverse_obj_hom, Under.map_obj_right, Under.post_obj, StructuredArrow.ofDiagEquivalence.functor_obj_right_hom, commAlgCatEquivUnder_functor_obj, StructuredArrow.ofCommaSndEquivalenceInverse_map_right_left, Under.eqToHom_right, CommRingCat.Under.instPreservesFiniteLimitsUnderTensorProdOfFlatCarrier, Under.mapId_inv, Enriched.FunctorCategory.coneFunctorEnrichedHom_Ο€_app, StructuredArrow.ofDiagEquivalence.functor_map_right_right, StructuredArrow.ofStructuredArrowProjEquivalence.inverse_obj_left_as, Presheaf.functorEnrichedHomCoyonedaObjEquiv_naturality, WithInitial.coconeEquiv_counitIso_inv_app_hom, CommRingCat.Under.instPreservesLimitsOfShapeUnderWalkingParallelPairTensorProdOfFlatCarrier, MorphismProperty.under_eq_inverseImage, WithInitial.commaFromUnder_map_left, NatTrans.instIsClosedUnderColimitsOfShapeUnderFunctorCoequifiberedHomDiscretePUnitOfHasProductsOfShapeHom, Limits.Cone.toStructuredArrow_comp_toUnder_comp_forget, Under.costar_obj_left, Under.isoMk_inv_right, Under.mapPushoutAdj_unit_app, StructuredArrow.ofCommaSndEquivalenceFunctor_map_left, Under.instIsEquivalenceMapOfIsIso, WithInitial.coconeEquiv_functor_obj_ΞΉ_app_star, Over.opEquivOpUnder_inverse_map, Under.liftCocone_ΞΉ_app, Under.post_map, AlgEquiv.toUnder_trans, WithInitial.coconeEquiv_unitIso_hom_app_hom_right, Functor.essImage_underPost, Under.instFaithfulObjPost, Under.map_obj_hom, CommRingCat.Under.tensorProdEqualizer_ΞΉ, Under.instEssSurjObjPostOfFull, CommRingCat.Under.instPreservesFiniteProductsUnderPushout, CommRingCat.toAlgHom_id, Under.mono_iff_mono_right, WithInitial.liftFromUnder_obj_obj, StructuredArrow.isEquivalence_toUnder, StructuredArrow.ofStructuredArrowProjEquivalence.functor_map_right_right, Under.forgetCone_pt, StructuredArrow.ofCommaSndEquivalenceFunctor_obj_right, Under.postEquiv_counitIso, Under.postComp_hom_app_right, Limits.PreservesFiniteColimits.underPost, WithInitial.coconeEquiv_functor_map_hom, Under.isoMk_hom_right, StructuredArrow.ofDiagEquivalence.functor_obj_right_left_as, algebraEquivUnder_inverse, WithInitial.coconeEquiv_inverse_obj_pt_left_as, underToAlgebra_obj_A, Under.mapCongr_hom_app, AlgEquiv.toUnder_inv_right_apply, StructuredArrow.ofStructuredArrowProjEquivalence.functor_obj_right_hom, Limits.Cone.mapConeToUnder_inv_hom, StructuredArrow.toUnder_map_right, Under.instIsRightAdjointForget, CommRingCat.pushout_inl_tensorProdObjIsoPushoutObj_inv_right_assoc, Under.mapFunctor_map, Under.liftCone_Ο€_app, Under.instIsLeftAdjointCostar, IsGrothendieckAbelian.IsPresentable.injectivityβ‚€.F_map, Under.forgetMapInitial_hom_app, Limits.pushoutCoconeEquivBinaryCofan_functor_map_hom, WithInitial.coconeEquiv_inverse_obj_ΞΉ_app_right, CommRingCat.monoidAlgebra_map, MorphismProperty.instFullUnderTopUnderForget, WithInitial.coconeEquiv_functor_obj_ΞΉ_app_of, Under.mapComp_hom, StructuredArrow.ofStructuredArrowProjEquivalence.inverse_obj_hom, Under.opEquivOpOver_functor_obj, WithInitial.commaFromUnder_obj_hom_app, WithInitial.commaFromUnder_obj_right, Under.forget_map, commAlgCatEquivUnder_counitIso, StructuredArrow.instFaithfulUnderToUnder, isCardinalFiltered_under, Under.equivalenceOfIsInitial_unitIso, Under.isLeftAdjoint_post, CommRingCat.pushout_inl_tensorProdObjIsoPushoutObj_inv_right, Over.opEquivOpUnder_counitIso, commAlgCatEquivUnder_inverse_obj_carrier, CommRingCat.Under.instPreservesLimitUnderDiscreteFunctorTensorProdOfFinite, Under.mapIso_inverse, Functor.toUnder_comp_forget, StructuredArrow.ofStructuredArrowProjEquivalence.functor_obj_right_right, AlgEquiv.toUnder_hom_right_apply, preservesFilteredColimits_coyoneda, StructuredArrow.ofStructuredArrowProjEquivalence.inverse_map_right_right, Enriched.FunctorCategory.functorEnrichedComp_app, commAlgCatEquivUnder_unitIso, CommRingCat.isFinitelyPresentable_under, Under.instIsEquivalenceObjPost, algebraEquivUnder_unitIso, underToAlgebra_obj_a, algebraToUnder_obj, WithInitial.commaFromUnder_map_right, StructuredArrow.ofCommaSndEquivalenceInverse_obj_hom, Enriched.FunctorCategory.functorEnrichedHom_obj, Under.postMap_app, Functor.toUnder_obj_right, Under.hom_right_inv_right, Under.mapId_hom, Under.postEquiv_inverse, StructuredArrow.toUnder_obj_hom, algebraEquivUnder_counitIso, Under.postCongr_hom_app_right, Enriched.FunctorCategory.instHasEnrichedHomUnderCompMapForget, MorphismProperty.Under.forget_comp_forget_map, StructuredArrow.ofCommaSndEquivalenceInverse_map_right_right, CommRingCat.tensorProdIsoPushout_app, Under.mapId_eq, Under.pushout_obj, WithInitial.commaFromUnder_obj_left, Limits.IsColimit.pushoutCoconeEquivBinaryCofanFunctor_desc_right, Under.instHasLimits, IsFiltered.under, commAlgCatEquivUnder_inverse_map, Under.hasColimit_of_hasColimit_liftFromUnder, Under.forget_obj, Under.liftCocone_pt, WithInitial.coconeEquiv_inverse_map_hom_right, CommRingCat.Under.instPreservesFiniteProductsUnderTensorProd, Under.mapForget_eq, underToAlgebra_map_f, Under.instFullObjPostOfFaithful, Under.final_forget, preservesColimit_coyoneda_of_finitePresentation, Functor.toUnder_map_right, Under.mono_of_mono_right, Under.mapPushoutAdj_counit_app, Under.mapComp_eq, WithInitial.liftFromUnderComp_hom_app, StructuredArrow.ofCommaSndEquivalenceFunctor_obj_left, StructuredArrow.ofDiagEquivalence.functor_obj_hom, CommRingCat.Under.equalizerFork_ΞΉ, WithInitial.coconeEquiv_counitIso_hom_app_hom, Limits.Cone.toUnder_Ο€_app, Under.postAdjunctionLeft_counit_app, Under.inv_right_hom_right, WithInitial.liftFromUnder_map_app, Under.mapComp_inv, MorphismProperty.underObj_ind_eq_ind_underObj, commAlgCatEquivUnder_functor_map, StructuredArrow.ofDiagEquivalence.inverse_obj_left_as, Under.hom_right_inv_right_assoc, Under.locallySmall, CommRingCat.instIsLeftAdjointCommMonCatUnderMonoidAlgebra, CommRingCat.monoidAlgebra_obj, Limits.Cone.mapConeToUnder_hom_hom, Under.opEquivOpOver_inverse_obj, Under.costar_map_left, Under.equivalenceOfIsInitial_inverse_map, StructuredArrow.ofCommaSndEquivalence_inverse, Under.opEquivOpOver_counitIso, StructuredArrow.toUnder_map_left, WithInitial.liftFromUnder_obj_map, Enriched.FunctorCategory.functorHomEquiv_apply_app, Under.mkIdInitial_to_right, Under.mono_homMk, Under.equivalenceOfIsInitial_inverse_obj, Under.costar_obj_hom, StructuredArrow.ofStructuredArrowProjEquivalence.functor_obj_right_left_as, Limits.PreservesColimitsOfShape.underPost, Under.postAdjunctionRight_counit_app_right, Limits.pushoutCoconeEquivBinaryCofan_counitIso, isFinitelyPresentable, Over.opEquivOpUnder_functor_map, Under.postEquiv_functor, Under.lift_map, Under.hasLimit_of_hasLimit_comp_forget, Under.opEquivOpOver_unitIso, StructuredArrow.ofCommaSndEquivalenceInverse_obj_right_hom, StructuredArrow.instEssSurjUnderToUnder, Under.inv_right_hom_right_assoc, Limits.Cone.toStructuredArrowCompToUnderCompForget_inv_app, IsGrothendieckAbelian.IsPresentable.injectivityβ‚€.hf, Under.opEquivOpOver_functor_map, Under.epi_homMk, Under.postEquiv_unitIso, StructuredArrow.ofCommaSndEquivalenceInverse_obj_left_as, algebraToUnder_map, Limits.instPreservesFilteredColimitsOfSizeUnderForget, CommRingCat.Under.instPreservesLimitUnderWalkingParallelPairParallelPairTensorProdOfFlatCarrier, Under.id_right, algebraEquivUnder_functor, Under.homMk_comp, Under.postAdjunctionLeft_unit_app, StructuredArrow.ofDiagEquivalence.functor_obj_left_as, Enriched.FunctorCategory.functorEnrichedHom_map, StructuredArrow.toUnder_obj_right, CommRingCat.preservesFilteredColimits_coyoneda, Under.isRightAdjoint_post, WithInitial.coconeEquiv_unitIso_inv_app_hom_right, Under.opEquivOpOver_inverse_map, Under.preservesLimitsOfSize_map, Limits.Cocone.underPost_pt, CommRingCat.preservesColimit_coyoneda_of_finitePresentation, Under.forgetCone_Ο€_app, StructuredArrow.ofStructuredArrowProjEquivalence.inverse_obj_right_hom, IsGrothendieckAbelian.IsPresentable.injectivityβ‚€.epi_f, StructuredArrow.ofCommaSndEquivalenceFunctor_obj_hom, Over.opEquivOpUnder_functor_obj, CommRingCat.Under.equalizer_comp, Under.forget_reflects_iso, CommRingCat.Under.equalizerFork'_ΞΉ, StructuredArrow.ofStructuredArrowProjEquivalence.functor_obj_hom, StructuredArrow.ofCommaSndEquivalenceInverse_obj_right_right, Enriched.FunctorCategory.functorEnrichedId_app, Under.comp_right, MorphismProperty.instFaithfulUnderTopUnderForget, Under.faithful_pushout, CommRingCat.pushout_inr_tensorProdObjIsoPushoutObj_inv_right

CategoryTheory.CostructuredArrow

Definitions

NameCategoryTheorems
costructuredArrowToOverEquivalence πŸ“–CompOpβ€”
ofCommaFstEquivalence πŸ“–CompOp
4 mathmath: ofCommaFstEquivalence_inverse, ofCommaFstEquivalence_functor, ofCommaFstEquivalence_counitIso, ofCommaFstEquivalence_unitIso
ofCommaFstEquivalenceFunctor πŸ“–CompOp
8 mathmath: ofCommaFstEquivalenceFunctor_obj_hom, ofCommaFstEquivalence_functor, ofCommaFstEquivalenceFunctor_map_right, ofCommaFstEquivalence_counitIso, ofCommaFstEquivalenceFunctor_obj_left, ofCommaFstEquivalenceFunctor_map_left, ofCommaFstEquivalenceFunctor_obj_right, ofCommaFstEquivalence_unitIso
ofCommaFstEquivalenceInverse πŸ“–CompOp
10 mathmath: ofCommaFstEquivalenceInverse_obj_left_hom, ofCommaFstEquivalence_inverse, ofCommaFstEquivalenceInverse_obj_right_as, ofCommaFstEquivalenceInverse_obj_left_left, ofCommaFstEquivalenceInverse_map_left_left, ofCommaFstEquivalence_counitIso, ofCommaFstEquivalenceInverse_obj_left_right, ofCommaFstEquivalence_unitIso, ofCommaFstEquivalenceInverse_obj_hom, ofCommaFstEquivalenceInverse_map_left_right
ofCostructuredArrowProjEquivalence πŸ“–CompOpβ€”
ofDiagEquivalence πŸ“–CompOpβ€”
ofDiagEquivalence' πŸ“–CompOpβ€”
toOver πŸ“–CompOp
29 mathmath: CategoryTheory.Limits.IndizationClosedUnderFilteredColimitsAux.exists_nonempty_limit_obj_of_isColimit, toOver_obj_left, CategoryTheory.Limits.Cocone.toOver_ΞΉ_app, toOver_obj_right, CategoryTheory.Limits.Cocone.toCostructuredArrow_comp_toOver_comp_forget, overEquivPresheafCostructuredArrow_inverse_map_toOverCompCoyoneda, toOver_map_right, toOver_obj_hom, instFullOverToOver, CategoryTheory.Limits.colimit.toOver_ΞΉ_app, costructuredArrowToOverEquivalence.functor_map, instFaithfulOverToOver, CategoryTheory.instInitialCostructuredArrowOverToOver, CategoryTheory.Limits.Cocone.toCostructuredArrowCompToOverCompForget_inv_app, instEssSurjOverToOver, toOver_map_left, overEquivPresheafCostructuredArrow_functor_map_toOverCompYoneda, costructuredArrowToOverEquivalence.functor_obj, CategoryTheory.Limits.Cocone.toOver_pt, CategoryTheory.Limits.Cocone.toCostructuredArrowCompToOverCompForget_hom_app, CategoryTheory.Limits.Cocone.mapCoconeToOver_inv_hom, overEquivPresheafCostructuredArrow_functor_map_toOverCompCoyoneda, costructuredArrowToOverEquivalence.inverse_obj, isEquivalence_toOver, CategoryTheory.Limits.IndizationClosedUnderFilteredColimitsAux.exists_nonempty_limit_obj_of_colimit, overEquivPresheafCostructuredArrow_inverse_map_toOverCompYoneda, CategoryTheory.Limits.Cocone.mapCoconeToOver_hom_hom, CategoryTheory.Limits.colimit.toOver_pt, costructuredArrowToOverEquivalence.inverse_map

Theorems

NameKindAssumesProvesValidatesDepends On
instEssSurjOverToOver πŸ“–mathematicalβ€”CategoryTheory.Functor.EssSurj
CategoryTheory.CostructuredArrow
CategoryTheory.Over
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.instCategoryOver
toOver
β€”instEssSurjCompPre
instFaithfulOverToOver πŸ“–mathematicalβ€”CategoryTheory.Functor.Faithful
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Over
CategoryTheory.instCategoryOver
toOver
β€”instFaithfulCompPre
instFullOverToOver πŸ“–mathematicalβ€”CategoryTheory.Functor.Full
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Over
CategoryTheory.instCategoryOver
toOver
β€”instFullCompPre
isEquivalence_toOver πŸ“–mathematicalβ€”CategoryTheory.Functor.IsEquivalence
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Over
CategoryTheory.instCategoryOver
toOver
β€”isEquivalence_pre
ofCommaFstEquivalenceFunctor_map_left πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.left
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.comp
CategoryTheory.Over.forget
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Comma.fst
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.hom
CategoryTheory.Comma.right
CategoryTheory.Functor.map
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
ofCommaFstEquivalenceFunctor
CategoryTheory.Over.homMk
β€”β€”
ofCommaFstEquivalenceFunctor_map_right πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.right
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.comp
CategoryTheory.Over.forget
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Comma.fst
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.hom
CategoryTheory.Comma.right
CategoryTheory.Functor.map
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
ofCommaFstEquivalenceFunctor
CategoryTheory.CommaMorphism.left
β€”β€”
ofCommaFstEquivalenceFunctor_obj_hom πŸ“–mathematicalβ€”CategoryTheory.Comma.hom
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.comp
CategoryTheory.Over.forget
CategoryTheory.Functor.obj
CategoryTheory.CostructuredArrow
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Comma.fst
CategoryTheory.instCategoryCostructuredArrow
ofCommaFstEquivalenceFunctor
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
β€”β€”
ofCommaFstEquivalenceFunctor_obj_left πŸ“–mathematicalβ€”CategoryTheory.Comma.left
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.comp
CategoryTheory.Over.forget
CategoryTheory.Functor.obj
CategoryTheory.CostructuredArrow
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Comma.fst
CategoryTheory.instCategoryCostructuredArrow
ofCommaFstEquivalenceFunctor
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.hom
β€”β€”
ofCommaFstEquivalenceFunctor_obj_right πŸ“–mathematicalβ€”CategoryTheory.Comma.right
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.comp
CategoryTheory.Over.forget
CategoryTheory.Functor.obj
CategoryTheory.CostructuredArrow
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Comma.fst
CategoryTheory.instCategoryCostructuredArrow
ofCommaFstEquivalenceFunctor
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
β€”β€”
ofCommaFstEquivalenceInverse_map_left_left πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.left
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.comp
CategoryTheory.Over.forget
CategoryTheory.commaCategory
CategoryTheory.Comma.preLeft
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Comma.fst
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.map
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
ofCommaFstEquivalenceInverse
CategoryTheory.Functor.id
CategoryTheory.Comma.left
β€”β€”
ofCommaFstEquivalenceInverse_map_left_right πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.right
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.comp
CategoryTheory.Over.forget
CategoryTheory.commaCategory
CategoryTheory.Comma.preLeft
CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Comma.fst
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.map
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
ofCommaFstEquivalenceInverse
β€”β€”
ofCommaFstEquivalenceInverse_obj_hom πŸ“–mathematicalβ€”CategoryTheory.Comma.hom
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Comma.fst
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.comp
CategoryTheory.Over.forget
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
ofCommaFstEquivalenceInverse
CategoryTheory.Functor.id
CategoryTheory.Comma.left
β€”β€”
ofCommaFstEquivalenceInverse_obj_left_hom πŸ“–mathematicalβ€”CategoryTheory.Comma.hom
CategoryTheory.Comma.left
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Comma.fst
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.comp
CategoryTheory.Over.forget
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
ofCommaFstEquivalenceInverse
β€”β€”
ofCommaFstEquivalenceInverse_obj_left_left πŸ“–mathematicalβ€”CategoryTheory.Comma.left
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Comma.fst
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.comp
CategoryTheory.Over.forget
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
ofCommaFstEquivalenceInverse
CategoryTheory.Functor.id
β€”β€”
ofCommaFstEquivalenceInverse_obj_left_right πŸ“–mathematicalβ€”CategoryTheory.Comma.right
CategoryTheory.Comma.left
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Comma.fst
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.comp
CategoryTheory.Over.forget
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
ofCommaFstEquivalenceInverse
β€”β€”
ofCommaFstEquivalenceInverse_obj_right_as πŸ“–mathematicalβ€”CategoryTheory.Discrete.as
CategoryTheory.Comma.right
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Comma.fst
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.comp
CategoryTheory.Over.forget
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
ofCommaFstEquivalenceInverse
β€”β€”
ofCommaFstEquivalence_counitIso πŸ“–mathematicalβ€”CategoryTheory.Equivalence.counitIso
CategoryTheory.CostructuredArrow
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Comma.fst
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.comp
CategoryTheory.Over.forget
CategoryTheory.instCategoryCostructuredArrow
ofCommaFstEquivalence
CategoryTheory.NatIso.ofComponents
ofCommaFstEquivalenceInverse
ofCommaFstEquivalenceFunctor
CategoryTheory.Functor.id
CategoryTheory.Iso.refl
CategoryTheory.Functor.obj
β€”β€”
ofCommaFstEquivalence_functor πŸ“–mathematicalβ€”CategoryTheory.Equivalence.functor
CategoryTheory.CostructuredArrow
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Comma.fst
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.comp
CategoryTheory.Over.forget
CategoryTheory.instCategoryCostructuredArrow
ofCommaFstEquivalence
ofCommaFstEquivalenceFunctor
β€”β€”
ofCommaFstEquivalence_inverse πŸ“–mathematicalβ€”CategoryTheory.Equivalence.inverse
CategoryTheory.CostructuredArrow
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Comma.fst
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.comp
CategoryTheory.Over.forget
CategoryTheory.instCategoryCostructuredArrow
ofCommaFstEquivalence
ofCommaFstEquivalenceInverse
β€”β€”
ofCommaFstEquivalence_unitIso πŸ“–mathematicalβ€”CategoryTheory.Equivalence.unitIso
CategoryTheory.CostructuredArrow
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Comma.fst
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.comp
CategoryTheory.Over.forget
CategoryTheory.instCategoryCostructuredArrow
ofCommaFstEquivalence
CategoryTheory.NatIso.ofComponents
CategoryTheory.Functor.id
ofCommaFstEquivalenceFunctor
ofCommaFstEquivalenceInverse
CategoryTheory.Iso.refl
CategoryTheory.Functor.obj
β€”β€”
toOver_map_left πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.Functor.comp
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Over
CategoryTheory.instCategoryOver
toOver
β€”β€”
toOver_map_right πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.Functor.comp
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Over
CategoryTheory.instCategoryOver
toOver
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”β€”
toOver_obj_hom πŸ“–mathematicalβ€”CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Over
CategoryTheory.instCategoryOver
toOver
CategoryTheory.Functor.comp
β€”β€”
toOver_obj_left πŸ“–mathematicalβ€”CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Over
CategoryTheory.instCategoryOver
toOver
CategoryTheory.Functor.comp
β€”β€”
toOver_obj_right πŸ“–mathematicalβ€”CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Over
CategoryTheory.instCategoryOver
toOver
CategoryTheory.Functor.comp
β€”β€”

CategoryTheory.CostructuredArrow.costructuredArrowToOverEquivalence

Definitions

NameCategoryTheorems
functor πŸ“–CompOp
2 mathmath: functor_map, functor_obj
inverse πŸ“–CompOp
2 mathmath: inverse_obj, inverse_map

Theorems

NameKindAssumesProvesValidatesDepends On
functor_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.CostructuredArrow.toOver
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
functor
CategoryTheory.CostructuredArrow.homMk
CategoryTheory.Functor.comp
CategoryTheory.CommaMorphism.left
CategoryTheory.Functor.obj
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
β€”β€”
functor_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.CostructuredArrow.toOver
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
functor
CategoryTheory.Functor.comp
CategoryTheory.CommaMorphism.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
β€”β€”
inverse_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.CostructuredArrow
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.CostructuredArrow.toOver
inverse
CategoryTheory.CostructuredArrow.homMk
CategoryTheory.Functor.obj
CategoryTheory.Comma.right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.hom
CategoryTheory.Over.homMk
CategoryTheory.CommaMorphism.left
β€”β€”
inverse_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.CostructuredArrow
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.CostructuredArrow.toOver
inverse
CategoryTheory.Comma.right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.hom
CategoryTheory.Over.homMk
β€”β€”

CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence

Definitions

NameCategoryTheorems
functor πŸ“–CompOp
6 mathmath: functor_obj_right_as, functor_obj_left_right_as, functor_obj_left_hom, functor_map_left_left, functor_obj_hom, functor_obj_left_left
inverse πŸ“–CompOp
6 mathmath: inverse_obj_left_hom, inverse_obj_hom, inverse_map_left_left, inverse_obj_right_as, inverse_obj_left_right_as, inverse_obj_left_left

Theorems

NameKindAssumesProvesValidatesDepends On
functor_map_left_left πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.CostructuredArrow.proj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.toOver
CategoryTheory.Functor.comp
CategoryTheory.Comma.hom
CategoryTheory.Over.forget
CategoryTheory.Functor.map
functor
CategoryTheory.Comma.left
β€”β€”
functor_obj_hom πŸ“–mathematicalβ€”CategoryTheory.Comma.hom
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.comp
CategoryTheory.Over.forget
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.CostructuredArrow.proj
functor
CategoryTheory.Comma.left
β€”β€”
functor_obj_left_hom πŸ“–mathematicalβ€”CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.comp
CategoryTheory.Over.forget
CategoryTheory.Functor.obj
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.CostructuredArrow.proj
functor
β€”β€”
functor_obj_left_left πŸ“–mathematicalβ€”CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.comp
CategoryTheory.Over.forget
CategoryTheory.Functor.obj
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.CostructuredArrow.proj
functor
β€”β€”
functor_obj_left_right_as πŸ“–mathematicalβ€”CategoryTheory.Discrete.as
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.comp
CategoryTheory.Over.forget
CategoryTheory.Functor.obj
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.CostructuredArrow.proj
functor
β€”β€”
functor_obj_right_as πŸ“–mathematicalβ€”CategoryTheory.Discrete.as
CategoryTheory.Comma.right
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.comp
CategoryTheory.Over.forget
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.CostructuredArrow.proj
functor
β€”β€”
inverse_map_left_left πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.CostructuredArrow
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.comp
CategoryTheory.Over.forget
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.toCostructuredArrow
CategoryTheory.CostructuredArrow.proj
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
inverse
CategoryTheory.Functor.id
CategoryTheory.Comma.left
β€”β€”
inverse_obj_hom πŸ“–mathematicalβ€”CategoryTheory.Comma.hom
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.CostructuredArrow.proj
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.comp
CategoryTheory.Over.forget
inverse
CategoryTheory.Functor.id
CategoryTheory.Comma.left
β€”β€”
inverse_obj_left_hom πŸ“–mathematicalβ€”CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.CostructuredArrow.proj
CategoryTheory.Functor.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.comp
CategoryTheory.Over.forget
inverse
β€”β€”
inverse_obj_left_left πŸ“–mathematicalβ€”CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.CostructuredArrow.proj
CategoryTheory.Functor.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.comp
CategoryTheory.Over.forget
inverse
CategoryTheory.Functor.id
β€”β€”
inverse_obj_left_right_as πŸ“–mathematicalβ€”CategoryTheory.Discrete.as
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.CostructuredArrow.proj
CategoryTheory.Functor.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.comp
CategoryTheory.Over.forget
inverse
β€”β€”
inverse_obj_right_as πŸ“–mathematicalβ€”CategoryTheory.Discrete.as
CategoryTheory.Comma.right
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.CostructuredArrow.proj
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.comp
CategoryTheory.Over.forget
inverse
β€”β€”

CategoryTheory.CostructuredArrow.ofDiagEquivalence

Definitions

NameCategoryTheorems
functor πŸ“–CompOp
6 mathmath: functor_map_left_left, functor_obj_hom, functor_obj_left_hom, functor_obj_left_left, functor_obj_right_as, functor_obj_left_right_as
inverse πŸ“–CompOp
4 mathmath: inverse_obj_left, inverse_obj_hom, inverse_obj_right_as, inverse_map_left

Theorems

NameKindAssumesProvesValidatesDepends On
functor_map_left_left πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.CostructuredArrow
CategoryTheory.uniformProd
CategoryTheory.Functor.diag
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.toOver
CategoryTheory.CostructuredArrow.proj
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Over.forget
CategoryTheory.Functor.map
functor
β€”β€”
functor_obj_hom πŸ“–mathematicalβ€”CategoryTheory.Comma.hom
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Over.forget
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.CostructuredArrow
CategoryTheory.uniformProd
CategoryTheory.Functor.diag
CategoryTheory.instCategoryCostructuredArrow
functor
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
β€”β€”
functor_obj_left_hom πŸ“–mathematicalβ€”CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.forget
CategoryTheory.Functor.obj
CategoryTheory.CostructuredArrow
CategoryTheory.uniformProd
CategoryTheory.Functor.diag
CategoryTheory.instCategoryCostructuredArrow
functor
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
β€”β€”
functor_obj_left_left πŸ“–mathematicalβ€”CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.forget
CategoryTheory.Functor.obj
CategoryTheory.CostructuredArrow
CategoryTheory.uniformProd
CategoryTheory.Functor.diag
CategoryTheory.instCategoryCostructuredArrow
functor
β€”β€”
functor_obj_left_right_as πŸ“–mathematicalβ€”CategoryTheory.Discrete.as
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.forget
CategoryTheory.Functor.obj
CategoryTheory.CostructuredArrow
CategoryTheory.uniformProd
CategoryTheory.Functor.diag
CategoryTheory.instCategoryCostructuredArrow
functor
β€”β€”
functor_obj_right_as πŸ“–mathematicalβ€”CategoryTheory.Discrete.as
CategoryTheory.Comma.right
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Over.forget
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.CostructuredArrow
CategoryTheory.uniformProd
CategoryTheory.Functor.diag
CategoryTheory.instCategoryCostructuredArrow
functor
β€”β€”
inverse_map_left πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.uniformProd
CategoryTheory.Functor.diag
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.CostructuredArrow
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.forget
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.CostructuredArrow.proj
CategoryTheory.Functor.map
inverse
CategoryTheory.Functor.id
CategoryTheory.Comma.left
β€”β€”
inverse_obj_hom πŸ“–mathematicalβ€”CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.uniformProd
CategoryTheory.Functor.diag
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.CostructuredArrow
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.forget
CategoryTheory.instCategoryCostructuredArrow
inverse
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Functor.id
β€”β€”
inverse_obj_left πŸ“–mathematicalβ€”CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.uniformProd
CategoryTheory.Functor.diag
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.CostructuredArrow
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.forget
CategoryTheory.instCategoryCostructuredArrow
inverse
CategoryTheory.Functor.id
β€”β€”
inverse_obj_right_as πŸ“–mathematicalβ€”CategoryTheory.Discrete.as
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.uniformProd
CategoryTheory.Functor.diag
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.CostructuredArrow
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.forget
CategoryTheory.instCategoryCostructuredArrow
inverse
β€”β€”

CategoryTheory.Functor

Definitions

NameCategoryTheorems
toOver πŸ“–CompOp
5 mathmath: CategoryTheory.CostructuredArrow.ofDiagEquivalence.functor_map_left_left, toOver_obj_left, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.functor_map_left_left, toOver_map_left, toOver_comp_forget
toOverCompForget πŸ“–CompOpβ€”
toUnder πŸ“–CompOp
5 mathmath: CategoryTheory.StructuredArrow.ofDiagEquivalence.functor_map_right_right, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.functor_map_right_right, toUnder_comp_forget, toUnder_obj_right, toUnder_map_right
toUnderCompForget πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
essImage_overPost πŸ“–mathematicalβ€”essImage
CategoryTheory.Over
obj
CategoryTheory.instCategoryOver
CategoryTheory.Over.post
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
id
fromPUnit
β€”essImage.of_overPost
map_surjective
essImage_underPost πŸ“–mathematicalβ€”essImage
CategoryTheory.Under
obj
CategoryTheory.instCategoryUnder
CategoryTheory.Under.post
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
fromPUnit
id
β€”essImage.of_underPost
map_surjective
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
toOver_comp_forget πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
map
comp
CategoryTheory.Over
CategoryTheory.instCategoryOver
toOver
CategoryTheory.Over.forget
β€”β€”
toOver_map_left πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
map
CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
id
fromPUnit
CategoryTheory.Over
CategoryTheory.instCategoryOver
toOver
β€”β€”
toOver_obj_left πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
map
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
id
fromPUnit
CategoryTheory.Over
CategoryTheory.instCategoryOver
toOver
β€”β€”
toUnder_comp_forget πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
map
comp
CategoryTheory.Under
CategoryTheory.instCategoryUnder
toUnder
CategoryTheory.Under.forget
β€”β€”
toUnder_map_right πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
map
CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
fromPUnit
id
CategoryTheory.Under
CategoryTheory.instCategoryUnder
toUnder
β€”β€”
toUnder_obj_right πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
map
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
fromPUnit
id
CategoryTheory.Under
CategoryTheory.instCategoryUnder
toUnder
β€”β€”

