Documentation Verification Report

OverClass

πŸ“ Source: Mathlib/CategoryTheory/Comma/Over/OverClass.lean

Statistics

MetricCount
DefinitionsCanonicallyOverClass, over, instOverClass, toOverClass, HomIsOver, IsOverTower, asOver, OverClass, over, asOver, asOverHom, fromOver, hom, instOverClass, over, Β«term_β†˜_Β»
16
Theoremsover_def, comp_over, asOver_hom, asOver_inv, asOverHom_comp, asOverHom_comp_assoc, asOverHom_id, asOverHom_inv, asOverHom_left, asOver_hom, asOver_left, fromOver_over, instHomIsOverHomAsIso, instHomIsOverHomOfInv, instHomIsOverInv, instHomIsOverInvAsIso, instHomIsOverInvOfHom, instIsIsoOverAsOverHom, comp_over, comp_over_assoc, homIsOver_of_isOverTower, instHomIsOverComp, instHomIsOverId, instHomIsOverLeftDiscretePUnit, instHomIsOverOfIsOverTower, instHomIsOverOfIsOverTower_1, instIsIsoOverInferInstanceOverClass, instIsOverTower, instIsOverTower_1, instIsOverTower_2, over_def
31
Total47

CategoryTheory

Definitions

NameCategoryTheorems
CanonicallyOverClass πŸ“–CompDataβ€”
HomIsOver πŸ“–CompData
11 mathmath: homIsOver_of_isOverTower, instHomIsOverComp, OverClass.instHomIsOverHomOfInv, OverClass.instHomIsOverInvAsIso, instHomIsOverOfIsOverTower, OverClass.instHomIsOverHomAsIso, instHomIsOverLeftDiscretePUnit, OverClass.instHomIsOverInv, instHomIsOverId, OverClass.instHomIsOverInvOfHom, instHomIsOverOfIsOverTower_1
IsOverTower πŸ“–MathDef
3 mathmath: instIsOverTower_1, instIsOverTower, instIsOverTower_2
OverClass πŸ“–CompData
48 mathmath: AlgebraicGeometry.AffineSpace.not_isIntegralHom, AlgebraicGeometry.AffineSpace.SpecIso_hom_appTop, AlgebraicGeometry.Scheme.Hom.isOver_iff, AlgebraicGeometry.AffineSpace.map_over_assoc, AlgebraicGeometry.AffineSpace.homOverEquiv_symm_apply_coe, AlgebraicGeometry.AffineSpace.isoOfIsAffine_inv_over_assoc, AlgebraicGeometry.Scheme.over_def, over_def, AlgebraicGeometry.Scheme.isCommMonObj_asOver_pullback, AlgebraicGeometry.Scheme.isMonHom_fst_id_right, AlgebraicGeometry.AffineSpace.reindex_over, AlgebraicGeometry.AffineSpace.map_over, AlgebraicGeometry.Scheme.instIsOverMapResidueFieldMapOverInferInstanceOverClass, OverClass.fromOver_over, AlgebraicGeometry.AffineSpace.instLocallyOfFinitePresentationOverSchemeInferInstanceOverClassOfFinite, AlgebraicGeometry.AffineSpace.instIsIsoSchemeOverInferInstanceOverClassOfIsEmpty, AlgebraicGeometry.AffineSpace.isOpenMap_over, AlgebraicGeometry.AffineSpace.hom_ext_iff, AlgebraicGeometry.AffineSpace.isPullback_map, AlgebraicGeometry.AffineSpace.homOfVector_over_assoc, AlgebraicGeometry.Scheme.Opens.over_def, AlgebraicGeometry.over_def, AlgebraicGeometry.AffineSpace.SpecIso_inv_over_assoc, AlgebraicGeometry.AffineSpace.instIsAffineHomOverSchemeInferInstanceOverClass, AlgebraicGeometry.Scheme.monObjAsOverPullback_mul, instIsIsoOverInferInstanceOverClass, AlgebraicGeometry.AffineSpace.instIsOverHomOfVectorOverSchemeInferInstanceOverClass, AlgebraicGeometry.Scheme.instIsOverFstOverInferInstanceOverClassId, AlgebraicGeometry.AffineSpace.isIntegralHom_over_iff_isEmpty, AlgebraicGeometry.Scheme.PartialMap.isOver_iff_eq_restrict, OverClass.asOver_hom, comp_over_assoc, AlgebraicGeometry.AffineSpace.homOfVector_over, CanonicallyOverClass.over_def, AlgebraicGeometry.AffineSpace.reindex_over_assoc, AlgebraicGeometry.AffineSpace.isoOfIsAffine_hom_appTop, AlgebraicGeometry.AffineSpace.isoOfIsAffine_hom, AlgebraicGeometry.AffineSpace.over_over, AlgebraicGeometry.Scheme.PartialMap.isOver_iff, AlgebraicGeometry.Scheme.instIsOverMapStalkMapOverInferInstanceOverClass, HomIsOver.comp_over, AlgebraicGeometry.Scheme.canonicallyOverPullback_over, AlgebraicGeometry.AffineSpace.SpecIso_inv_over, comp_over, AlgebraicGeometry.AffineSpace.isoOfIsAffine_inv_over, AlgebraicGeometry.Scheme.monObjAsOverPullback_one, AlgebraicGeometry.AffineSpace.instSurjectiveOverSchemeInferInstanceOverClass, AlgebraicGeometry.Scheme.RationalMap.isOver_iff
instOverClass πŸ“–CompOp
5 mathmath: instIsOverTower_1, over_def, instIsOverTower, instIsIsoOverInferInstanceOverClass, AlgebraicGeometry.Scheme.Opens.instIsOverΞΉ
over πŸ“–CompOp
48 mathmath: AlgebraicGeometry.AffineSpace.not_isIntegralHom, AlgebraicGeometry.AffineSpace.SpecIso_hom_appTop, AlgebraicGeometry.Scheme.Hom.isOver_iff, AlgebraicGeometry.AffineSpace.map_over_assoc, AlgebraicGeometry.AffineSpace.homOverEquiv_symm_apply_coe, AlgebraicGeometry.AffineSpace.isoOfIsAffine_inv_over_assoc, AlgebraicGeometry.Scheme.over_def, over_def, AlgebraicGeometry.Scheme.isCommMonObj_asOver_pullback, AlgebraicGeometry.Scheme.isMonHom_fst_id_right, AlgebraicGeometry.AffineSpace.reindex_over, AlgebraicGeometry.AffineSpace.map_over, AlgebraicGeometry.Scheme.instIsOverMapResidueFieldMapOverInferInstanceOverClass, OverClass.fromOver_over, AlgebraicGeometry.AffineSpace.instLocallyOfFinitePresentationOverSchemeInferInstanceOverClassOfFinite, AlgebraicGeometry.AffineSpace.instIsIsoSchemeOverInferInstanceOverClassOfIsEmpty, AlgebraicGeometry.AffineSpace.isOpenMap_over, AlgebraicGeometry.AffineSpace.hom_ext_iff, AlgebraicGeometry.AffineSpace.isPullback_map, AlgebraicGeometry.AffineSpace.homOfVector_over_assoc, AlgebraicGeometry.Scheme.Opens.over_def, AlgebraicGeometry.over_def, AlgebraicGeometry.AffineSpace.SpecIso_inv_over_assoc, AlgebraicGeometry.AffineSpace.instIsAffineHomOverSchemeInferInstanceOverClass, AlgebraicGeometry.