Documentation Verification Report

Pullback

📁 Source: Mathlib/CategoryTheory/Comma/Over/Pullback.lean

Statistics

MetricCount
DefinitionsforgetAdjStar, forgetMapTerminal, mapPullbackAdj, postAdjunctionLeft, pullback, pullbackComp, pullbackId, starPullbackIsoStar, costar, costarAdjForget, forgetMapInitial, mapPushoutAdj, postAdjunctionRight, pushout, pushoutComp, pushoutId
16
Theoremsfaithful_pullback, forgetAdjStar_counit_app, forgetAdjStar_unit_app_left, forgetMapTerminal_hom_app, forgetMapTerminal_inv_app, instIsLeftAdjointForget, instIsRightAdjointStar, isLeftAdjoint_post, mapPullbackAdj_counit_app, mapPullbackAdj_unit_app, postAdjunctionLeft_counit_app_left, postAdjunctionLeft_unit_app_left, pullbackIsRightAdjoint, pullback_map_left, pullback_obj_hom, pullback_obj_left, starPullbackIsoStar_hom_app_left, starPullbackIsoStar_inv_app_left, star_map_left, star_obj_hom, star_obj_left, costar_map_left, costar_obj_hom, costar_obj_left, faithful_pushout, forgetMapInitial_hom_app, forgetMapInitial_inv_app, instIsLeftAdjointCostar, instIsRightAdjointForget, isRightAdjoint_post, mapPushoutAdj_counit_app, mapPushoutAdj_unit_app, postAdjunctionRight_counit_app_right, postAdjunctionRight_unit_app_right, pushoutIsLeftAdjoint, pushout_map, pushout_obj
37
Total53

CategoryTheory.Over

Definitions

NameCategoryTheorems
forgetAdjStar 📖CompOp
2 mathmath: forgetAdjStar_counit_app, forgetAdjStar_unit_app_left
forgetMapTerminal 📖CompOp
2 mathmath: forgetMapTerminal_hom_app, forgetMapTerminal_inv_app
mapPullbackAdj 📖CompOp
4 mathmath: mapPullbackAdj_counit_app, mapPullbackAdj_unit_app, CategoryTheory.ChosenPullbacksAlong.ofHasPullbacksAlong_mapPullbackAdj, postAdjunctionLeft_counit_app_left
postAdjunctionLeft 📖CompOp
2 mathmath: postAdjunctionLeft_unit_app_left, postAdjunctionLeft_counit_app_left
pullback 📖CompOp
45 mathmath: μ_pullback_left_snd', faithful_pullback, pullback_obj_left, monObjMkPullbackSnd_mul, grpObjMkPullbackSnd_one, grpObjMkPullbackSnd_mul, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_hom_app_comp_snd_assoc, CategoryTheory.MorphismProperty.baseChange_map, postAdjunctionLeft_unit_app_left, preservesTerminalIso_pullback, mapPullbackAdj_counit_app, AlgebraicGeometry.instFaithfulOverSchemePullbackOfSurjectiveOfFlatOfQuasiCompact, starPullbackIsoStar_hom_app_left, prodComparisonIso_pullback_inv_left_snd', μ_pullback_left_fst_snd', mapPullbackAdj_unit_app, pullbackIsRightAdjoint, pullback_map_left, prodComparisonIso_pullback_inv_left_fst_fst, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_inv_app_comp_fst, μ_pullback_left_fst_fst', μ_pullback_left_fst_snd, monObjMkPullbackSnd_one, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_inv_app_comp_snd, AlgebraicGeometry.Scheme.monObjAsOverPullback_mul, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_hom_app_comp_snd, η_pullback_left, prodComparisonIso_pullback_Spec_inv_left_fst_fst', CategoryTheory.ChosenPullbacksAlong.ofHasPullbacksAlong_pullback, μ_pullback_left_snd, μ_pullback_left_fst_fst, starPullbackIsoStar_inv_app_left, CategoryTheory.MorphismProperty.faithful_overPullback_of_isomorphisms_descendAlong, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_hom_app_comp_fst_assoc, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_inv_app_comp_fst_assoc, AlgebraicGeometry.Scheme.monObjAsOverPullback_one, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_hom_app_comp_fst, pullback_obj_hom, prodComparisonIso_pullback_inv_left_fst_snd', ε_pullback_left, CategoryTheory.ChosenPullbacksAlong.pullbackIsoOverPullback_inv_app_comp_snd_assoc, CategoryTheory.Limits.diagonal_pullback_fst, CategoryTheory.MorphismProperty.baseChange_obj, AlgebraicGeometry.instFaithfulOverSchemePullbackOfSurjectiveOfFlatOfLocallyOfFinitePresentation, postAdjunctionLeft_counit_app_left
pullbackComp 📖CompOp
pullbackId 📖CompOp
starPullbackIsoStar 📖CompOp
2 mathmath: starPullbackIsoStar_hom_app_left, starPullbackIsoStar_inv_app_left