CategoryTheory.Functor.FullyFaithful

Definitions

NameCategoryTheorems
over πŸ“–CompOpβ€”
under πŸ“–CompOpβ€”

CategoryTheory.Functor.essImage

Theorems

NameKindAssumesProvesValidatesDepends On
of_overPost πŸ“–mathematicalCategoryTheory.Functor.essImage
CategoryTheory.Over
CategoryTheory.Functor.obj
CategoryTheory.instCategoryOver
CategoryTheory.Over.post
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
β€”β€”
of_underPost πŸ“–mathematicalCategoryTheory.Functor.essImage
CategoryTheory.Under
CategoryTheory.Functor.obj
CategoryTheory.instCategoryUnder
CategoryTheory.Under.post
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id
β€”β€”

CategoryTheory.Limits.Cocone

Definitions

NameCategoryTheorems
underPost πŸ“–CompOp
2 mathmath: underPost_ΞΉ_app, underPost_pt

Theorems

NameKindAssumesProvesValidatesDepends On
underPost_pt πŸ“–mathematicalβ€”pt
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.obj
CategoryTheory.Under.post
underPost
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.NatTrans.app
ΞΉ
β€”β€”
underPost_ΞΉ_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.obj
CategoryTheory.Under.post
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
pt
ΞΉ
underPost
CategoryTheory.Under.homMk
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id
β€”β€”

CategoryTheory.Limits.Cone

Definitions

NameCategoryTheorems
overPost πŸ“–CompOp
2 mathmath: overPost_pt, overPost_Ο€_app

Theorems

NameKindAssumesProvesValidatesDepends On
overPost_pt πŸ“–mathematicalβ€”pt
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.obj
CategoryTheory.Over.post
overPost
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.NatTrans.app
Ο€
β€”β€”
overPost_Ο€_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
pt
Ο€
CategoryTheory.Over.post
overPost
CategoryTheory.Over.homMk
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
β€”β€”

CategoryTheory.Over

Definitions

NameCategoryTheorems
coeFromHom πŸ“–CompOpβ€”
equivalenceOfIsTerminal πŸ“–CompOp
7 mathmath: forgetMapTerminal_hom_app, equivalenceOfIsTerminal_counitIso, equivalenceOfIsTerminal_inverse_map, forgetMapTerminal_inv_app, equivalenceOfIsTerminal_functor, equivalenceOfIsTerminal_inverse_obj, equivalenceOfIsTerminal_unitIso
forget πŸ“–CompOp
117 mathmath: CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceInverse_obj_left_hom, forget_faithful, CategoryTheory.MorphismProperty.over_eq_inverseImage, forgetCocone_pt, CategoryTheory.instGuitartExactOverObjOverPostOfHasBinaryProductOfPreservesLimitDiscreteWalkingPairPair, CategoryTheory.CostructuredArrow.ofDiagEquivalence.functor_map_left_left, AlgebraicGeometry.Scheme.restrictFunctorΞ“_inv_app, instIsLeftAdjointForget, forgetMapTerminal_hom_app, equivalenceOfIsTerminal_counitIso, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.inverse_obj_left_hom, CategoryTheory.CostructuredArrow.ofDiagEquivalence.inverse_obj_left, CategoryTheory.toOverPullbackIsoToOver_inv_app_left, CategoryTheory.Limits.Cocone.toCostructuredArrow_comp_toOver_comp_forget, iteratedSliceForwardIsoPost_inv_app, iteratedSliceForward_forget, CategoryTheory.toOverIsoToOverUnit_inv_app_left, CategoryTheory.CostructuredArrow.ofDiagEquivalence.functor_obj_hom, CategoryTheory.WithTerminal.commaFromOver_map_left, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.functor_obj_right_as, CategoryTheory.equivToOverUnit_unitIso, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.inverse_obj_hom, CategoryTheory.CostructuredArrow.ofDiagEquivalence.functor_obj_left_hom, CategoryTheory.GrothendieckTopology.instIsCocontinuousOverForgetOver, iteratedSliceBackward_forget, iteratedSliceBackward_forget_forget, CategoryTheory.presheafHom_obj, CategoryTheory.CostructuredArrow.ofCommaFstEquivalence_inverse, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceFunctor_obj_hom, CategoryTheory.GrothendieckTopology.over_forget_compatiblePreserving, CategoryTheory.Limits.Cocone.toCostructuredArrowCompToOverCompForget_inv_app, forgetAdjStar_counit_app, CategoryTheory.CostructuredArrow.ofDiagEquivalence.functor_obj_left_left, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.inverse_map_left_left, CategoryTheory.presheafHom_map_app, CategoryTheory.Limits.instPreservesCofilteredLimitsOfSizeOverForget, CategoryTheory.CostructuredArrow.ofDiagEquivalence.inverse_obj_hom, forgetMapTerminal_inv_app, equivalenceOfIsTerminal_functor, conePostIso_hom_app_hom, SheafOfModules.Presentation.quasicoherentData_presentation, CategoryTheory.monoOver_terminal_to_subterminals_comp, AlgebraicGeometry.opensDiagramΞΉ_app, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceInverse_obj_right_as, preservesLimitsOfShape_forget_of_isConnected, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceInverse_obj_left_left, CategoryTheory.MorphismProperty.Over.forget_comp_forget_map, AlgebraicGeometry.Scheme.AffineZariskiSite.restrictIsoSpec_hom_app, CategoryTheory.Presieve.functorPushforward_overForget, initial_forget, CategoryTheory.forgetAdjToOver_unit_app, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.functor_obj_left_right_as, AlgebraicGeometry.Scheme.restrictFunctorΞ“_hom_app, CategoryTheory.equivToOverUnit_counitIso, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.inverse_obj_right_as, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.functor_obj_left_hom, forget_obj, CategoryTheory.toOverPullbackIsoToOver_hom_app_left, forgetPreservesConnectedLimits, CategoryTheory.CostructuredArrow.ofCommaFstEquivalence_functor, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceFunctor_map_right, CategoryTheory.CostructuredArrow.ofDiagEquivalence.functor_obj_right_as, AlgebraicGeometry.instIsOpenImmersionMapSchemeCompOverOverTopMorphismPropertyForgetForget, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceInverse_map_left_left, CategoryTheory.toOverIsoToOverUnit_hom_app_left, SheafOfModules.instIsLeftAdjointOverOverRingCatPushforwardIdSheafOver, CategoryTheory.CostructuredArrow.ofDiagEquivalence.inverse_obj_right_as, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.functor_map_left_left, CategoryTheory.Sieve.overEquiv_symm_generate, conePostIso_inv_app_hom, CategoryTheory.WithTerminal.commaFromOver_obj_hom_app, CategoryTheory.forgetAdjToOver.homEquiv_symm, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.functor_obj_hom, CategoryTheory.CostructuredArrow.ofCommaFstEquivalence_counitIso, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceFunctor_obj_left, CategoryTheory.Limits.Cocone.toCostructuredArrowCompToOverCompForget_hom_app, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceFunctor_map_left, CategoryTheory.Presieve.map_functorPullback_overForget, CategoryTheory.WithTerminal.commaFromOver_map_right, forget_reflects_iso, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceFunctor_obj_right, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.functor_obj_left_left, AlgebraicGeometry.instIsOpenImmersionAppOverSchemeOpensDiagramΞΉ, CategoryTheory.CostructuredArrow.ofDiagEquivalence.functor_obj_left_right_as, equivalenceOfIsTerminal_unitIso, CategoryTheory.Limits.Cocone.mapCoconeToOver_inv_hom, CategoryTheory.Functor.over_forget_locallyCoverDense, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceInverse_obj_left_right, CategoryTheory.CostructuredArrow.ofDiagEquivalence.inverse_map_left, AlgebraicGeometry.instIsLocallyDirectedCompSchemeOverOverTopMorphismPropertyForgetForgetForget, CategoryTheory.PresheafHom.IsSheafFor.app_cond, CategoryTheory.FunctorToTypes.mem_fromOverSubfunctor_iff, CategoryTheory.GrothendieckTopology.instIsContinuousOverForgetOver, CategoryTheory.PresheafHom.IsSheafFor.exists_app, CategoryTheory.CostructuredArrow.ofCommaFstEquivalence_unitIso, forgetCocone_ΞΉ_app, CategoryTheory.equivToOverUnit_functor, forget_map, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.inverse_obj_left_right_as, CategoryTheory.Sieve.overEquiv_generate, CategoryTheory.PresheafHom.isAmalgamation_iff, AlgebraicGeometry.instMonoObjWalkingSpanCompOverSchemeTopMorphismPropertySpanOverForgetForgetForgetNoneWalkingPairSomeMapInitOfIsOpenImmersionLeftDiscretePUnit, CategoryTheory.Limits.Cocone.mapCoconeToOver_hom_hom, CategoryTheory.WithTerminal.commaFromOver_obj_left, CategoryTheory.over_toGrothendieck_eq_toGrothendieck_comap_forget, forgetAdjStar_unit_app_left, CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.inverse_obj_left_left, CategoryTheory.subterminals_to_monoOver_terminal_comp_forget, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceInverse_obj_hom, CategoryTheory.GrothendieckTopology.over_forget_coverPreserving, CategoryTheory.Functor.toOver_comp_forget, CategoryTheory.presheafHom_map_app_op_mk_id, CategoryTheory.forgetAdjToOver_counit_app, AlgebraicGeometry.Scheme.AffineZariskiSite.restrictIsoSpec_inv_app, iteratedSliceForwardIsoPost_hom_app, mapForget_eq, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceInverse_map_left_right
forgetCocone πŸ“–CompOp
2 mathmath: forgetCocone_pt, forgetCocone_ΞΉ_app
homMk πŸ“–CompOp
76 mathmath: CategoryTheory.Pseudofunctor.DescentData.subtypeCompatibleHomEquiv_toCompatible_presheafHomObjHomEquiv, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_pullback_map, iteratedSliceBackward_map, CategoryTheory.Limits.Cocone.toOver_ΞΉ_app, equivalenceOfIsTerminal_counitIso, CategoryTheory.ChosenPullbacksAlong.iso_mapPullbackAdj_unit_app, CategoryTheory.toOverPullbackIsoToOver_inv_app_left, postAdjunctionRight_counit_app, conePost_obj_Ο€_app, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_mapPullbackAdj_unit_app, CategoryTheory.Limits.colimit.toOver_ΞΉ_app, postAdjunctionLeft_unit_app_left, post_map, mapPullbackAdj_counit_app, CategoryTheory.Limits.pullbackConeEquivBinaryFan_functor_map_hom, CategoryTheory.Limits.pullbackConeEquivBinaryFan_counitIso, CategoryTheory.MonoOver.image_map, opEquivOpUnder_inverse_map, CategoryTheory.ChosenPullbacksAlong.isoInv_mapPullbackAdj_unit_app_left, equivalenceOfIsTerminal_inverse_map, mono_homMk, AlgebraicGeometry.Scheme.kerAdjunction_counit_app, mapPullbackAdj_unit_app, ConstructProducts.conesEquivFunctor_map_hom, conePost_map_hom, TopologicalSpace.Opens.overEquivalence_unitIso_hom_app_left, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_mapPullbackAdj_unit_app, CategoryTheory.Limits.pullbackConeEquivBinaryFan_functor_obj, CategoryTheory.forgetAdjToOver_unit_app, CategoryTheory.regularTopology.parallelPair_pullback_initial, homMk_left, CategoryTheory.Pseudofunctor.bijective_toDescentData_map_iff, homMk_surjective, liftCone_Ο€_app, TopologicalSpace.Opens.overEquivalence_counitIso_inv_app, TopologicalSpace.Opens.overEquivalence_unitIso_inv_app_left, opEquivOpUnder_counitIso, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_pullback_map, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryToUnit_mapPullbackAdj_unit_app, homMk_eta, CategoryTheory.MorphismProperty.Over.homMk_hom, postAdjunctionRight_unit_app, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_mapPullbackAdj_counit_app, CategoryTheory.ChosenPullbacksAlong.isoInv_mapPullbackAdj_counit_app_left, epi_homMk, CategoryTheory.CostructuredArrow.ofCommaFstEquivalenceFunctor_map_left, equivalenceOfIsTerminal_unitIso, liftCocone_ΞΉ_app, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryToUnit_mapPullbackAdj_counit_app, CategoryTheory.coalgebraToOver_map, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_mapPullbackAdj_counit_app, iteratedSliceBackward_obj, CategoryTheory.ChosenPullbacksAlong.iso_mapPullbackAdj_counit_app, iteratedSliceForward_map, CategoryTheory.toOverIteratedSliceForwardIsoPullback_inv_app_left, CategoryTheory.ChosenPullbacksAlong.iso_pullback_map, CategoryTheory.CostructuredArrow.costructuredArrowToOverEquivalence.inverse_obj, CategoryTheory.Limits.Cone.overPost_Ο€_app, CategoryTheory.Under.opEquivOpOver_counitIso, postMap_app, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryToUnit_pullback_map, CategoryTheory.Under.opEquivOpOver_functor_map, TopologicalSpace.Opens.overEquivalence_counitIso_hom_app, CategoryTheory.Limits.pullbackConeEquivBinaryFan_unitIso, isMonHom_pullbackFst_id_right, coprod_map_app, TopCat.Presheaf.generateEquivalenceOpensLe_inverse'_map, homMk_comp, AlgebraicGeometry.Scheme.IdealSheafData.subschemeFunctor_map, coprodObj_map, CategoryTheory.toOver_map, CategoryTheory.Limits.diagonal_pullback_fst, CategoryTheory.CostructuredArrow.costructuredArrowToOverEquivalence.inverse_map, ConstructProducts.conesEquivFunctor_obj_Ο€_app, CategoryTheory.Sieve.overEquiv_iff, lift_map