Scheme.monObjAsOverPullback_mul, instIsIsoOverInferInstanceOverClass, AlgebraicGeometry.AffineSpace.instIsOverHomOfVectorOverSchemeInferInstanceOverClass, AlgebraicGeometry.Scheme.instIsOverFstOverInferInstanceOverClassId, AlgebraicGeometry.AffineSpace.isIntegralHom_over_iff_isEmpty, AlgebraicGeometry.Scheme.PartialMap.isOver_iff_eq_restrict, OverClass.asOver_hom, comp_over_assoc, AlgebraicGeometry.AffineSpace.homOfVector_over, CanonicallyOverClass.over_def, AlgebraicGeometry.AffineSpace.reindex_over_assoc, AlgebraicGeometry.AffineSpace.isoOfIsAffine_hom_appTop, AlgebraicGeometry.AffineSpace.isoOfIsAffine_hom, AlgebraicGeometry.AffineSpace.over_over, AlgebraicGeometry.Scheme.PartialMap.isOver_iff, AlgebraicGeometry.Scheme.instIsOverMapStalkMapOverInferInstanceOverClass, HomIsOver.comp_over, AlgebraicGeometry.Scheme.canonicallyOverPullback_over, AlgebraicGeometry.AffineSpace.SpecIso_inv_over, comp_over, AlgebraicGeometry.AffineSpace.isoOfIsAffine_inv_over, AlgebraicGeometry.Scheme.monObjAsOverPullback_one, AlgebraicGeometry.AffineSpace.instSurjectiveOverSchemeInferInstanceOverClass, AlgebraicGeometry.Scheme.RationalMap.isOver_iff
Β«term_β†˜_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
comp_over πŸ“–mathematicalβ€”CategoryStruct.comp
Category.toCategoryStruct
over
OverClass
β€”HomIsOver.comp_over
comp_over_assoc πŸ“–mathematicalβ€”CategoryStruct.comp
Category.toCategoryStruct
over
OverClass
β€”Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comp_over
homIsOver_of_isOverTower πŸ“–mathematicalβ€”HomIsOverβ€”comp_over
comp_over_assoc
instHomIsOverComp πŸ“–mathematicalβ€”HomIsOver
CategoryStruct.comp
Category.toCategoryStruct
β€”Category.assoc
comp_over
instHomIsOverId πŸ“–mathematicalβ€”HomIsOver
CategoryStruct.id
Category.toCategoryStruct
β€”Category.id_comp
instHomIsOverLeftDiscretePUnit πŸ“–mathematicalβ€”HomIsOver
Comma.left
Discrete
discreteCategory
Functor.id
Functor.fromPUnit
CommaMorphism.left
OverClass.fromOver
β€”Over.w
instHomIsOverOfIsOverTower πŸ“–mathematicalβ€”HomIsOverβ€”homIsOver_of_isOverTower
instHomIsOverOfIsOverTower_1 πŸ“–mathematicalβ€”HomIsOverβ€”homIsOver_of_isOverTower
instIsIsoOverInferInstanceOverClass πŸ“–mathematicalβ€”IsIso
over
OverClass
instOverClass
β€”IsIso.id
instIsOverTower πŸ“–mathematicalβ€”IsOverTower
instOverClass
β€”comp_over
instHomIsOverId
instIsOverTower_1 πŸ“–mathematicalβ€”IsOverTower
instOverClass
β€”Category.comp_id
instIsOverTower_2 πŸ“–mathematicalβ€”IsOverTower
CanonicallyOverClass.instOverClass
CanonicallyOverClass.toOverClass
β€”β€”
over_def πŸ“–mathematicalβ€”over
OverClass
instOverClass
CategoryStruct.id
Category.toCategoryStruct
β€”β€”