Theorems

NameKindAssumesProvesValidatesDepends On
faithful_pullback 📖mathematicalCategoryTheory.Limits.HasPullbacksAlong
CategoryTheory.Epi
CategoryTheory.Limits.pullback
CategoryTheory.Limits.pullback.fst
CategoryTheory.Functor.Faithful
CategoryTheory.Over
CategoryTheory.instCategoryOver
pullback
CategoryTheory.Category.id_comp
mapPullbackAdj_counit_app
epi_homMk
CategoryTheory.Adjunction.faithful_R_of_epi_counit_app
forgetAdjStar_counit_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Over
CategoryTheory.instCategoryOver
star
forget
CategoryTheory.Functor.id
CategoryTheory.Adjunction.counit
forgetAdjStar
CategoryTheory.Limits.prod.snd
CategoryTheory.Adjunction.comp_counit_app
CategoryTheory.Category.id_comp
CategoryTheory.Comonad.adj_counit
forgetAdjStar_unit_app_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.comp
forget
star
CategoryTheory.NatTrans.app
CategoryTheory.Adjunction.unit
forgetAdjStar
CategoryTheory.Limits.prod.lift
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.pair
CategoryTheory.Comma.hom
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
CategoryTheory.Adjunction.comp_unit_app
CategoryTheory.Comonad.adj_unit
CategoryTheory.Limits.prod.comp_lift
CategoryTheory.Category.id_comp
forgetMapTerminal_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Over
CategoryTheory.instCategoryOver
forget
CategoryTheory.Functor.comp
map
CategoryTheory.Limits.IsTerminal.from
CategoryTheory.Equivalence.functor
equivalenceOfIsTerminal
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
forgetMapTerminal
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
forgetMapTerminal_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.comp
map
CategoryTheory.Limits.IsTerminal.from
CategoryTheory.Equivalence.functor
equivalenceOfIsTerminal
forget
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
forgetMapTerminal
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
instIsLeftAdjointForget 📖mathematicalCategoryTheory.Functor.IsLeftAdjoint
CategoryTheory.Over
CategoryTheory.instCategoryOver
forget
instIsRightAdjointStar 📖mathematicalCategoryTheory.Functor.IsRightAdjoint
CategoryTheory.Over
CategoryTheory.instCategoryOver
star
isLeftAdjoint_post 📖mathematicalCategoryTheory.Functor.IsLeftAdjoint
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.obj
post
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
mapPullbackAdj_counit_app 📖mathematicalCategoryTheory.Limits.HasPullbacksAlongCategoryTheory.NatTrans.app
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.comp
pullback
map
CategoryTheory.Functor.id
CategoryTheory.Adjunction.counit
mapPullbackAdj
homMk
CategoryTheory.Functor.obj
CategoryTheory.Limits.pullback.fst
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.comp
CategoryTheory.Limits.pullback
CategoryTheory.CategoryStruct.id
CategoryTheory.Comma.right
CategoryTheory.Category.id_comp
homMk.congr_simp
CategoryTheory.Category.id_comp
mapPullbackAdj_unit_app 📖mathematicalCategoryTheory.Limits.HasPullbacksAlongCategoryTheory.NatTrans.app
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
map
pullback
CategoryTheory.Adjunction.unit
mapPullbackAdj
homMk
CategoryTheory.Functor.obj
CategoryTheory.Limits.pullback.lift
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.hom
CategoryTheory.CategoryStruct.id
postAdjunctionLeft_counit_app_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
post
CategoryTheory.Functor.comp
pullback
CategoryTheory.NatTrans.app
CategoryTheory.Adjunction.unit
CategoryTheory.Adjunction.counit
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
postAdjunctionLeft
map
CategoryTheory.Limits.pullback
CategoryTheory.Comma.left
CategoryTheory.Functor.map
CategoryTheory.Comma.hom
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pullback.snd