inhabited πŸ“–CompOpβ€”
isLimitLiftCone πŸ“–CompOpβ€”
isoMk πŸ“–CompOp
12 mathmath: CategoryTheory.equivToOverUnit_unitIso, postAdjunctionLeft_unit_app_left, preservesTerminalIso_pullback, CategoryTheory.Limits.pullbackConeEquivBinaryFan_counitIso, isoMk_inv_left, postEquiv_counitIso, CategoryTheory.coalgebraEquivOver_counitIso, iteratedSliceEquiv_unitIso, isoMk_hom_left, equivalenceOfIsTerminal_unitIso, iteratedSliceEquiv_counitIso, postEquiv_unitIso
iteratedSliceBackward πŸ“–CompOp
13 mathmath: iteratedSliceBackward_map, iteratedSliceBackward_forget, iteratedSliceBackward_forget_forget, iteratedSliceEquivOverMapIso_inv_app_left_left, iteratedSliceEquivOverMapIso_hom_app_left_left, CategoryTheory.instIsContinuousOverLeftDiscretePUnitIteratedSliceBackwardOver, CategoryTheory.toOverIteratedSliceForwardIsoPullback_hom_app_left, CategoryTheory.instIsCocontinuousOverLeftDiscretePUnitIteratedSliceBackwardOver, iteratedSliceEquiv_unitIso, iteratedSliceEquiv_counitIso, iteratedSliceBackward_obj, CategoryTheory.toOverIteratedSliceForwardIsoPullback_inv_app_left, iteratedSliceEquiv_inverse
iteratedSliceEquiv πŸ“–CompOp
7 mathmath: iteratedSliceEquiv_functor, CategoryTheory.toOverIteratedSliceForwardIsoPullback_hom_app_left, iteratedSliceEquiv_unitIso, iteratedSliceEquiv_counitIso, CategoryTheory.toOverIteratedSliceForwardIsoPullback_inv_app_left, iteratedSliceEquiv_inverse, CategoryTheory.instIsDenseSubsiteOverLeftDiscretePUnitOverInverseIteratedSliceEquiv
iteratedSliceEquivOverMapIso πŸ“–CompOp
2 mathmath: iteratedSliceEquivOverMapIso_inv_app_left_left, iteratedSliceEquivOverMapIso_hom_app_left_left
iteratedSliceForward πŸ“–CompOp
16 mathmath: iteratedSliceForwardNaturalityIso_hom_app, iteratedSliceForwardIsoPost_inv_app, CategoryTheory.instIsContinuousOverLeftDiscretePUnitIteratedSliceForwardOver, iteratedSliceForward_forget, iteratedSliceEquivOverMapIso_inv_app_left_left, iteratedSliceEquivOverMapIso_hom_app_left_left, iteratedSliceEquiv_functor, CategoryTheory.toOverIteratedSliceForwardIsoPullback_hom_app_left, iteratedSliceEquiv_unitIso, iteratedSliceEquiv_counitIso, iteratedSliceForward_map, CategoryTheory.toOverIteratedSliceForwardIsoPullback_inv_app_left, CategoryTheory.instIsCocontinuousOverLeftDiscretePUnitIteratedSliceForwardOver, iteratedSliceForward_obj, iteratedSliceForwardNaturalityIso_inv_app, iteratedSliceForwardIsoPost_hom_app
iteratedSliceForwardIsoPost πŸ“–CompOp
2 mathmath: iteratedSliceForwardIsoPost_inv_app, iteratedSliceForwardIsoPost_hom_app
iteratedSliceForwardNaturalityIso πŸ“–CompOp
2 mathmath: iteratedSliceForwardNaturalityIso_hom_app, iteratedSliceForwardNaturalityIso_inv_app
liftCone πŸ“–CompOp
2 mathmath: liftCone_Ο€_app, liftCone_pt
map πŸ“–CompOp
82 mathmath: CategoryTheory.GrothendieckTopology.overMapPullbackId_hom_app_val_app, iteratedSliceForwardNaturalityIso_hom_app, mapIso_inverse, CategoryTheory.GrothendieckTopology.overMapPullbackId_inv_app_val_app, forgetMapTerminal_hom_app, CategoryTheory.ChosenPullbacksAlong.unit_pullbackComp_hom_assoc, CategoryTheory.ChosenPullbacksAlong.iso_mapPullbackAdj_unit_app, CategoryTheory.toOverPullbackIsoToOver_inv_app_left, CategoryTheory.GrothendieckTopology.over_map_coverPreserving, mapId_eq, postAdjunctionRight_counit_app, CategoryTheory.ChosenPullbacksAlong.snd'_left, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_mapPullbackAdj_unit_app, mapCongr_inv_app_left, mapCongr_hom_app_left, postCongr_inv_app_left, mapComp_hom_app_left, postAdjunctionLeft_unit_app_left, CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapComp_inv_toNatTrans_app_val_app, mapPullbackAdj_counit_app, iteratedSliceBackward_forget, postCongr_hom_app_left, CategoryTheory.Sieve.functorPushforward_over_map, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_obj_val_obj, map_map_left, CategoryTheory.ChosenPullbacksAlong.isoInv_mapPullbackAdj_unit_app_left, postEquiv_inverse, forgetMapTerminal_inv_app, CategoryTheory.ChosenPullbacksAlong.unit_pullbackId_hom_app, preservesColimitsOfSize_map, mapComp_eq, mapPullbackAdj_unit_app, mapId_inv_app_left, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_mapPullbackAdj_unit_app, map_obj_hom, iteratedSliceEquivOverMapIso_inv_app_left_left, iteratedSliceEquivOverMapIso_hom_app_left_left, postEquiv_counitIso, CategoryTheory.ChosenPullbacksAlong.pullbackId_hom_counit, CategoryTheory.toOverIteratedSliceForwardIsoPullback_hom_app_left, CategoryTheory.toOverPullbackIsoToOver_hom_app_left, instIsEquivalenceMapOfIsIso, CategoryTheory.ChosenPullbacksAlong.pullbackId_hom_counit_assoc, CategoryTheory.Presieve.isSheafFor_over_map_op_comp_ofArrows_iff, CategoryTheory.Presieve.isSheafFor_over_map_op_comp_iff, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryToUnit_mapPullbackAdj_unit_app, CategoryTheory.ChosenPullbacksAlong.pullbackComp_hom_counit, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_map_val_app, postAdjunctionRight_unit_app, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_mapPullbackAdj_counit_app, CategoryTheory.ChosenPullbacksAlong.isoInv_mapPullbackAdj_counit_app_left, mapId_hom_app_left, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_obj_val_map, CategoryTheory.GrothendieckTopology.overMapPullbackComp_inv_app_val_app, CategoryTheory.ChosenPullbacksAlong.unit_pullbackId_hom, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryToUnit_mapPullbackAdj_counit_app, postEquiv_unitIso, CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_mapPullbackAdj_counit_app, CategoryTheory.ChosenPullbacksAlong.fst'_left, map_obj_left, CategoryTheory.ChosenPullbacksAlong.iso_mapPullbackAdj_counit_app, CategoryTheory.GrothendieckTopology.overMapPullbackComp_hom_app_val_app, CategoryTheory.toOverIteratedSliceForwardIsoPullback_inv_app_left, CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapComp_hom_toNatTrans_app_val_app, CategoryTheory.GrothendieckTopology.overMapPullbackCongr_hom_app_val_app, CategoryTheory.ChosenPullbacksAlong.unit_pullbackComp_hom, postMap_app, CategoryTheory.GrothendieckTopology.instIsContinuousOverMapOver, CategoryTheory.GrothendieckTopology.over_map_compatiblePreserving, mapIso_functor, mapFunctor_map, mapCongr_rfl, CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapId_inv_toNatTrans_app_val_app, CategoryTheory.ChosenPullbacksAlong.pullbackComp_hom_counit_assoc, CategoryTheory.ChosenPullbacksAlong.unit_pullbackId_hom_app_assoc, CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapId_hom_toNatTrans_app_val_app, CategoryTheory.GrothendieckTopology.overMapPullbackCongr_inv_app_val_app, CategoryTheory.ChosenPullbacksAlong.unit_pullbackId_hom_assoc, iteratedSliceForwardNaturalityIso_inv_app, mapForget_eq, postAdjunctionLeft_counit_app_left, mapComp_inv_app_left
mapComp πŸ“–CompOp
6 mathmath: mapComp_hom_app_left, CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapComp_inv_toNatTrans_app_val_app, CategoryTheory.GrothendieckTopology.overMapPullbackComp_inv_app_val_app, CategoryTheory.GrothendieckTopology.overMapPullbackComp_hom_app_val_app, CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapComp_hom_toNatTrans_app_val_app, mapComp_inv_app_left
mapCongr πŸ“–CompOp
5 mathmath: mapCongr_inv_app_left, mapCongr_hom_app_left, CategoryTheory.GrothendieckTopology.overMapPullbackCongr_hom_app_val_app, mapCongr_rfl, CategoryTheory.GrothendieckTopology.overMapPullbackCongr_inv_app_val_app
mapForget πŸ“–CompOp
2 mathmath: CategoryTheory.toOverPullbackIsoToOver_inv_app_left, CategoryTheory.toOverPullbackIsoToOver_hom_app_left
mapFunctor πŸ“–CompOp
2 mathmath: mapFunctor_obj, mapFunctor_map
mapId πŸ“–CompOp
6 mathmath: CategoryTheory.GrothendieckTopology.overMapPullbackId_hom_app_val_app, CategoryTheory.GrothendieckTopology.overMapPullbackId_inv_app_val_app, mapId_inv_app_left, mapId_hom_app_left, CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapId_inv_toNatTrans_app_val_app, CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapId_hom_toNatTrans_app_val_app
mapIso πŸ“–CompOp
2 mathmath: mapIso_inverse, mapIso_functor
mk πŸ“–CompOpβ€”
mkIdTerminal πŸ“–CompOp
1 mathmath: mkIdTerminal_from_left
opEquivOpUnder πŸ“–CompOp
6 mathmath: opEquivOpUnder_unitIso, opEquivOpUnder_inverse_obj, opEquivOpUnder_inverse_map, opEquivOpUnder_counitIso, opEquivOpUnder_functor_map, opEquivOpUnder_functor_obj
post πŸ“–CompOp
42 mathmath: CategoryTheory.MonoOver.congr_unitIso, CategoryTheory.instGuitartExactOverObjOverPostOfHasBinaryProductOfPreservesLimitDiscreteWalkingPairPair, instIsEquivalenceObjPost, CategoryTheory.Limits.PreservesLimitsOfShape.overPost, iteratedSliceForwardIsoPost_inv_app, postAdjunctionRight_counit_app, conePost_obj_Ο€_app, CategoryTheory.Limits.PreservesFiniteLimits.overPost, postCongr_inv_app_left, postAdjunctionLeft_unit_app_left, post_map, postCongr_hom_app_left, postEquiv_inverse, conePostIso_hom_app_hom, conePost_map_hom, postComp_inv_app_left, post_comp, isRightAdjoint_post, postEquiv_counitIso, CategoryTheory.WithTerminal.liftFromOverComp_hom_app, CategoryTheory.Limits.Cone.overPost_pt, CategoryTheory.MonoOver.congr_functor, CategoryTheory.MonoOver.congr_inverse, conePostIso_inv_app_hom, postAdjunctionRight_unit_app, conePost_obj_pt, postComp_hom_app_left, post_obj, CategoryTheory.Limits.PreservesLimitsOfSize.overPost, instFaithfulObjPost, postEquiv_unitIso, instFullObjPostOfFaithful, instEssSurjObjPostOfFull, CategoryTheory.WithTerminal.liftFromOverComp_inv_app, CategoryTheory.Limits.Cone.overPost_Ο€_app, postMap_app, CategoryTheory.MonoOver.congr_counitIso, CategoryTheory.Functor.essImage_overPost, postEquiv_functor, isLeftAdjoint_post, iteratedSliceForwardIsoPost_hom_app, postAdjunctionLeft_counit_app_left
postAdjunctionRight πŸ“–CompOp
3 mathmath: postAdjunctionRight_counit_app, postAdjunctionRight_unit_app, postAdjunctionLeft_counit_app_left
postComp πŸ“–CompOp
2 mathmath: postComp_inv_app_left, postComp_hom_app_left
postCongr πŸ“–CompOp
2 mathmath: postCongr_inv_app_left, postCongr_hom_app_left
postEquiv πŸ“–CompOp
4 mathmath: postEquiv_inverse, postEquiv_counitIso, postEquiv_unitIso, postEquiv_functor
postMap πŸ“–CompOp
1 mathmath: postMap_app