CategoryTheory.CanonicallyOverClass

Definitions

NameCategoryTheorems
instOverClass πŸ“–CompOp
4 mathmath: AlgebraicGeometry.Scheme.instIsOverMapResidueFieldMapOverInferInstanceOverClass, over_def, AlgebraicGeometry.Scheme.instIsOverMapStalkMapOverInferInstanceOverClass, CategoryTheory.instIsOverTower_2
toOverClass πŸ“–CompOp
38 mathmath: AlgebraicGeometry.AffineSpace.not_isIntegralHom, AlgebraicGeometry.AffineSpace.SpecIso_hom_appTop, AlgebraicGeometry.Scheme.instIsOverFromSpecStalkOfMem, AlgebraicGeometry.AffineSpace.map_over_assoc, AlgebraicGeometry.AffineSpace.homOverEquiv_symm_apply_coe, AlgebraicGeometry.AffineSpace.isoOfIsAffine_inv_over_assoc, AlgebraicGeometry.Scheme.isCommMonObj_asOver_pullback, AlgebraicGeometry.Scheme.isMonHom_fst_id_right, AlgebraicGeometry.AffineSpace.reindex_over, AlgebraicGeometry.AffineSpace.map_over, AlgebraicGeometry.AffineSpace.instLocallyOfFinitePresentationOverSchemeInferInstanceOverClassOfFinite, AlgebraicGeometry.AffineSpace.instIsIsoSchemeOverInferInstanceOverClassOfIsEmpty, AlgebraicGeometry.AffineSpace.isOpenMap_over, AlgebraicGeometry.AffineSpace.hom_ext_iff, AlgebraicGeometry.AffineSpace.isPullback_map, AlgebraicGeometry.AffineSpace.homOfVector_over_assoc, AlgebraicGeometry.Scheme.Opens.over_def, AlgebraicGeometry.AffineSpace.SpecIso_inv_over_assoc, AlgebraicGeometry.AffineSpace.instIsAffineHomOverSchemeInferInstanceOverClass, AlgebraicGeometry.Scheme.monObjAsOverPullback_mul, AlgebraicGeometry.AffineSpace.instIsOverHomOfVectorOverSchemeInferInstanceOverClass, AlgebraicGeometry.Scheme.instIsOverFstOverInferInstanceOverClassId, AlgebraicGeometry.AffineSpace.isIntegralHom_over_iff_isEmpty, AlgebraicGeometry.AffineSpace.homOfVector_over, over_def, AlgebraicGeometry.AffineSpace.reindex_over_assoc, AlgebraicGeometry.AffineSpace.isoOfIsAffine_hom_appTop, AlgebraicGeometry.AffineSpace.isoOfIsAffine_hom, AlgebraicGeometry.Scheme.Opens.instIsOverΞΉ, AlgebraicGeometry.AffineSpace.homOverEquiv_apply, AlgebraicGeometry.AffineSpace.over_over, AlgebraicGeometry.Scheme.canonicallyOverPullback_over, AlgebraicGeometry.AffineSpace.SpecIso_inv_over, AlgebraicGeometry.AffineSpace.isoOfIsAffine_inv_over, AlgebraicGeometry.Scheme.monObjAsOverPullback_one, AlgebraicGeometry.instIsOverHomOfLE, AlgebraicGeometry.AffineSpace.instSurjectiveOverSchemeInferInstanceOverClass, CategoryTheory.instIsOverTower_2

Theorems

NameKindAssumesProvesValidatesDepends On
over_def πŸ“–mathematicalβ€”CategoryTheory.over
CategoryTheory.OverClass
instOverClass
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
toOverClass
β€”β€”

CategoryTheory.CanonicallyOverClass.Simps

Definitions

NameCategoryTheorems
over πŸ“–CompOpβ€”

CategoryTheory.HomIsOver

Theorems

NameKindAssumesProvesValidatesDepends On
comp_over πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.over
CategoryTheory.OverClass
β€”β€”

CategoryTheory.Iso

Definitions

NameCategoryTheorems
asOver πŸ“–CompOp
2 mathmath: asOver_hom, asOver_inv

Theorems

NameKindAssumesProvesValidatesDepends On
asOver_hom πŸ“–mathematicalβ€”hom
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.OverClass.asOver
asOver
CategoryTheory.OverClass.asOverHom
β€”β€”
asOver_inv πŸ“–mathematicalβ€”inv
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.OverClass.asOver
asOver
CategoryTheory.OverClass.asOverHom
CategoryTheory.OverClass.instHomIsOverInvOfHom
β€”β€”

