Documentation Verification Report

Basic

📁 Source: Mathlib/CategoryTheory/Comma/Presheaf/Basic.lean

Statistics

MetricCount
DefinitionstoOverCompCoyoneda, toOverCompOverEquivPresheafCostructuredArrow, toOverCompYoneda, MakesOverArrow, OverArrows, costructuredArrowIso, map₁, map₂, val, yonedaArrow, YonedaCollection, fst, map₁, map₂, mk, snd, yonedaEquivFst, costructuredArrowPresheafToOver, counit, counitAux, counitAuxAux, counitBackward, counitForward, restrictedYoneda, restrictedYonedaObj, restrictedYonedaObjMap₁, toOverYonedaCompRestrictedYoneda, unit, unitAux, unitAuxAux, unitAuxAuxAux, unitBackward, unitForward, yonedaCollectionFunctor, yonedaCollectionPresheaf, yonedaCollectionPresheafMap₁, yonedaCollectionPresheafToA, overEquivPresheafCostructuredArrow
38
TheoremsoverEquivPresheafCostructuredArrow_functor_map_toOverCompCoyoneda, overEquivPresheafCostructuredArrow_functor_map_toOverCompYoneda, overEquivPresheafCostructuredArrow_inverse_map_toOverCompCoyoneda, overEquivPresheafCostructuredArrow_inverse_map_toOverCompYoneda, app, map₁, map₂, of_arrow, of_yoneda_arrow, app_val, ext, ext_iff, map_val, map₁_map₂, map₁_val, map₂_val, val_mk, yonedaArrow_val, yonedaCollectionPresheafToA_val_fst, ext, map₁_comp, map₁_fst, map₁_id, map₁_map₂, map₁_snd, map₁_yonedaEquivFst, map₂_comp, map₂_fst, map₂_id, map₂_snd, map₂_yonedaEquivFst, mk_fst, mk_snd, yonedaEquivFst_eq, app_unitForward, costructuredArrowPresheafToOver_map, costructuredArrowPresheafToOver_obj, counitAuxAux_hom, counitAuxAux_inv, counitAux_hom, counitBackward_counitForward, counitForward_counitBackward, counitForward_naturality₁, counitForward_naturality₂, counitForward_val_fst, counitForward_val_snd, map_mkPrecomp_eqToHom, restrictedYonedaObjMap₁_app, restrictedYonedaObj_map, restrictedYonedaObj_obj, restrictedYoneda_map, restrictedYoneda_obj, unitAuxAuxAux_hom, unitAuxAuxAux_inv, unitAuxAux_hom_app, unitAuxAux_inv_app_fst, unitAuxAux_inv_app_snd_coe, unitAux_hom, unitBackward_unitForward, unitForward_naturality₁, unitForward_naturality₂, unitForward_unitBackward, yonedaCollectionFunctor_map, yonedaCollectionFunctor_obj, yonedaCollectionPresheafMap₁_app, yonedaCollectionPresheafToA_app, yonedaCollectionPresheaf_map, yonedaCollectionPresheaf_obj
68
Total106

CategoryTheory

Definitions

NameCategoryTheorems
overEquivPresheafCostructuredArrow 📖CompOp
4 mathmath: CostructuredArrow.overEquivPresheafCostructuredArrow_inverse_map_toOverCompCoyoneda, CostructuredArrow.overEquivPresheafCostructuredArrow_functor_map_toOverCompYoneda, CostructuredArrow.overEquivPresheafCostructuredArrow_functor_map_toOverCompCoyoneda, CostructuredArrow.overEquivPresheafCostructuredArrow_inverse_map_toOverCompYoneda