Theorems

NameKindAssumesProvesValidatesDepends On
coe_hom πŸ“–mathematicalβ€”CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
β€”β€”
comp_left πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.CategoryStruct.comp
CategoryTheory.Over
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryOver
CategoryTheory.Comma.left
β€”β€”
comp_left_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.CommaMorphism.left
CategoryTheory.Over
CategoryTheory.instCategoryOver
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comp_left
epi_homMk πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Epi
CategoryTheory.Over
CategoryTheory.instCategoryOver
homMk
β€”CategoryTheory.Functor.epi_of_epi_map
CategoryTheory.Functor.reflectsEpimorphisms_of_faithful
forget_faithful
epi_of_epi_left πŸ“–mathematicalβ€”CategoryTheory.Epi
CategoryTheory.Over
CategoryTheory.instCategoryOver
β€”CategoryTheory.Functor.epi_of_epi_map
CategoryTheory.Functor.reflectsEpimorphisms_of_faithful
forget_faithful
eqToHom_left πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.eqToHom
CategoryTheory.Over
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryOver
CategoryTheory.Comma.left
β€”β€”
equivalenceOfIsTerminal_counitIso πŸ“–mathematicalβ€”CategoryTheory.Equivalence.counitIso
CategoryTheory.Over
CategoryTheory.instCategoryOver
equivalenceOfIsTerminal
CategoryTheory.NatIso.ofComponents
CategoryTheory.Functor.comp
CategoryTheory.Limits.IsTerminal.from
homMk
forget
CategoryTheory.Functor.id
CategoryTheory.Iso.refl
CategoryTheory.Functor.obj
β€”β€”
equivalenceOfIsTerminal_functor πŸ“–mathematicalβ€”CategoryTheory.Equivalence.functor
CategoryTheory.Over
CategoryTheory.instCategoryOver
equivalenceOfIsTerminal
forget
β€”β€”
equivalenceOfIsTerminal_inverse_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Equivalence.inverse
equivalenceOfIsTerminal
homMk
CategoryTheory.Limits.IsTerminal.from
β€”β€”
equivalenceOfIsTerminal_inverse_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Equivalence.inverse
equivalenceOfIsTerminal
CategoryTheory.Limits.IsTerminal.from
β€”β€”
equivalenceOfIsTerminal_unitIso πŸ“–mathematicalβ€”CategoryTheory.Equivalence.unitIso
CategoryTheory.Over
CategoryTheory.instCategoryOver
equivalenceOfIsTerminal
CategoryTheory.NatIso.ofComponents
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
forget
CategoryTheory.Limits.IsTerminal.from
homMk
isoMk
CategoryTheory.Functor.obj
CategoryTheory.Iso.refl
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
β€”β€”
forall_iff πŸ“–β€”β€”β€”β€”β€”
forgetCocone_pt πŸ“–mathematicalβ€”CategoryTheory.Limits.Cocone.pt
CategoryTheory.Over
CategoryTheory.instCategoryOver
forget
forgetCocone
β€”β€”
forgetCocone_ΞΉ_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Over
CategoryTheory.instCategoryOver
forget
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.ΞΉ
forgetCocone
CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
β€”β€”
forget_faithful πŸ“–mathematicalβ€”CategoryTheory.Functor.Faithful
CategoryTheory.Over
CategoryTheory.instCategoryOver
forget
β€”OverMorphism.ext
forget_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.Over
CategoryTheory.instCategoryOver
forget
CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
β€”β€”
forget_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
forget
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
β€”β€”
forget_reflects_iso πŸ“–mathematicalβ€”CategoryTheory.Functor.ReflectsIsomorphisms
CategoryTheory.Over
CategoryTheory.instCategoryOver
forget
β€”CategoryTheory.Iso.inv_comp_eq
w
OverMorphism.ext
CategoryTheory.IsIso.hom_inv_id
CategoryTheory.IsIso.inv_hom_id
homMk_comp πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
homMk
CategoryTheory.Over
CategoryTheory.instCategoryOver
β€”OverMorphism.ext
homMk_eta πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma.right
CategoryTheory.CommaMorphism.left
CategoryTheory.Comma.hom
homMkβ€”β€”
homMk_left πŸ“–mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma.right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Comma.hom
CategoryTheory.CommaMorphism.left
homMk
β€”β€”
homMk_surjective πŸ“–mathematicalβ€”homMkβ€”w
hom_left_inv_left πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.CommaMorphism.left
CategoryTheory.Iso.hom
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Iso.inv
CategoryTheory.CategoryStruct.id
β€”CategoryTheory.Iso.hom_inv_id
hom_left_inv_left_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.CommaMorphism.left
CategoryTheory.Iso.hom
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Iso.inv
β€”CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
hom_left_inv_left
id_left πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.CategoryStruct.id
CategoryTheory.Over
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryOver
CategoryTheory.Comma.left
β€”β€”
instEssSurjObjPostOfFull πŸ“–mathematicalβ€”CategoryTheory.Functor.EssSurj
CategoryTheory.Over
CategoryTheory.Functor.obj
CategoryTheory.instCategoryOver
post
β€”CategoryTheory.Functor.EssSurj.mem_essImage
CategoryTheory.Functor.map_surjective
instFaithfulObjPost πŸ“–mathematicalβ€”CategoryTheory.Functor.Faithful
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.obj
post
β€”OverMorphism.ext
CategoryTheory.Functor.map_injective
instFullObjPostOfFaithful πŸ“–mathematicalβ€”CategoryTheory.Functor.Full
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.obj
post
β€”CategoryTheory.Functor.map_surjective
CategoryTheory.Functor.map_injective
CategoryTheory.Functor.map_comp
w
OverMorphism.ext
instIsEquivalenceMapOfIsIso πŸ“–mathematicalβ€”CategoryTheory.Functor.IsEquivalence
CategoryTheory.Over
CategoryTheory.instCategoryOver
map
β€”CategoryTheory.Equivalence.isEquivalence_functor
instIsEquivalenceObjPost πŸ“–mathematicalβ€”CategoryTheory.Functor.IsEquivalence
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.obj
post
β€”instFaithfulObjPost
CategoryTheory.Functor.IsEquivalence.faithful
instFullObjPostOfFaithful
CategoryTheory.Functor.IsEquivalence.full
instEssSurjObjPostOfFull
CategoryTheory.Functor.IsEquivalence.essSurj
inv_left_hom_left πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.CommaMorphism.left
CategoryTheory.Iso.inv
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Iso.hom
CategoryTheory.CategoryStruct.id
β€”CategoryTheory.Iso.inv_hom_id
inv_left_hom_left_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.CommaMorphism.left
CategoryTheory.Iso.inv
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Iso.hom
β€”CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
inv_left_hom_left
isRightAdjoint_post πŸ“–mathematicalβ€”CategoryTheory.Functor.IsRightAdjoint
CategoryTheory.Over
CategoryTheory.Functor.obj
CategoryTheory.instCategoryOver
post
β€”β€”
isoMk_hom_left πŸ“–mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma.right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Iso.hom
CategoryTheory.Comma.hom
CategoryTheory.CommaMorphism.left
CategoryTheory.Over
CategoryTheory.instCategoryOver
isoMk
β€”β€”
isoMk_inv_left πŸ“–mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma.right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Iso.hom
CategoryTheory.Comma.hom
CategoryTheory.CommaMorphism.left
CategoryTheory.Iso.inv
CategoryTheory.Over
CategoryTheory.instCategoryOver
isoMk
β€”β€”
iteratedSliceBackward_forget πŸ“–mathematicalβ€”CategoryTheory.Functor.comp
CategoryTheory.Over
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.instCategoryOver
iteratedSliceBackward
forget
map
CategoryTheory.Functor.obj
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
β€”β€”
iteratedSliceBackward_forget_forget πŸ“–mathematicalβ€”CategoryTheory.Functor.comp
CategoryTheory.Over
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.instCategoryOver
iteratedSliceBackward
forget
β€”β€”
iteratedSliceBackward_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.Over
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.instCategoryOver
iteratedSliceBackward
homMk
CategoryTheory.Functor.obj
CategoryTheory.Comma.right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.hom
CategoryTheory.CommaMorphism.left
β€”β€”
iteratedSliceBackward_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.Over
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.instCategoryOver
iteratedSliceBackward
CategoryTheory.Comma.right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.hom
homMk
β€”β€”
iteratedSliceEquivOverMapIso_hom_app_left_left πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
iteratedSliceForward
map
iteratedSliceBackward
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
iteratedSliceEquivOverMapIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”β€”
iteratedSliceEquivOverMapIso_inv_app_left_left πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.obj
map
CategoryTheory.Functor.comp
iteratedSliceForward
iteratedSliceBackward
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
iteratedSliceEquivOverMapIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”β€”
iteratedSliceEquiv_counitIso πŸ“–mathematicalβ€”CategoryTheory.Equivalence.counitIso
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
iteratedSliceEquiv
CategoryTheory.NatIso.ofComponents
CategoryTheory.Functor.comp
iteratedSliceBackward
iteratedSliceForward
isoMk
CategoryTheory.Functor.obj
CategoryTheory.Iso.refl
β€”β€”
iteratedSliceEquiv_functor πŸ“–mathematicalβ€”CategoryTheory.Equivalence.functor
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
iteratedSliceEquiv
iteratedSliceForward
β€”β€”
iteratedSliceEquiv_inverse πŸ“–mathematicalβ€”CategoryTheory.Equivalence.inverse
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
iteratedSliceEquiv
iteratedSliceBackward
β€”β€”
iteratedSliceEquiv_unitIso πŸ“–mathematicalβ€”CategoryTheory.Equivalence.unitIso
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
iteratedSliceEquiv
CategoryTheory.NatIso.ofComponents
CategoryTheory.Functor.comp
iteratedSliceForward
iteratedSliceBackward
isoMk
CategoryTheory.Functor.obj
CategoryTheory.Iso.refl
β€”β€”
iteratedSliceForwardIsoPost_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.obj
forget
post
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
iteratedSliceForward
iteratedSliceForwardIsoPost
CategoryTheory.CategoryStruct.id
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CommaMorphism.left
CategoryTheory.Comma.hom
β€”β€”
iteratedSliceForwardIsoPost_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.obj
forget
post
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
iteratedSliceForward
iteratedSliceForwardIsoPost
CategoryTheory.CategoryStruct.id
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CommaMorphism.left
CategoryTheory.Comma.hom
β€”β€”
iteratedSliceForwardNaturalityIso_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.comp
iteratedSliceForward
map
CategoryTheory.CommaMorphism.left
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
iteratedSliceForwardNaturalityIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comma.hom
β€”β€”
iteratedSliceForwardNaturalityIso_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.comp
iteratedSliceForward
map
CategoryTheory.CommaMorphism.left
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
iteratedSliceForwardNaturalityIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comma.hom
β€”β€”
iteratedSliceForward_forget πŸ“–mathematicalβ€”CategoryTheory.Functor.comp
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
iteratedSliceForward
forget
β€”β€”
iteratedSliceForward_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
iteratedSliceForward
homMk
CategoryTheory.Functor.obj
CategoryTheory.CommaMorphism.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
β€”β€”
iteratedSliceForward_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
iteratedSliceForward
CategoryTheory.CommaMorphism.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
β€”β€”
liftCone_pt πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cone.Ο€
CategoryTheory.Over
CategoryTheory.instCategoryOver
lift
liftCone
β€”β€”
liftCone_Ο€_app πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cone.Ο€
CategoryTheory.Over
CategoryTheory.instCategoryOver
lift
liftCone
homMk
β€”β€”
lift_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.Over
CategoryTheory.instCategoryOver
lift
homMk
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
β€”β€”
lift_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
lift
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
β€”β€”
mapComp_eq πŸ“–mathematicalβ€”map
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.comp
CategoryTheory.Over
CategoryTheory.instCategoryOver
β€”CategoryTheory.Functor.ext
CategoryTheory.Category.assoc
OverMorphism.ext
eqToHom_left
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
mapComp_hom_app_left πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
map
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
mapComp
CategoryTheory.CategoryStruct.id
CategoryTheory.Comma.left
β€”β€”
mapComp_inv_app_left πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.comp
map
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
mapComp
CategoryTheory.CategoryStruct.id
CategoryTheory.Comma.left
β€”β€”
mapCongr_hom_app_left πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
map
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
mapCongr
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
β€”β€”
mapCongr_inv_app_left πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
map
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
mapCongr
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
β€”β€”
mapCongr_rfl πŸ“–mathematicalβ€”mapCongr
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.refl
CategoryTheory.Functor
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.category
map
β€”β€”
mapForget_eq πŸ“–mathematicalβ€”CategoryTheory.Functor.comp
CategoryTheory.Over
CategoryTheory.instCategoryOver
map
forget
β€”β€”
mapFunctor_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.Cat
CategoryTheory.Cat.category
mapFunctor
CategoryTheory.Functor.toCatHom
CategoryTheory.Over
CategoryTheory.instCategoryOver
map
β€”β€”
mapFunctor_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.Cat
CategoryTheory.Cat.category
mapFunctor
CategoryTheory.Cat.of
CategoryTheory.Over
CategoryTheory.instCategoryOver
β€”β€”
mapId_eq πŸ“–mathematicalβ€”map
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.id
CategoryTheory.Over
CategoryTheory.instCategoryOver
β€”CategoryTheory.Functor.ext
CategoryTheory.Category.comp_id
CategoryTheory.CostructuredArrow.eqToHom_left
CategoryTheory.Category.id_comp
mapId_hom_app_left πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
map
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
mapId
CategoryTheory.Comma.left
β€”β€”
mapId_inv_app_left πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
map
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
mapId
CategoryTheory.Comma.left
β€”β€”
mapIso_functor πŸ“–mathematicalβ€”CategoryTheory.Equivalence.functor
CategoryTheory.Over
CategoryTheory.instCategoryOver
mapIso
map
CategoryTheory.Iso.hom
β€”β€”
mapIso_inverse πŸ“–mathematicalβ€”CategoryTheory.Equivalence.inverse
CategoryTheory.Over
CategoryTheory.instCategoryOver
mapIso
map
CategoryTheory.Iso.inv
β€”β€”
map_map_left πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
map
CategoryTheory.Functor.map
β€”β€”
map_obj_hom πŸ“–mathematicalβ€”CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
map
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Comma.right
β€”β€”
map_obj_left πŸ“–mathematicalβ€”CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
map
β€”β€”
mkIdTerminal_from_left πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.IsTerminal.from
CategoryTheory.Over
CategoryTheory.instCategoryOver
mkIdTerminal
CategoryTheory.Comma.hom
β€”CategoryTheory.Category.comp_id
CategoryTheory.Limits.IsTerminal.hom_ext
mk_hom πŸ“–mathematicalβ€”CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
β€”β€”
mk_left πŸ“–mathematicalβ€”CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
β€”β€”
mk_surjective πŸ“–β€”β€”β€”β€”β€”
mono_homMk πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Mono
CategoryTheory.Over
CategoryTheory.instCategoryOver
homMk
β€”CategoryTheory.Functor.mono_of_mono_map
CategoryTheory.Functor.reflectsMonomorphisms_of_faithful
forget_faithful
mono_left_of_mono πŸ“–mathematicalβ€”CategoryTheory.Mono
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.CommaMorphism.left
β€”w
CategoryTheory.Category.assoc
CategoryTheory.cancel_mono
OverMorphism.ext
mono_of_mono_left πŸ“–mathematicalβ€”CategoryTheory.Mono
CategoryTheory.Over
CategoryTheory.instCategoryOver
β€”CategoryTheory.Functor.mono_of_mono_map
CategoryTheory.Functor.reflectsMonomorphisms_of_faithful
forget_faithful
opEquivOpUnder_counitIso πŸ“–mathematicalβ€”CategoryTheory.Equivalence.counitIso
CategoryTheory.Over
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Under
CategoryTheory.instCategoryOver
CategoryTheory.instCategoryUnder
opEquivOpUnder
CategoryTheory.Iso.refl
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
Opposite.unop
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
homMk
CategoryTheory.CommaMorphism.right
Quiver.Hom.unop
Quiver.Hom
CategoryTheory.Under.homMk
CategoryTheory.CommaMorphism.left
β€”β€”
opEquivOpUnder_functor_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.Over
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.instCategoryOver
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Equivalence.functor
opEquivOpUnder
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.unop
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
Quiver.Hom.unop
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Under.homMk
CategoryTheory.CommaMorphism.left
β€”β€”
opEquivOpUnder_functor_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.Over
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.instCategoryOver
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Equivalence.functor
opEquivOpUnder
Opposite.unop
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
β€”β€”
opEquivOpUnder_inverse_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
Opposite
CategoryTheory.Under
CategoryTheory.Category.opposite
CategoryTheory.instCategoryUnder
CategoryTheory.Over
Opposite.op
CategoryTheory.instCategoryOver
CategoryTheory.Equivalence.inverse
opEquivOpUnder
homMk
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
Opposite.unop
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
CategoryTheory.CommaMorphism.right
Quiver.Hom.unop
β€”β€”
opEquivOpUnder_inverse_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
Opposite
CategoryTheory.Under
CategoryTheory.Category.opposite
CategoryTheory.instCategoryUnder
CategoryTheory.Over
Opposite.op
CategoryTheory.instCategoryOver
CategoryTheory.Equivalence.inverse
opEquivOpUnder
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
Opposite.unop
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
β€”β€”
opEquivOpUnder_unitIso πŸ“–mathematicalβ€”CategoryTheory.Equivalence.unitIso
CategoryTheory.Over
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Under
CategoryTheory.instCategoryOver
CategoryTheory.instCategoryUnder
opEquivOpUnder
CategoryTheory.Iso.refl
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
β€”β€”
over_right πŸ“–mathematicalβ€”CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
β€”β€”
postAdjunctionRight_counit_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Over
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.instCategoryOver
CategoryTheory.Functor.comp
post
map
CategoryTheory.Adjunction.counit
postAdjunctionRight
homMk
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
β€”β€”
postAdjunctionRight_unit_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Over
CategoryTheory.Functor.obj
CategoryTheory.instCategoryOver
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
post
map
CategoryTheory.Adjunction.counit
CategoryTheory.Adjunction.unit
postAdjunctionRight
homMk
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
β€”β€”
postComp_hom_app_left πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
CategoryTheory.Over
CategoryTheory.instCategoryOver
post
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
postComp
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
β€”β€”
postComp_inv_app_left πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
CategoryTheory.Over
CategoryTheory.instCategoryOver
post
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
postComp
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
β€”β€”
postCongr_hom_app_left πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.comp
post
map
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
postCongr
CategoryTheory.Comma.left
β€”β€”
postCongr_inv_app_left πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
post
CategoryTheory.Functor.comp
map
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Iso.inv
postCongr
CategoryTheory.Comma.left
β€”β€”
postEquiv_counitIso πŸ“–mathematicalβ€”CategoryTheory.Equivalence.counitIso
CategoryTheory.Over
CategoryTheory.Functor.obj
CategoryTheory.Equivalence.functor
CategoryTheory.instCategoryOver
postEquiv
CategoryTheory.NatIso.ofComponents
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.inverse
post
map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.unitIso
isoMk
CategoryTheory.Iso.app
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
β€”β€”
postEquiv_functor πŸ“–mathematicalβ€”CategoryTheory.Equivalence.functor
CategoryTheory.Over
CategoryTheory.Functor.obj
CategoryTheory.instCategoryOver
postEquiv
post
β€”β€”
postEquiv_inverse πŸ“–mathematicalβ€”CategoryTheory.Equivalence.inverse
CategoryTheory.Over
CategoryTheory.Functor.obj
CategoryTheory.Equivalence.functor
CategoryTheory.instCategoryOver
postEquiv
CategoryTheory.Functor.comp
post
map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.unitIso
β€”β€”
postEquiv_unitIso πŸ“–mathematicalβ€”CategoryTheory.Equivalence.unitIso
CategoryTheory.Over
CategoryTheory.Functor.obj
CategoryTheory.Equivalence.functor
CategoryTheory.instCategoryOver
postEquiv
CategoryTheory.NatIso.ofComponents
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
post
CategoryTheory.Equivalence.inverse
map
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
isoMk
CategoryTheory.Iso.app
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
β€”β€”
postMap_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
post
map
postMap
homMk
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
β€”β€”
post_comp πŸ“–mathematicalβ€”post
CategoryTheory.Functor.comp
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.obj
β€”β€”
post_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.obj
post
homMk
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.hom
CategoryTheory.CommaMorphism.left
β€”β€”
post_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
post
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.map
CategoryTheory.Comma.hom
β€”β€”
w πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma.right
CategoryTheory.CommaMorphism.left
CategoryTheory.Comma.hom
β€”CategoryTheory.CommaMorphism.w
CategoryTheory.Category.comp_id
w_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.CommaMorphism.left
CategoryTheory.Functor.obj
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
w