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.Adjunction.homEquiv
CategoryTheory.Adjunction.comp
mapPullbackAdj
postAdjunctionRight
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.id_comp
postAdjunctionLeft_unit_app_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.comp
post
pullback
CategoryTheory.NatTrans.app
CategoryTheory.Adjunction.unit
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
postAdjunctionLeft
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Limits.pullback
CategoryTheory.Comma.hom
map
CategoryTheory.Functor.map
CategoryTheory.Limits.pullback.lift
CategoryTheory.CategoryStruct.id
CategoryTheory.Adjunction.counit
CategoryTheory.Limits.pullback.fst
CategoryTheory.Limits.pullback.snd
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
homMk
CategoryTheory.Comma.right
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.Adjunction.equivHomsetLeftOfNatIso
CategoryTheory.Iso.symm
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.NatIso.ofComponents
isoMk
CategoryTheory.Iso.refl
CategoryTheory.Adjunction.comp_unit_app
CategoryTheory.Category.assoc
pullbackIsRightAdjoint 📖mathematicalCategoryTheory.Limits.HasPullbacksAlongCategoryTheory.Functor.IsRightAdjoint
CategoryTheory.Over
CategoryTheory.instCategoryOver
pullback
pullback_map_left 📖mathematicalCategoryTheory.Limits.HasPullbacksAlongCategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Limits.pullback
CategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Limits.pullback.snd
CategoryTheory.Functor.map
CategoryTheory.Over
CategoryTheory.instCategoryOver
pullback
CategoryTheory.Limits.pullback.lift
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pullback.fst
pullback_obj_hom 📖mathematicalCategoryTheory.Limits.HasPullbacksAlongCategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
pullback
CategoryTheory.Limits.pullback.snd
CategoryTheory.Comma.left
pullback_obj_left 📖mathematicalCategoryTheory.Limits.HasPullbacksAlongCategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
pullback
CategoryTheory.Limits.pullback
CategoryTheory.Comma.hom
starPullbackIsoStar_hom_app_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.comp
star
pullback
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
starPullbackIsoStar
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pullback
CategoryTheory.Limits.prod
CategoryTheory.Comma.hom
CategoryTheory.Limits.prod.fst
CategoryTheory.Limits.pullback.map
CategoryTheory.CategoryStruct.id
CategoryTheory.Limits.pullbackSymmetry
CategoryTheory.Limits.pullbackProdFstIsoProd
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
starPullbackIsoStar_inv_app_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
star
CategoryTheory.Functor.comp
pullback
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
starPullbackIsoStar
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.prod
CategoryTheory.Limits.pullback
CategoryTheory.Limits.prod.fst
CategoryTheory.Comma.hom
CategoryTheory.Limits.pullbackProdFstIsoProd
CategoryTheory.Limits.pullbackSymmetry
CategoryTheory.Limits.pullback.map
CategoryTheory.CategoryStruct.id
CategoryTheory.Limits.pullback.congrHom_inv
CategoryTheory.Category.assoc
star_map_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comonad.Coalgebra
CategoryTheory.prodComonad
CategoryTheory.Comonad.Coalgebra.eilenbergMoore
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.coalgebraToOver
CategoryTheory.Comonad.cofree
CategoryTheory.Functor.map
star
CategoryTheory.Limits.prod.map
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
star_obj_hom 📖mathematicalCategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
star
CategoryTheory.Limits.prod.fst
CategoryTheory.Limits.limit.lift_π
star_obj_left 📖mathematicalCategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
star
CategoryTheory.Limits.prod