CategoryTheory.CostructuredArrow

Definitions

NameCategoryTheorems
toOverCompCoyoneda 📖CompOp
2 mathmath: overEquivPresheafCostructuredArrow_inverse_map_toOverCompCoyoneda, overEquivPresheafCostructuredArrow_functor_map_toOverCompCoyoneda
toOverCompOverEquivPresheafCostructuredArrow 📖CompOp
4 mathmath: overEquivPresheafCostructuredArrow_inverse_map_toOverCompCoyoneda, overEquivPresheafCostructuredArrow_functor_map_toOverCompYoneda, overEquivPresheafCostructuredArrow_functor_map_toOverCompCoyoneda, overEquivPresheafCostructuredArrow_inverse_map_toOverCompYoneda
toOverCompYoneda 📖CompOp
2 mathmath: overEquivPresheafCostructuredArrow_functor_map_toOverCompYoneda, overEquivPresheafCostructuredArrow_inverse_map_toOverCompYoneda

Theorems

NameKindAssumesProvesValidatesDepends On
overEquivPresheafCostructuredArrow_functor_map_toOverCompCoyoneda 📖mathematical—CategoryTheory.Functor.map
CategoryTheory.Over
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.instCategoryOver
CategoryTheory.CostructuredArrow
CategoryTheory.yoneda
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Equivalence.functor
CategoryTheory.overEquivPresheafCostructuredArrow
Opposite.unop
CategoryTheory.Functor.obj
CategoryTheory.Functor.op
toOver
Opposite.op
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.coyoneda
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Iso.inv
toOverCompCoyoneda
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
toOverCompOverEquivPresheafCostructuredArrow
—CategoryTheory.Category.comp_id
CategoryTheory.Functor.FullyFaithful.map_preimage
overEquivPresheafCostructuredArrow_functor_map_toOverCompYoneda 📖mathematical—CategoryTheory.Functor.map
CategoryTheory.Over
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.instCategoryOver
CategoryTheory.CostructuredArrow
CategoryTheory.yoneda
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Equivalence.functor
CategoryTheory.overEquivPresheafCostructuredArrow
Opposite.unop
CategoryTheory.Functor.obj
CategoryTheory.Functor.op
toOver
Opposite.op
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Iso.inv
toOverCompYoneda
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
toOverCompOverEquivPresheafCostructuredArrow
—CategoryTheory.Category.comp_id
CategoryTheory.Functor.FullyFaithful.map_preimage
overEquivPresheafCostructuredArrow_inverse_map_toOverCompCoyoneda 📖mathematical—CategoryTheory.Functor.map
CategoryTheory.Functor
Opposite
CategoryTheory.CostructuredArrow
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Equivalence.inverse
CategoryTheory.overEquivPresheafCostructuredArrow
Opposite.unop
CategoryTheory.Functor.obj
CategoryTheory.Functor.op
Opposite.op
CategoryTheory.Equivalence.functor
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
toOver
CategoryTheory.coyoneda
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Iso.hom
toOverCompCoyoneda
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.inv
CategoryTheory.Iso.isoCompInverse
toOverCompOverEquivPresheafCostructuredArrow
CategoryTheory.Functor.id
CategoryTheory.Equivalence.unit
—CategoryTheory.Category.comp_id
CategoryTheory.Functor.map_comp
CategoryTheory.Equivalence.inv_fun_map
CategoryTheory.Iso.isoCompInverse_inv_app
CategoryTheory.Category.assoc
overEquivPresheafCostructuredArrow_inverse_map_toOverCompYoneda 📖mathematical—CategoryTheory.Functor.map
CategoryTheory.Functor
Opposite
CategoryTheory.CostructuredArrow
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Equivalence.inverse
CategoryTheory.overEquivPresheafCostructuredArrow
Opposite.unop
CategoryTheory.Functor.obj
CategoryTheory.Functor.op
Opposite.op
CategoryTheory.Equivalence.functor
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
toOver
CategoryTheory.Iso.hom
toOverCompYoneda
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.inv
CategoryTheory.Iso.isoCompInverse
toOverCompOverEquivPresheafCostructuredArrow
CategoryTheory.Functor.id
CategoryTheory.Equivalence.unit
—CategoryTheory.Category.comp_id
CategoryTheory.Functor.map_comp
CategoryTheory.Equivalence.inv_fun_map
CategoryTheory.Iso.isoCompInverse_inv_app
CategoryTheory.Category.assoc