CategoryTheory.Over.OverMorphism

Theorems

NameKindAssumesProvesValidatesDepends On
ext πŸ“–β€”CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
β€”β€”CategoryTheory.Discrete.instSubsingletonDiscreteHom
ext_iff πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
β€”ext

CategoryTheory.StructuredArrow

Definitions

NameCategoryTheorems
ofCommaSndEquivalence πŸ“–CompOp
4 mathmath: ofCommaSndEquivalence_functor, ofCommaSndEquivalence_unitIso, ofCommaSndEquivalence_counitIso, ofCommaSndEquivalence_inverse
ofCommaSndEquivalenceFunctor πŸ“–CompOp
8 mathmath: ofCommaSndEquivalenceFunctor_map_right, ofCommaSndEquivalence_functor, ofCommaSndEquivalence_unitIso, ofCommaSndEquivalence_counitIso, ofCommaSndEquivalenceFunctor_map_left, ofCommaSndEquivalenceFunctor_obj_right, ofCommaSndEquivalenceFunctor_obj_left, ofCommaSndEquivalenceFunctor_obj_hom
ofCommaSndEquivalenceInverse πŸ“–CompOp
10 mathmath: ofCommaSndEquivalenceInverse_obj_right_left, ofCommaSndEquivalence_unitIso, ofCommaSndEquivalence_counitIso, ofCommaSndEquivalenceInverse_map_right_left, ofCommaSndEquivalenceInverse_obj_hom, ofCommaSndEquivalenceInverse_map_right_right, ofCommaSndEquivalence_inverse, ofCommaSndEquivalenceInverse_obj_right_hom, ofCommaSndEquivalenceInverse_obj_left_as, ofCommaSndEquivalenceInverse_obj_right_right
ofDiagEquivalence πŸ“–CompOpβ€”
ofDiagEquivalence' πŸ“–CompOpβ€”
ofStructuredArrowProjEquivalence πŸ“–CompOpβ€”
toUnder πŸ“–CompOp
16 mathmath: CategoryTheory.Limits.Cone.toUnder_pt, instFullUnderToUnder, toUnder_obj_left, CategoryTheory.Limits.Cone.toStructuredArrowCompToUnderCompForget_hom_app, CategoryTheory.Limits.Cone.toStructuredArrow_comp_toUnder_comp_forget, isEquivalence_toUnder, CategoryTheory.Limits.Cone.mapConeToUnder_inv_hom, toUnder_map_right, instFaithfulUnderToUnder, toUnder_obj_hom, CategoryTheory.Limits.Cone.toUnder_Ο€_app, CategoryTheory.Limits.Cone.mapConeToUnder_hom_hom, toUnder_map_left, instEssSurjUnderToUnder, CategoryTheory.Limits.Cone.toStructuredArrowCompToUnderCompForget_inv_app, toUnder_obj_right

Theorems

NameKindAssumesProvesValidatesDepends On
instEssSurjUnderToUnder πŸ“–mathematicalβ€”CategoryTheory.Functor.EssSurj
CategoryTheory.StructuredArrow
CategoryTheory.Under
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.instCategoryUnder
toUnder
β€”instEssSurjCompPre
instFaithfulUnderToUnder πŸ“–mathematicalβ€”CategoryTheory.Functor.Faithful
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Under
CategoryTheory.instCategoryUnder
toUnder
β€”instFaithfulCompPre
instFullUnderToUnder πŸ“–mathematicalβ€”CategoryTheory.Functor.Full
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Under
CategoryTheory.instCategoryUnder
toUnder
β€”instFullCompPre
isEquivalence_toUnder πŸ“–mathematicalβ€”CategoryTheory.Functor.IsEquivalence
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Under
CategoryTheory.instCategoryUnder
toUnder
β€”isEquivalence_pre
ofCommaSndEquivalenceFunctor_map_left πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.left
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.comp
CategoryTheory.Under.forget
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Comma.fst
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
ofCommaSndEquivalenceFunctor
CategoryTheory.Under.homMk
CategoryTheory.Comma.left
CategoryTheory.CommaMorphism.right
β€”β€”
ofCommaSndEquivalenceFunctor_map_right πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.right
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.comp
CategoryTheory.Under.forget
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Comma.fst
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
ofCommaSndEquivalenceFunctor
β€”β€”
ofCommaSndEquivalenceFunctor_obj_hom πŸ“–mathematicalβ€”CategoryTheory.Comma.hom
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.comp
CategoryTheory.Under.forget
CategoryTheory.Functor.obj
CategoryTheory.StructuredArrow
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Comma.fst
CategoryTheory.instCategoryStructuredArrow
ofCommaSndEquivalenceFunctor
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
β€”β€”
ofCommaSndEquivalenceFunctor_obj_left πŸ“–mathematicalβ€”CategoryTheory.Comma.left
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.comp
CategoryTheory.Under.forget
CategoryTheory.Functor.obj
CategoryTheory.StructuredArrow
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Comma.fst
CategoryTheory.instCategoryStructuredArrow
ofCommaSndEquivalenceFunctor
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.hom
β€”β€”
ofCommaSndEquivalenceFunctor_obj_right πŸ“–mathematicalβ€”CategoryTheory.Comma.right
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.comp
CategoryTheory.Under.forget
CategoryTheory.Functor.obj
CategoryTheory.StructuredArrow
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Comma.fst
CategoryTheory.instCategoryStructuredArrow
ofCommaSndEquivalenceFunctor
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
β€”β€”
ofCommaSndEquivalenceInverse_map_right_left πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.left
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.comp
CategoryTheory.Under.forget
CategoryTheory.commaCategory
CategoryTheory.Comma.preLeft
CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.fst
CategoryTheory.Functor.map
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
ofCommaSndEquivalenceInverse
CategoryTheory.Functor.id
CategoryTheory.Comma.left
β€”β€”
ofCommaSndEquivalenceInverse_map_right_right πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.right
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.comp
CategoryTheory.Under.forget
CategoryTheory.commaCategory
CategoryTheory.Comma.preLeft
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.fst
CategoryTheory.Functor.map
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
ofCommaSndEquivalenceInverse
β€”β€”
ofCommaSndEquivalenceInverse_obj_hom πŸ“–mathematicalβ€”CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.fst
CategoryTheory.Functor.obj
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.comp
CategoryTheory.Under.forget
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
ofCommaSndEquivalenceInverse
CategoryTheory.Functor.id
CategoryTheory.Comma.left
β€”β€”
ofCommaSndEquivalenceInverse_obj_left_as πŸ“–mathematicalβ€”CategoryTheory.Discrete.as
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.fst
CategoryTheory.Functor.obj
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.comp
CategoryTheory.Under.forget
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
ofCommaSndEquivalenceInverse
β€”β€”
ofCommaSndEquivalenceInverse_obj_right_hom πŸ“–mathematicalβ€”CategoryTheory.Comma.hom
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.fst
CategoryTheory.Functor.obj
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.comp
CategoryTheory.Under.forget
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
ofCommaSndEquivalenceInverse
β€”β€”
ofCommaSndEquivalenceInverse_obj_right_left πŸ“–mathematicalβ€”CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.fst
CategoryTheory.Functor.obj
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.comp
CategoryTheory.Under.forget
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
ofCommaSndEquivalenceInverse
CategoryTheory.Functor.id
β€”β€”
ofCommaSndEquivalenceInverse_obj_right_right πŸ“–mathematicalβ€”CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.fst
CategoryTheory.Functor.obj
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.comp
CategoryTheory.Under.forget
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
ofCommaSndEquivalenceInverse
β€”β€”
ofCommaSndEquivalence_counitIso πŸ“–mathematicalβ€”CategoryTheory.Equivalence.counitIso
CategoryTheory.StructuredArrow
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Comma.fst
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.comp
CategoryTheory.Under.forget
CategoryTheory.instCategoryStructuredArrow
ofCommaSndEquivalence
CategoryTheory.NatIso.ofComponents
ofCommaSndEquivalenceInverse
ofCommaSndEquivalenceFunctor
CategoryTheory.Functor.id
CategoryTheory.Iso.refl
CategoryTheory.Functor.obj
β€”β€”
ofCommaSndEquivalence_functor πŸ“–mathematicalβ€”CategoryTheory.Equivalence.functor
CategoryTheory.StructuredArrow
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Comma.fst
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.comp
CategoryTheory.Under.forget
CategoryTheory.instCategoryStructuredArrow
ofCommaSndEquivalence
ofCommaSndEquivalenceFunctor
β€”β€”
ofCommaSndEquivalence_inverse πŸ“–mathematicalβ€”CategoryTheory.Equivalence.inverse
CategoryTheory.StructuredArrow
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Comma.fst
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.comp
CategoryTheory.Under.forget
CategoryTheory.instCategoryStructuredArrow
ofCommaSndEquivalence
ofCommaSndEquivalenceInverse
β€”β€”
ofCommaSndEquivalence_unitIso πŸ“–mathematicalβ€”CategoryTheory.Equivalence.unitIso
CategoryTheory.StructuredArrow
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Comma.fst
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.comp
CategoryTheory.Under.forget
CategoryTheory.instCategoryStructuredArrow
ofCommaSndEquivalence
CategoryTheory.NatIso.ofComponents
CategoryTheory.Functor.id
ofCommaSndEquivalenceFunctor
ofCommaSndEquivalenceInverse
CategoryTheory.Iso.refl
CategoryTheory.Functor.obj
β€”β€”
toUnder_map_left πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Under
CategoryTheory.instCategoryUnder
toUnder
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”β€”
toUnder_map_right πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Under
CategoryTheory.instCategoryUnder
toUnder
β€”β€”
toUnder_obj_hom πŸ“–mathematicalβ€”CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Under
CategoryTheory.instCategoryUnder
toUnder
CategoryTheory.Functor.comp
β€”β€”
toUnder_obj_left πŸ“–mathematicalβ€”CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Under
CategoryTheory.instCategoryUnder
toUnder
CategoryTheory.Functor.comp
β€”β€”
toUnder_obj_right πŸ“–mathematicalβ€”CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Under
CategoryTheory.instCategoryUnder
toUnder
CategoryTheory.Functor.comp
β€”β€”

CategoryTheory.StructuredArrow.ofDiagEquivalence

Definitions

NameCategoryTheorems
functor πŸ“–CompOp
6 mathmath: functor_obj_right_right, functor_obj_right_hom, functor_map_right_right, functor_obj_right_left_as, functor_obj_hom, functor_obj_left_as
inverse πŸ“–CompOp
4 mathmath: inverse_map_right, inverse_obj_right, inverse_obj_hom, inverse_obj_left_as

Theorems

NameKindAssumesProvesValidatesDepends On
functor_map_right_right πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.StructuredArrow
CategoryTheory.uniformProd
CategoryTheory.Functor.diag
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.toUnder
CategoryTheory.StructuredArrow.proj
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Under.forget
CategoryTheory.Functor.map
functor
β€”β€”
functor_obj_hom πŸ“–mathematicalβ€”CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.fromPUnit
CategoryTheory.Under.forget
CategoryTheory.Functor.obj
CategoryTheory.StructuredArrow
CategoryTheory.uniformProd
CategoryTheory.Functor.diag
CategoryTheory.instCategoryStructuredArrow
functor
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
β€”β€”
functor_obj_left_as πŸ“–mathematicalβ€”CategoryTheory.Discrete.as
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.fromPUnit
CategoryTheory.Under.forget
CategoryTheory.Functor.obj
CategoryTheory.StructuredArrow
CategoryTheory.uniformProd
CategoryTheory.Functor.diag
CategoryTheory.instCategoryStructuredArrow
functor
β€”β€”
functor_obj_right_hom πŸ“–mathematicalβ€”CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Under.forget
CategoryTheory.Functor.obj
CategoryTheory.StructuredArrow
CategoryTheory.uniformProd
CategoryTheory.Functor.diag
CategoryTheory.instCategoryStructuredArrow
functor
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
β€”β€”
functor_obj_right_left_as πŸ“–mathematicalβ€”CategoryTheory.Discrete.as
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Under.forget
CategoryTheory.Functor.obj
CategoryTheory.StructuredArrow
CategoryTheory.uniformProd
CategoryTheory.Functor.diag
CategoryTheory.instCategoryStructuredArrow
functor
β€”β€”
functor_obj_right_right πŸ“–mathematicalβ€”CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Under.forget
CategoryTheory.Functor.obj
CategoryTheory.StructuredArrow
CategoryTheory.uniformProd
CategoryTheory.Functor.diag
CategoryTheory.instCategoryStructuredArrow
functor
β€”β€”
inverse_map_right πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.uniformProd
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.diag
CategoryTheory.Functor.obj
CategoryTheory.StructuredArrow
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Under.forget
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.StructuredArrow.proj
CategoryTheory.Functor.map
inverse
CategoryTheory.Functor.id
CategoryTheory.Comma.right
β€”β€”
inverse_obj_hom πŸ“–mathematicalβ€”CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.uniformProd
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.diag
CategoryTheory.Functor.obj
CategoryTheory.StructuredArrow
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Under.forget
CategoryTheory.instCategoryStructuredArrow
inverse
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
CategoryTheory.Functor.id
β€”β€”
inverse_obj_left_as πŸ“–mathematicalβ€”CategoryTheory.Discrete.as
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.uniformProd
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.diag
CategoryTheory.Functor.obj
CategoryTheory.StructuredArrow
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Under.forget
CategoryTheory.instCategoryStructuredArrow
inverse
β€”β€”
inverse_obj_right πŸ“–mathematicalβ€”CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.uniformProd
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.diag
CategoryTheory.Functor.obj
CategoryTheory.StructuredArrow
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Under.forget
CategoryTheory.instCategoryStructuredArrow
inverse
CategoryTheory.Functor.id
β€”β€”

CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence

Definitions

NameCategoryTheorems
functor πŸ“–CompOp
6 mathmath: functor_obj_left_as, functor_map_right_right, functor_obj_right_hom, functor_obj_right_right, functor_obj_right_left_as, functor_obj_hom
inverse πŸ“–CompOp
6 mathmath: inverse_obj_right_right, inverse_obj_right_left_as, inverse_obj_left_as, inverse_obj_hom, inverse_map_right_right, inverse_obj_right_hom