CategoryTheory.Under

Definitions

NameCategoryTheorems
costar 📖CompOp
4 mathmath: costar_obj_left, instIsLeftAdjointCostar, costar_map_left, costar_obj_hom
costarAdjForget 📖CompOp
forgetMapInitial 📖CompOp
2 mathmath: forgetMapInitial_inv_app, forgetMapInitial_hom_app
mapPushoutAdj 📖CompOp
3 mathmath: postAdjunctionRight_unit_app_right, mapPushoutAdj_unit_app, mapPushoutAdj_counit_app
postAdjunctionRight 📖CompOp
2 mathmath: postAdjunctionRight_unit_app_right, postAdjunctionRight_counit_app_right
pushout 📖CompOp
16 mathmath: pushoutIsLeftAdjoint, pushout_map, CommRingCat.Under.preservesFiniteLimits_of_flat, CommRingCat.pushout_inr_tensorProdObjIsoPushoutObj_inv_right_assoc, postAdjunctionRight_unit_app_right, mapPushoutAdj_unit_app, CommRingCat.Under.instPreservesFiniteProductsUnderPushout, CommRingCat.pushout_inl_tensorProdObjIsoPushoutObj_inv_right_assoc, CommRingCat.pushout_inl_tensorProdObjIsoPushoutObj_inv_right, CommRingCat.tensorProdIsoPushout_app, pushout_obj, CategoryTheory.MorphismProperty.ind_underObj_pushout, mapPushoutAdj_counit_app, postAdjunctionRight_counit_app_right, faithful_pushout, CommRingCat.pushout_inr_tensorProdObjIsoPushoutObj_inv_right
pushoutComp 📖CompOp
pushoutId 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
costar_map_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.Monad.Algebra
CategoryTheory.coprodMonad
CategoryTheory.Monad.Algebra.eilenbergMoore
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.algebraToUnder
CategoryTheory.Monad.free
CategoryTheory.Functor.map
costar
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Limits.coprod
CategoryTheory.CategoryStruct.comp
CategoryTheory.Limits.coprod.inl
CategoryTheory.Limits.coprod.desc
costar_obj_hom 📖mathematicalCategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.Under
CategoryTheory.instCategoryUnder
costar
CategoryTheory.Limits.coprod.inl
CategoryTheory.Limits.colimit.ι_desc
costar_obj_left 📖mathematicalCategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.Under
CategoryTheory.instCategoryUnder
costar
faithful_pushout 📖mathematicalCategoryTheory.Limits.HasPushoutsAlong
CategoryTheory.Mono
CategoryTheory.Limits.pushout
CategoryTheory.Limits.pushout.inl
CategoryTheory.Functor.Faithful
CategoryTheory.Under
CategoryTheory.instCategoryUnder
pushout
CategoryTheory.Category.comp_id
mapPushoutAdj_unit_app
mono_homMk
CategoryTheory.Adjunction.faithful_L_of_mono_unit_app
forgetMapInitial_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Under
CategoryTheory.instCategoryUnder
forget
CategoryTheory.Functor.comp
map
CategoryTheory.Limits.IsInitial.to
CategoryTheory.Equivalence.functor
equivalenceOfIsInitial
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
forgetMapInitial
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id
forgetMapInitial_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.comp
map
CategoryTheory.Limits.IsInitial.to
CategoryTheory.Equivalence.functor
equivalenceOfIsInitial
forget
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
forgetMapInitial
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id
instIsLeftAdjointCostar 📖mathematicalCategoryTheory.Functor.IsLeftAdjoint
CategoryTheory.Under
CategoryTheory.instCategoryUnder
costar
instIsRightAdjointForget 📖mathematicalCategoryTheory.Functor.IsRightAdjoint
CategoryTheory.Under
CategoryTheory.instCategoryUnder
forget
isRightAdjoint_post 📖mathematicalCategoryTheory.Functor.IsRightAdjoint
CategoryTheory.Under
CategoryTheory.Functor.obj