CategoryTheory.OverPresheafAux

Definitions

NameCategoryTheorems
MakesOverArrow 📖CompData
3 mathmath: unitAuxAux_inv_app_snd_coe, MakesOverArrow.of_yoneda_arrow, MakesOverArrow.of_arrow
OverArrows 📖CompOp
6 mathmath: counitAuxAux_inv, counitBackward_counitForward, counitAux_hom, restrictedYonedaObj_obj, counitForward_counitBackward, counitAuxAux_hom
YonedaCollection 📖CompOp
9 mathmath: YonedaCollection.map₂_comp, unitAuxAuxAux_hom, unitAuxAuxAux_inv, yonedaCollectionPresheaf_obj, YonedaCollection.map₂_id, unitBackward_unitForward, YonedaCollection.map₁_comp, unitForward_unitBackward, YonedaCollection.map₁_id
costructuredArrowPresheafToOver 📖CompOp
3 mathmath: costructuredArrowPresheafToOver_map, unitAux_hom, costructuredArrowPresheafToOver_obj
counit 📖CompOp—
counitAux 📖CompOp
1 mathmath: counitAux_hom
counitAuxAux 📖CompOp
3 mathmath: counitAuxAux_inv, counitAux_hom, counitAuxAux_hom
counitBackward 📖CompOp
3 mathmath: counitAuxAux_inv, counitBackward_counitForward, counitForward_counitBackward
counitForward 📖CompOp
7 mathmath: counitForward_naturality₁, counitForward_val_snd, counitBackward_counitForward, counitForward_counitBackward, counitAuxAux_hom, counitForward_val_fst, counitForward_naturality₂
restrictedYoneda 📖CompOp
3 mathmath: unitAux_hom, restrictedYoneda_map, restrictedYoneda_obj
restrictedYonedaObj 📖CompOp
16 mathmath: unitAux_hom, restrictedYoneda_obj, unitAuxAuxAux_hom, unitAuxAuxAux_inv, unitForward_naturality₂, restrictedYonedaObj_map, counitAux_hom, unitBackward_unitForward, unitAuxAux_inv_app_fst, unitAuxAux_inv_app_snd_coe, restrictedYonedaObj_obj, restrictedYonedaObjMap₁_app, app_unitForward, unitForward_unitBackward, unitAuxAux_hom_app, unitForward_naturality₁
restrictedYonedaObjMap₁ 📖CompOp
3 mathmath: restrictedYoneda_map, restrictedYonedaObjMap₁_app, unitForward_naturality₁
toOverYonedaCompRestrictedYoneda 📖CompOp—
unit 📖CompOp—
unitAux 📖CompOp
1 mathmath: unitAux_hom
unitAuxAux 📖CompOp
4 mathmath: unitAux_hom, unitAuxAux_inv_app_fst, unitAuxAux_inv_app_snd_coe, unitAuxAux_hom_app
unitAuxAuxAux 📖CompOp
2 mathmath: unitAuxAuxAux_hom, unitAuxAuxAux_inv
unitBackward 📖CompOp
3 mathmath: unitAuxAuxAux_inv, unitBackward_unitForward, unitForward_unitBackward
unitForward 📖CompOp
7 mathmath: unitAuxAuxAux_hom, unitForward_naturality₂, unitBackward_unitForward, app_unitForward, unitForward_unitBackward, unitAuxAux_hom_app, unitForward_naturality₁
yonedaCollectionFunctor 📖CompOp
2 mathmath: yonedaCollectionFunctor_obj, yonedaCollectionFunctor_map
yonedaCollectionPresheaf 📖CompOp
21 mathmath: costructuredArrowPresheafToOver_map, unitAux_hom, OverArrows.yonedaCollectionPresheafToA_val_fst, yonedaCollectionPresheaf_map, counitForward_naturality₁, yonedaCollectionPresheafToA_app, counitForward_val_snd, yonedaCollectionFunctor_obj, counitAuxAux_inv, counitBackward_counitForward, yonedaCollectionPresheaf_obj, counitAux_hom, unitAuxAux_inv_app_fst, unitAuxAux_inv_app_snd_coe, unitAuxAux_hom_app, yonedaCollectionPresheafMap₁_app, counitForward_counitBackward, costructuredArrowPresheafToOver_obj, counitAuxAux_hom, counitForward_val_fst, counitForward_naturality₂
yonedaCollectionPresheafMap₁ 📖CompOp
4 mathmath: costructuredArrowPresheafToOver_map, counitForward_naturality₁, yonedaCollectionFunctor_map, yonedaCollectionPresheafMap₁_app
yonedaCollectionPresheafToA 📖CompOp
14 mathmath: costructuredArrowPresheafToOver_map, unitAux_hom, OverArrows.yonedaCollectionPresheafToA_val_fst, counitForward_naturality₁, yonedaCollectionPresheafToA_app, counitForward_val_snd, counitAuxAux_inv, counitBackward_counitForward, counitAux_hom, counitForward_counitBackward, costructuredArrowPresheafToOver_obj, counitAuxAux_hom, counitForward_val_fst, counitForward_naturality₂