Theorems

NameKindAssumesProvesValidatesDepends On
functor_map_right_right πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.StructuredArrow.proj
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.toUnder
CategoryTheory.Functor.comp
CategoryTheory.Comma.hom
CategoryTheory.Under.forget
CategoryTheory.Functor.map
functor
CategoryTheory.Comma.right
β€”β€”
functor_obj_hom πŸ“–mathematicalβ€”CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.comp
CategoryTheory.Under.forget
CategoryTheory.Functor.obj
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.StructuredArrow.proj
functor
CategoryTheory.Comma.right
β€”β€”
functor_obj_left_as πŸ“–mathematicalβ€”CategoryTheory.Discrete.as
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.comp
CategoryTheory.Under.forget
CategoryTheory.Functor.obj
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.StructuredArrow.proj
functor
β€”β€”
functor_obj_right_hom πŸ“–mathematicalβ€”CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.comp
CategoryTheory.Under.forget
CategoryTheory.Functor.obj
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.StructuredArrow.proj
functor
β€”β€”
functor_obj_right_left_as πŸ“–mathematicalβ€”CategoryTheory.Discrete.as
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.comp
CategoryTheory.Under.forget
CategoryTheory.Functor.obj
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.StructuredArrow.proj
functor
β€”β€”
functor_obj_right_right πŸ“–mathematicalβ€”CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.comp
CategoryTheory.Under.forget
CategoryTheory.Functor.obj
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.StructuredArrow.proj
functor
β€”β€”
inverse_map_right_right πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.StructuredArrow
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.comp
CategoryTheory.Under.forget
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Functor.toStructuredArrow
CategoryTheory.StructuredArrow.proj
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
inverse
CategoryTheory.Functor.id
CategoryTheory.Comma.right
β€”β€”
inverse_obj_hom πŸ“–mathematicalβ€”CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Functor.fromPUnit
CategoryTheory.StructuredArrow.proj
CategoryTheory.Functor.obj
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.comp
CategoryTheory.Under.forget
inverse
CategoryTheory.Functor.id
CategoryTheory.Comma.right
β€”β€”
inverse_obj_left_as πŸ“–mathematicalβ€”CategoryTheory.Discrete.as
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Functor.fromPUnit
CategoryTheory.StructuredArrow.proj
CategoryTheory.Functor.obj
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.comp
CategoryTheory.Under.forget
inverse
β€”β€”
inverse_obj_right_hom πŸ“–mathematicalβ€”CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.right
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.StructuredArrow.proj
CategoryTheory.Functor.obj
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.comp
CategoryTheory.Under.forget
inverse
β€”β€”
inverse_obj_right_left_as πŸ“–mathematicalβ€”CategoryTheory.Discrete.as
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.right
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.StructuredArrow.proj
CategoryTheory.Functor.obj
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.comp
CategoryTheory.Under.forget
inverse
β€”β€”
inverse_obj_right_right πŸ“–mathematicalβ€”CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.StructuredArrow.proj
CategoryTheory.Functor.obj
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.comp
CategoryTheory.Under.forget
inverse
CategoryTheory.Functor.id
β€”β€”

CategoryTheory.Under

Definitions

NameCategoryTheorems
equivalenceOfIsInitial πŸ“–CompOp
7 mathmath: forgetMapInitial_inv_app, equivalenceOfIsInitial_counitIso, equivalenceOfIsInitial_functor, forgetMapInitial_hom_app, equivalenceOfIsInitial_unitIso, equivalenceOfIsInitial_inverse_map, equivalenceOfIsInitial_inverse_obj
forget πŸ“–CompOp
78 mathmath: CategoryTheory.StructuredArrow.ofCommaSndEquivalenceInverse_obj_right_left, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceFunctor_map_right, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.inverse_obj_right_right, CategoryTheory.IsGrothendieckAbelian.IsPresentable.injectivityβ‚€.F_obj, CategoryTheory.StructuredArrow.ofDiagEquivalence.inverse_map_right, CategoryTheory.StructuredArrow.ofCommaSndEquivalence_functor, forgetMapInitial_inv_app, equivalenceOfIsInitial_counitIso, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.inverse_obj_right_left_as, CategoryTheory.IsGrothendieckAbelian.IsPresentable.injectivityβ‚€.g_app, CategoryTheory.StructuredArrow.ofDiagEquivalence.functor_obj_right_right, equivalenceOfIsInitial_functor, CategoryTheory.StructuredArrow.ofDiagEquivalence.inverse_obj_right, forget_faithful, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.functor_obj_left_as, CategoryTheory.StructuredArrow.ofCommaSndEquivalence_unitIso, CategoryTheory.StructuredArrow.ofCommaSndEquivalence_counitIso, CategoryTheory.Limits.Cone.toStructuredArrowCompToUnderCompForget_hom_app, CategoryTheory.StructuredArrow.ofDiagEquivalence.inverse_obj_hom, CategoryTheory.StructuredArrow.ofDiagEquivalence.functor_obj_right_hom, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceInverse_map_right_left, CategoryTheory.Enriched.FunctorCategory.coneFunctorEnrichedHom_Ο€_app, CategoryTheory.StructuredArrow.ofDiagEquivalence.functor_map_right_right, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.inverse_obj_left_as, CategoryTheory.Presheaf.functorEnrichedHomCoyonedaObjEquiv_naturality, CategoryTheory.MorphismProperty.under_eq_inverseImage, CategoryTheory.WithInitial.commaFromUnder_map_left, CategoryTheory.Limits.Cone.toStructuredArrow_comp_toUnder_comp_forget, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceFunctor_map_left, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.functor_map_right_right, forgetCone_pt, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceFunctor_obj_right, CategoryTheory.StructuredArrow.ofDiagEquivalence.functor_obj_right_left_as, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.functor_obj_right_hom, CategoryTheory.Limits.Cone.mapConeToUnder_inv_hom, instIsRightAdjointForget, CategoryTheory.IsGrothendieckAbelian.IsPresentable.injectivityβ‚€.F_map, forgetMapInitial_hom_app, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.inverse_obj_hom, CategoryTheory.WithInitial.commaFromUnder_obj_hom_app, CategoryTheory.WithInitial.commaFromUnder_obj_right, forget_map, equivalenceOfIsInitial_unitIso, CategoryTheory.Functor.toUnder_comp_forget, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.functor_obj_right_right, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.inverse_map_right_right, CategoryTheory.Enriched.FunctorCategory.functorEnrichedComp_app, CategoryTheory.WithInitial.commaFromUnder_map_right, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceInverse_obj_hom, CategoryTheory.Enriched.FunctorCategory.functorEnrichedHom_obj, CategoryTheory.Enriched.FunctorCategory.instHasEnrichedHomUnderCompMapForget, CategoryTheory.MorphismProperty.Under.forget_comp_forget_map, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceInverse_map_right_right, forget_obj, mapForget_eq, final_forget, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceFunctor_obj_left, CategoryTheory.StructuredArrow.ofDiagEquivalence.functor_obj_hom, CategoryTheory.StructuredArrow.ofDiagEquivalence.inverse_obj_left_as, CategoryTheory.Limits.Cone.mapConeToUnder_hom_hom, CategoryTheory.StructuredArrow.ofCommaSndEquivalence_inverse, CategoryTheory.Enriched.FunctorCategory.functorHomEquiv_apply_app, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.functor_obj_right_left_as, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceInverse_obj_right_hom, CategoryTheory.Limits.Cone.toStructuredArrowCompToUnderCompForget_inv_app, CategoryTheory.IsGrothendieckAbelian.IsPresentable.injectivityβ‚€.hf, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceInverse_obj_left_as, CategoryTheory.Limits.instPreservesFilteredColimitsOfSizeUnderForget, CategoryTheory.StructuredArrow.ofDiagEquivalence.functor_obj_left_as, CategoryTheory.Enriched.FunctorCategory.functorEnrichedHom_map, forgetCone_Ο€_app, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.inverse_obj_right_hom, CategoryTheory.IsGrothendieckAbelian.IsPresentable.injectivityβ‚€.epi_f, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceFunctor_obj_hom, forget_reflects_iso, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.functor_obj_hom, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceInverse_obj_right_right, CategoryTheory.Enriched.FunctorCategory.functorEnrichedId_app
forgetCone πŸ“–CompOp
2 mathmath: forgetCone_pt, forgetCone_Ο€_app
homMk πŸ“–CompOp
34 mathmath: equivalenceOfIsInitial_counitIso, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_functor_obj, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_unitIso, CategoryTheory.Limits.Cocone.underPost_ΞΉ_app, homMk_eta, homMk_right, pushout_map, mapPushoutAdj_unit_app, CategoryTheory.StructuredArrow.ofCommaSndEquivalenceFunctor_map_left, liftCocone_ΞΉ_app, post_map, CategoryTheory.MorphismProperty.Under.homMk_hom, homMk_surjective, liftCone_Ο€_app, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_functor_map_hom, CommRingCat.monoidAlgebra_map, equivalenceOfIsInitial_unitIso, CategoryTheory.Over.opEquivOpUnder_counitIso, postMap_app, mapPushoutAdj_counit_app, CategoryTheory.Limits.Cone.toUnder_Ο€_app, postAdjunctionLeft_counit_app, equivalenceOfIsInitial_inverse_map, opEquivOpOver_counitIso, mono_homMk, postAdjunctionRight_counit_app_right, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_counitIso, CategoryTheory.Over.opEquivOpUnder_functor_map, lift_map, epi_homMk, CategoryTheory.algebraToUnder_map, homMk_comp, postAdjunctionLeft_unit_app, opEquivOpOver_inverse_map
inhabited πŸ“–CompOpβ€”
isColimitLiftCocone πŸ“–CompOpβ€”
isoMk πŸ“–CompOp
8 mathmath: isoMk_inv_right, postEquiv_counitIso, isoMk_hom_right, equivalenceOfIsInitial_unitIso, CategoryTheory.algebraEquivUnder_counitIso, postAdjunctionRight_counit_app_right, CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_counitIso, postEquiv_unitIso
liftCocone πŸ“–CompOp
2 mathmath: liftCocone_ΞΉ_app, liftCocone_pt
map πŸ“–CompOp
34 mathmath: forgetMapInitial_inv_app, postCongr_inv_app_right, mapIso_functor, mapCongr_inv_app, postAdjunctionRight_unit_app_right, map_map_right, map_obj_right, mapId_inv, CategoryTheory.Presheaf.functorEnrichedHomCoyonedaObjEquiv_naturality, mapPushoutAdj_unit_app, instIsEquivalenceMapOfIsIso, map_obj_hom, postEquiv_counitIso, mapCongr_hom_app, mapFunctor_map, forgetMapInitial_hom_app, mapComp_hom, mapIso_inverse, postMap_app, mapId_hom, postEquiv_inverse, postCongr_hom_app_right, CategoryTheory.Enriched.FunctorCategory.instHasEnrichedHomUnderCompMapForget, mapId_eq, mapForget_eq, mapPushoutAdj_counit_app, mapComp_eq, postAdjunctionLeft_counit_app, mapComp_inv, postAdjunctionRight_counit_app_right, postEquiv_unitIso, postAdjunctionLeft_unit_app, CategoryTheory.Enriched.FunctorCategory.functorEnrichedHom_map, preservesLimitsOfSize_map
mapComp πŸ“–CompOp
2 mathmath: mapComp_hom, mapComp_inv
mapCongr πŸ“–CompOp
2 mathmath: mapCongr_inv_app, mapCongr_hom_app
mapForget πŸ“–CompOpβ€”
mapFunctor πŸ“–CompOp
2 mathmath: mapFunctor_obj, mapFunctor_map
mapId πŸ“–CompOp
2 mathmath: mapId_inv, mapId_hom
mapIso πŸ“–CompOp
2 mathmath: mapIso_functor, mapIso_inverse
mk πŸ“–CompOpβ€”
mkIdInitial πŸ“–CompOp
1 mathmath: mkIdInitial_to_right
opEquivOpOver πŸ“–CompOp
6 mathmath: opEquivOpOver_functor_obj, opEquivOpOver_inverse_obj, opEquivOpOver_counitIso, opEquivOpOver_unitIso, opEquivOpOver_functor_map, opEquivOpOver_inverse_map
post πŸ“–CompOp
30 mathmath: CategoryTheory.Limits.PreservesColimitsOfSize.underPost, postComp_inv_app_right, post_comp, postCongr_inv_app_right, CategoryTheory.Limits.Cocone.underPost_ΞΉ_app, CategoryTheory.WithInitial.liftFromUnderComp_inv_app, postAdjunctionRight_unit_app_right, post_obj, post_map, CategoryTheory.Functor.essImage_underPost, instFaithfulObjPost, instEssSurjObjPostOfFull, postEquiv_counitIso, postComp_hom_app_right, CategoryTheory.Limits.PreservesFiniteColimits.underPost, isLeftAdjoint_post, instIsEquivalenceObjPost, postMap_app, postEquiv_inverse, postCongr_hom_app_right, instFullObjPostOfFaithful, CategoryTheory.WithInitial.liftFromUnderComp_hom_app, postAdjunctionLeft_counit_app, CategoryTheory.Limits.PreservesColimitsOfShape.underPost, postAdjunctionRight_counit_app_right, postEquiv_functor, postEquiv_unitIso, postAdjunctionLeft_unit_app, isRightAdjoint_post, CategoryTheory.Limits.Cocone.underPost_pt
postAdjunctionLeft πŸ“–CompOp
3 mathmath: postAdjunctionRight_unit_app_right, postAdjunctionLeft_counit_app, postAdjunctionLeft_unit_app
postComp πŸ“–CompOp
2 mathmath: postComp_inv_app_right, postComp_hom_app_right
postCongr πŸ“–CompOp
2 mathmath: postCongr_inv_app_right, postCongr_hom_app_right
postEquiv πŸ“–CompOp
4 mathmath: postEquiv_counitIso, postEquiv_inverse, postEquiv_functor, postEquiv_unitIso
postMap πŸ“–CompOp
1 mathmath: postMap_app