CategoryTheory.OverClass

Definitions

NameCategoryTheorems
asOver πŸ“–CompOp
15 mathmath: AlgebraicGeometry.Scheme.Cover.pullbackCoverOver_X, CategoryTheory.Iso.asOver_hom, AlgebraicGeometry.Scheme.Cover.pullbackCoverOver'_X, asOverHom_comp_assoc, AlgebraicGeometry.Scheme.isMonHom_fst_id_right, asOverHom_inv, asOverHom_id, instIsIsoOverAsOverHom, asOver_left, asOverHom_left, AlgebraicGeometry.Scheme.Cover.pullbackCoverOver_f, asOver_hom, CategoryTheory.Iso.asOver_inv, AlgebraicGeometry.Scheme.Cover.pullbackCoverOver'_f, asOverHom_comp
asOverHom πŸ“–CompOp
8 mathmath: CategoryTheory.Iso.asOver_hom, asOverHom_comp_assoc, asOverHom_inv, asOverHom_id, instIsIsoOverAsOverHom, asOverHom_left, CategoryTheory.Iso.asOver_inv, asOverHom_comp
fromOver πŸ“–CompOp
2 mathmath: fromOver_over, CategoryTheory.instHomIsOverLeftDiscretePUnit
hom πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
asOverHom_comp πŸ“–mathematicalβ€”asOverHom
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instHomIsOverComp
CategoryTheory.Over
CategoryTheory.instCategoryOver
asOver
β€”CategoryTheory.instHomIsOverComp
asOverHom_comp_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Over
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryOver
asOver
asOverHom
CategoryTheory.instHomIsOverComp
β€”CategoryTheory.instHomIsOverComp
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
asOverHom_comp
asOverHom_id πŸ“–mathematicalβ€”asOverHom
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instHomIsOverId
CategoryTheory.Over
CategoryTheory.instCategoryOver
asOver
β€”CategoryTheory.instHomIsOverId
asOverHom_inv πŸ“–mathematicalβ€”asOverHom
CategoryTheory.inv
instHomIsOverInv
CategoryTheory.Over
CategoryTheory.instCategoryOver
asOver
instIsIsoOverAsOverHom
β€”instHomIsOverInv
instIsIsoOverAsOverHom
asOverHom.congr_simp
CategoryTheory.IsIso.hom_inv_id
CategoryTheory.instHomIsOverComp
asOverHom_left πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
asOver
asOverHom
β€”β€”
asOver_hom πŸ“–mathematicalβ€”CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
asOver
CategoryTheory.over
CategoryTheory.OverClass
β€”β€”
asOver_left πŸ“–mathematicalβ€”CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
asOver
β€”β€”
fromOver_over πŸ“–mathematicalβ€”CategoryTheory.over
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.OverClass
fromOver
CategoryTheory.Comma.hom
β€”β€”
instHomIsOverHomAsIso πŸ“–mathematicalβ€”CategoryTheory.HomIsOver
CategoryTheory.Iso.hom
CategoryTheory.asIso
β€”CategoryTheory.comp_over
instHomIsOverHomOfInv πŸ“–mathematicalβ€”CategoryTheory.HomIsOver
CategoryTheory.Iso.hom
β€”CategoryTheory.comp_over
instHomIsOverInv πŸ“–mathematicalβ€”CategoryTheory.HomIsOver
CategoryTheory.inv
β€”CategoryTheory.comp_over
instHomIsOverInvAsIso πŸ“–mathematicalβ€”CategoryTheory.HomIsOver
CategoryTheory.Iso.inv
CategoryTheory.asIso
β€”CategoryTheory.comp_over
instHomIsOverInvOfHom πŸ“–mathematicalβ€”CategoryTheory.HomIsOver
CategoryTheory.Iso.inv
β€”CategoryTheory.comp_over
instIsIsoOverAsOverHom πŸ“–mathematicalβ€”CategoryTheory.IsIso
CategoryTheory.Over
CategoryTheory.instCategoryOver
asOver
asOverHom
β€”CategoryTheory.isIso_of_reflects_iso
CategoryTheory.Over.forget_reflects_iso

CategoryTheory.OverClass.Simps

Definitions

NameCategoryTheorems
over πŸ“–CompOpβ€”

---

← Back to Index