CategoryTheory.instCategoryUnder
post
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
mapPushoutAdj_counit_app 📖mathematicalCategoryTheory.Limits.HasPushoutsAlongCategoryTheory.NatTrans.app
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.comp
map
pushout
CategoryTheory.Functor.id
CategoryTheory.Adjunction.counit
mapPushoutAdj
homMk
CategoryTheory.Limits.pushout
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.hom
CategoryTheory.Functor.obj
CategoryTheory.Limits.pushout.inr
CategoryTheory.Limits.pushout.desc
CategoryTheory.CategoryStruct.id
mapPushoutAdj_unit_app 📖mathematicalCategoryTheory.Limits.HasPushoutsAlongCategoryTheory.NatTrans.app
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
pushout
map
CategoryTheory.Adjunction.unit
mapPushoutAdj
homMk
CategoryTheory.Functor.obj
CategoryTheory.Limits.pushout
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.hom
CategoryTheory.Limits.pushout.inr
CategoryTheory.Limits.pushout.inl
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.comp
CategoryTheory.CategoryStruct.id
CategoryTheory.Comma.left
CategoryTheory.Category.comp_id
homMk.congr_simp
CategoryTheory.Category.comp_id
postAdjunctionRight_counit_app_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.comp
post
pushout
CategoryTheory.NatTrans.app
CategoryTheory.Adjunction.counit
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.span
postAdjunctionRight
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pushout
CategoryTheory.Comma.right
CategoryTheory.Functor.map
CategoryTheory.Comma.hom
CategoryTheory.Adjunction.unit
CategoryTheory.Limits.pushout.desc
map
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.Adjunction.equivHomsetRightOfNatIso
CategoryTheory.NatIso.ofComponents
isoMk
CategoryTheory.Iso.refl
CategoryTheory.CategoryStruct.id
CategoryTheory.Limits.pushout.inl
CategoryTheory.Limits.pushout.inr
homMk
CategoryTheory.Comma.left
CategoryTheory.Adjunction.comp_counit_app
postAdjunctionRight_unit_app_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Under
CategoryTheory.instCategoryUnder
post
CategoryTheory.Functor.comp
pushout
CategoryTheory.NatTrans.app
CategoryTheory.Adjunction.counit
CategoryTheory.Adjunction.unit
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.span
postAdjunctionRight
map
CategoryTheory.Limits.pushout
CategoryTheory.Comma.right
CategoryTheory.Functor.map
CategoryTheory.Comma.hom
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pushout.inr
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.Adjunction.homEquiv
CategoryTheory.Adjunction.comp
postAdjunctionLeft
mapPushoutAdj
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.comp_id
pushoutIsLeftAdjoint 📖mathematicalCategoryTheory.Limits.HasPushoutsAlongCategoryTheory.Functor.IsLeftAdjoint
CategoryTheory.Under
CategoryTheory.instCategoryUnder
pushout
pushout_map 📖mathematicalCategoryTheory.Limits.HasPushoutsAlongCategoryTheory.Functor.map
CategoryTheory.Under
CategoryTheory.instCategoryUnder
pushout
homMk
CategoryTheory.Limits.pushout
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Limits.pushout.inr
CategoryTheory.Limits.pushout.desc
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CommaMorphism.right
CategoryTheory.Limits.pushout.inl
pushout_obj 📖mathematicalCategoryTheory.Limits.HasPushoutsAlongCategoryTheory.Functor.obj
CategoryTheory.Under
CategoryTheory.instCategoryUnder
pushout
CategoryTheory.Limits.pushout
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Limits.pushout.inr

---

← Back to Index