Theorems

NameKindAssumesProvesValidatesDepends On
comp_right πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id
CategoryTheory.CategoryStruct.comp
CategoryTheory.Under
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryUnder
CategoryTheory.Comma.right
β€”β€”
epi_homMk πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Epi
CategoryTheory.Under
CategoryTheory.instCategoryUnder
homMk
β€”CategoryTheory.Functor.epi_of_epi_map
CategoryTheory.Functor.reflectsEpimorphisms_of_faithful
forget_faithful
epi_of_epi_right πŸ“–mathematicalβ€”CategoryTheory.Epi
CategoryTheory.Under
CategoryTheory.instCategoryUnder
β€”CategoryTheory.Functor.epi_of_epi_map
CategoryTheory.Functor.reflectsEpimorphisms_of_faithful
forget_faithful
epi_right_of_epi πŸ“–mathematicalβ€”CategoryTheory.Epi
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id
CategoryTheory.CommaMorphism.right
β€”w
CategoryTheory.Category.assoc
CategoryTheory.cancel_epi
UnderMorphism.ext
eqToHom_right πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id
CategoryTheory.eqToHom
CategoryTheory.Under
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryUnder
CategoryTheory.Comma.right
β€”β€”
equivalenceOfIsInitial_counitIso πŸ“–mathematicalβ€”CategoryTheory.Equivalence.counitIso
CategoryTheory.Under
CategoryTheory.instCategoryUnder
equivalenceOfIsInitial
CategoryTheory.NatIso.ofComponents
CategoryTheory.Functor.comp
CategoryTheory.Limits.IsInitial.to
homMk
forget
CategoryTheory.Functor.id
CategoryTheory.Iso.refl
CategoryTheory.Functor.obj
β€”β€”
equivalenceOfIsInitial_functor πŸ“–mathematicalβ€”CategoryTheory.Equivalence.functor
CategoryTheory.Under
CategoryTheory.instCategoryUnder
equivalenceOfIsInitial
forget
β€”β€”
equivalenceOfIsInitial_inverse_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Equivalence.inverse
equivalenceOfIsInitial
homMk
CategoryTheory.Limits.IsInitial.to
β€”β€”
equivalenceOfIsInitial_inverse_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Equivalence.inverse
equivalenceOfIsInitial
CategoryTheory.Limits.IsInitial.to
β€”β€”
equivalenceOfIsInitial_unitIso πŸ“–mathematicalβ€”CategoryTheory.Equivalence.unitIso
CategoryTheory.Under
CategoryTheory.instCategoryUnder
equivalenceOfIsInitial
CategoryTheory.NatIso.ofComponents
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
forget
CategoryTheory.Limits.IsInitial.to
homMk
isoMk
CategoryTheory.Functor.obj
CategoryTheory.Iso.refl
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
β€”β€”
forall_iff πŸ“–β€”β€”β€”β€”β€”
forgetCone_pt πŸ“–mathematicalβ€”CategoryTheory.Limits.Cone.pt
CategoryTheory.Under
CategoryTheory.instCategoryUnder
forget
forgetCone
β€”β€”
forgetCone_Ο€_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
forget
CategoryTheory.Limits.Cone.Ο€
forgetCone
CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id
β€”β€”
forget_faithful πŸ“–mathematicalβ€”CategoryTheory.Functor.Faithful
CategoryTheory.Under
CategoryTheory.instCategoryUnder
forget
β€”UnderMorphism.ext
forget_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.Under
CategoryTheory.instCategoryUnder
forget
CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id
β€”β€”
forget_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.Under
CategoryTheory.instCategoryUnder
forget
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id
β€”β€”
forget_reflects_iso πŸ“–mathematicalβ€”CategoryTheory.Functor.ReflectsIsomorphisms
CategoryTheory.Under
CategoryTheory.instCategoryUnder
forget
β€”CategoryTheory.IsIso.comp_inv_eq
w
UnderMorphism.ext
CategoryTheory.IsIso.hom_inv_id
CategoryTheory.IsIso.inv_hom_id
homMk_comp πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
homMk
CategoryTheory.Under
CategoryTheory.instCategoryUnder
β€”UnderMorphism.ext
homMk_eta πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.CommaMorphism.right
homMkβ€”β€”
homMk_right πŸ“–mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Comma.hom
CategoryTheory.CommaMorphism.right
homMk
β€”β€”
homMk_surjective πŸ“–mathematicalβ€”homMkβ€”w
hom_right_inv_right πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id
CategoryTheory.CommaMorphism.right
CategoryTheory.Iso.hom
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Iso.inv
CategoryTheory.CategoryStruct.id
β€”CategoryTheory.Iso.hom_inv_id
hom_right_inv_right_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id
CategoryTheory.CommaMorphism.right
CategoryTheory.Iso.hom
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Iso.inv
β€”CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
hom_right_inv_right
id_right πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id
CategoryTheory.CategoryStruct.id
CategoryTheory.Under
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryUnder
CategoryTheory.Comma.right
β€”β€”
instEssSurjObjPostOfFull πŸ“–mathematicalβ€”CategoryTheory.Functor.EssSurj
CategoryTheory.Under
CategoryTheory.Functor.obj
CategoryTheory.instCategoryUnder
post
β€”CategoryTheory.Functor.EssSurj.mem_essImage
CategoryTheory.Functor.map_surjective
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
instFaithfulObjPost πŸ“–mathematicalβ€”CategoryTheory.Functor.Faithful
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.obj
post
β€”UnderMorphism.ext
CategoryTheory.Functor.map_injective
instFullObjPostOfFaithful πŸ“–mathematicalβ€”CategoryTheory.Functor.Full
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.obj
post
β€”CategoryTheory.Functor.map_surjective
CategoryTheory.Functor.map_injective
CategoryTheory.Functor.map_comp
w
UnderMorphism.ext
instIsEquivalenceMapOfIsIso πŸ“–mathematicalβ€”CategoryTheory.Functor.IsEquivalence
CategoryTheory.Under
CategoryTheory.instCategoryUnder
map
β€”CategoryTheory.Equivalence.isEquivalence_functor
instIsEquivalenceObjPost πŸ“–mathematicalβ€”CategoryTheory.Functor.IsEquivalence
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.obj
post
β€”instFaithfulObjPost
CategoryTheory.Functor.IsEquivalence.faithful
instFullObjPostOfFaithful
CategoryTheory.Functor.IsEquivalence.full
instEssSurjObjPostOfFull
CategoryTheory.Functor.IsEquivalence.essSurj
inv_right_hom_right πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id
CategoryTheory.CommaMorphism.right
CategoryTheory.Iso.inv
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Iso.hom
CategoryTheory.CategoryStruct.id
β€”CategoryTheory.Iso.inv_hom_id
inv_right_hom_right_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id
CategoryTheory.CommaMorphism.right
CategoryTheory.Iso.inv
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Iso.hom
β€”CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
inv_right_hom_right
isLeftAdjoint_post πŸ“–mathematicalβ€”CategoryTheory.Functor.IsLeftAdjoint
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.obj
post
β€”β€”
isoMk_hom_right πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Iso.hom
CategoryTheory.CommaMorphism.right
CategoryTheory.Under
CategoryTheory.instCategoryUnder
isoMk
β€”β€”
isoMk_inv_right πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Iso.hom
CategoryTheory.CommaMorphism.right
CategoryTheory.Iso.inv
CategoryTheory.Under
CategoryTheory.instCategoryUnder
isoMk
β€”β€”
liftCocone_pt πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ΞΉ
CategoryTheory.Under
CategoryTheory.instCategoryUnder
lift
liftCocone
β€”β€”
liftCocone_ΞΉ_app πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ΞΉ
CategoryTheory.Under
CategoryTheory.instCategoryUnder
lift
liftCocone
homMk
β€”β€”
lift_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.Under
CategoryTheory.instCategoryUnder
lift
homMk
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
β€”β€”
lift_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.Under
CategoryTheory.instCategoryUnder
lift
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
β€”β€”
mapComp_eq πŸ“–mathematicalβ€”map
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.comp
CategoryTheory.Under
CategoryTheory.instCategoryUnder
β€”CategoryTheory.Functor.ext
CategoryTheory.Category.assoc
UnderMorphism.ext
eqToHom_right
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
mapComp_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.category
map
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.comp
mapComp
CategoryTheory.eqToHom
mapComp_eq
β€”β€”
mapComp_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.category
map
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.comp
mapComp
CategoryTheory.eqToHom
mapComp_eq
β€”β€”
mapCongr_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Under
CategoryTheory.instCategoryUnder
map
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
mapCongr
CategoryTheory.eqToHom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
β€”β€”
mapCongr_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Under
CategoryTheory.instCategoryUnder
map
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
mapCongr
CategoryTheory.eqToHom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
β€”β€”
mapForget_eq πŸ“–mathematicalβ€”CategoryTheory.Functor.comp
CategoryTheory.Under
CategoryTheory.instCategoryUnder
map
forget
β€”β€”
mapFunctor_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.category
mapFunctor
CategoryTheory.Functor.toCatHom
CategoryTheory.Under
Opposite.unop
CategoryTheory.instCategoryUnder
map
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
β€”β€”
mapFunctor_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Cat
CategoryTheory.Cat.category
mapFunctor
CategoryTheory.Cat.of
CategoryTheory.Under
Opposite.unop
CategoryTheory.instCategoryUnder
β€”β€”
mapId_eq πŸ“–mathematicalβ€”map
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.id
CategoryTheory.Under
CategoryTheory.instCategoryUnder
β€”CategoryTheory.Functor.ext
CategoryTheory.Category.id_comp
CategoryTheory.StructuredArrow.eqToHom_right
CategoryTheory.Category.comp_id
mapId_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.category
map
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.id
mapId
CategoryTheory.eqToHom
mapId_eq
β€”β€”
mapId_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.category
map
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.id
mapId
CategoryTheory.eqToHom
mapId_eq
β€”β€”
mapIso_functor πŸ“–mathematicalβ€”CategoryTheory.Equivalence.functor
CategoryTheory.Under
CategoryTheory.instCategoryUnder
mapIso
map
CategoryTheory.Iso.hom
β€”β€”
mapIso_inverse πŸ“–mathematicalβ€”CategoryTheory.Equivalence.inverse
CategoryTheory.Under
CategoryTheory.instCategoryUnder
mapIso
map
CategoryTheory.Iso.inv
β€”β€”
map_map_right πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.Under
CategoryTheory.instCategoryUnder
map
CategoryTheory.Functor.map
β€”β€”
map_obj_hom πŸ“–mathematicalβ€”CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.Under
CategoryTheory.instCategoryUnder
map
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
β€”β€”
map_obj_right πŸ“–mathematicalβ€”CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.Under
CategoryTheory.instCategoryUnder
map
β€”β€”
mkIdInitial_to_right πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.IsInitial.to
CategoryTheory.Under
CategoryTheory.instCategoryUnder
mkIdInitial
CategoryTheory.Comma.hom
β€”CategoryTheory.Category.id_comp
CategoryTheory.Limits.IsInitial.hom_ext
mk_hom πŸ“–mathematicalβ€”CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id
β€”β€”
mk_right πŸ“–mathematicalβ€”CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id
β€”β€”
mk_surjective πŸ“–β€”β€”β€”β€”β€”
mono_homMk πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Mono
CategoryTheory.Under
CategoryTheory.instCategoryUnder
homMk
β€”CategoryTheory.Functor.mono_of_mono_map
CategoryTheory.Functor.reflectsMonomorphisms_of_faithful
forget_faithful
mono_of_mono_right πŸ“–mathematicalβ€”CategoryTheory.Mono
CategoryTheory.Under
CategoryTheory.instCategoryUnder
β€”CategoryTheory.Functor.mono_of_mono_map
CategoryTheory.Functor.reflectsMonomorphisms_of_faithful
forget_faithful
opEquivOpOver_counitIso πŸ“–mathematicalβ€”CategoryTheory.Equivalence.counitIso
CategoryTheory.Under
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Over
CategoryTheory.instCategoryUnder
CategoryTheory.instCategoryOver
opEquivOpOver
CategoryTheory.Iso.refl
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
Opposite.unop
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
homMk
CategoryTheory.CommaMorphism.left
Quiver.Hom.unop
Quiver.Hom
CategoryTheory.Over.homMk
CategoryTheory.CommaMorphism.right
β€”β€”
opEquivOpOver_functor_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.Under
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.instCategoryUnder
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Equivalence.functor
opEquivOpOver
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.unop
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
Quiver.Hom.unop
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
CategoryTheory.Over.homMk
CategoryTheory.CommaMorphism.right
β€”β€”
opEquivOpOver_functor_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.Under
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.instCategoryUnder
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Equivalence.functor
opEquivOpOver
Opposite.unop
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
β€”β€”
opEquivOpOver_inverse_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
Opposite
CategoryTheory.Over
CategoryTheory.Category.opposite
CategoryTheory.instCategoryOver
CategoryTheory.Under
Opposite.op
CategoryTheory.instCategoryUnder
CategoryTheory.Equivalence.inverse
opEquivOpOver
homMk
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
Opposite.unop
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.CommaMorphism.left
Quiver.Hom.unop
β€”β€”
opEquivOpOver_inverse_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
Opposite
CategoryTheory.Over
CategoryTheory.Category.opposite
CategoryTheory.instCategoryOver
CategoryTheory.Under
Opposite.op
CategoryTheory.instCategoryUnder
CategoryTheory.Equivalence.inverse
opEquivOpOver
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
Opposite.unop
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
β€”β€”
opEquivOpOver_unitIso πŸ“–mathematicalβ€”CategoryTheory.Equivalence.unitIso
CategoryTheory.Under
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Over
CategoryTheory.instCategoryUnder
CategoryTheory.instCategoryOver
opEquivOpOver
CategoryTheory.Iso.refl
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
β€”β€”
postAdjunctionLeft_counit_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Under
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.comp
post
map
CategoryTheory.Adjunction.unit
CategoryTheory.Adjunction.counit
postAdjunctionLeft
homMk
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
β€”β€”
postAdjunctionLeft_unit_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Under
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.comp
post
map
CategoryTheory.Adjunction.unit
postAdjunctionLeft
homMk
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
β€”β€”
postComp_hom_app_right πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.Under
CategoryTheory.instCategoryUnder
post
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
postComp
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
β€”β€”
postComp_inv_app_right πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.Under
CategoryTheory.instCategoryUnder
post
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
postComp
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
β€”β€”
postCongr_hom_app_right πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Under
CategoryTheory.instCategoryUnder
post
CategoryTheory.Functor.comp
map
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
postCongr
CategoryTheory.Comma.right
β€”β€”
postCongr_inv_app_right πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.comp
post
map
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Iso.inv
postCongr
CategoryTheory.Comma.right
β€”β€”
postEquiv_counitIso πŸ“–mathematicalβ€”CategoryTheory.Equivalence.counitIso
CategoryTheory.Under
CategoryTheory.Functor.obj
CategoryTheory.Equivalence.functor
CategoryTheory.instCategoryUnder
postEquiv
CategoryTheory.NatIso.ofComponents
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.inverse
post
map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.unitIso
isoMk
CategoryTheory.Iso.app
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
β€”β€”
postEquiv_functor πŸ“–mathematicalβ€”CategoryTheory.Equivalence.functor
CategoryTheory.Under
CategoryTheory.Functor.obj
CategoryTheory.instCategoryUnder
postEquiv
post
β€”β€”
postEquiv_inverse πŸ“–mathematicalβ€”CategoryTheory.Equivalence.inverse
CategoryTheory.Under
CategoryTheory.Functor.obj
CategoryTheory.Equivalence.functor
CategoryTheory.instCategoryUnder
postEquiv
CategoryTheory.Functor.comp
post
map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.unitIso
β€”β€”
postEquiv_unitIso πŸ“–mathematicalβ€”CategoryTheory.Equivalence.unitIso
CategoryTheory.Under
CategoryTheory.Functor.obj
CategoryTheory.Equivalence.functor
CategoryTheory.instCategoryUnder
postEquiv
CategoryTheory.NatIso.ofComponents
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
post
CategoryTheory.Equivalence.inverse
map
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
isoMk
CategoryTheory.Iso.app
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
β€”β€”
postMap_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.obj
post
CategoryTheory.Functor.comp
map
postMap
homMk
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id
β€”β€”
post_comp πŸ“–mathematicalβ€”post
CategoryTheory.Functor.comp
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.obj
β€”β€”
post_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.obj
post
homMk
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.hom
CategoryTheory.CommaMorphism.right
β€”β€”
post_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.Under
CategoryTheory.instCategoryUnder
post
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.map
CategoryTheory.Comma.hom
β€”β€”
under_left πŸ“–mathematicalβ€”CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id
β€”β€”
w πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.CommaMorphism.right
β€”CategoryTheory.CommaMorphism.w
CategoryTheory.Category.id_comp
w_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.CommaMorphism.right
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
w

CategoryTheory.Under.UnderMorphism

Theorems

NameKindAssumesProvesValidatesDepends On
ext πŸ“–β€”CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id
β€”β€”CategoryTheory.Discrete.instSubsingletonDiscreteHom
ext_iff πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id
β€”ext

---

← Back to Index