Theorems

NameKindAssumesProvesValidatesDepends On
app_unitForward 📖mathematical—CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
unitForward
Opposite.unop
YonedaCollection.yonedaEquivFst
restrictedYonedaObj
—OverArrows.app_val
costructuredArrowPresheafToOver_map 📖mathematical—CategoryTheory.Functor.map
CategoryTheory.Functor
Opposite
CategoryTheory.CostructuredArrow
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Over
CategoryTheory.instCategoryOver
costructuredArrowPresheafToOver
CategoryTheory.CostructuredArrow.homMk
CategoryTheory.Functor.id
yonedaCollectionPresheaf
yonedaCollectionPresheafToA
yonedaCollectionPresheafMap₁
——
costructuredArrowPresheafToOver_obj 📖mathematical—CategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
CategoryTheory.CostructuredArrow
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Over
CategoryTheory.instCategoryOver
costructuredArrowPresheafToOver
yonedaCollectionPresheaf
CategoryTheory.Functor.id
yonedaCollectionPresheafToA
——
counitAuxAux_hom 📖mathematical—CategoryTheory.Iso.hom
CategoryTheory.types
CategoryTheory.Functor.obj
Opposite
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.instCategoryCostructuredArrow
Opposite.op
OverArrows
yonedaCollectionPresheaf
yonedaCollectionPresheafToA
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.hom
counitAuxAux
counitForward
——
counitAuxAux_inv 📖mathematical—CategoryTheory.Iso.inv
CategoryTheory.types
CategoryTheory.Functor.obj
Opposite
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.instCategoryCostructuredArrow
Opposite.op
OverArrows
yonedaCollectionPresheaf
yonedaCollectionPresheafToA
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.hom
counitAuxAux
counitBackward
——
counitAux_hom 📖mathematical—CategoryTheory.Iso.hom
CategoryTheory.Functor
Opposite
CategoryTheory.CostructuredArrow
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.instCategoryCostructuredArrow
restrictedYonedaObj
yonedaCollectionPresheaf
yonedaCollectionPresheafToA
counitAux
CategoryTheory.Functor.obj
OverArrows
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
Opposite.unop
CategoryTheory.Comma.hom
counitAuxAux
——
counitBackward_counitForward 📖mathematical—CategoryTheory.Functor.obj
Opposite
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.instCategoryCostructuredArrow
Opposite.op
OverArrows
yonedaCollectionPresheaf
yonedaCollectionPresheafToA
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.hom
counitBackward
counitForward
—counitForward_val_snd
CategoryTheory.FunctorToTypes.eqToHom_map_comp_apply
CategoryTheory.FunctorToTypes.map_id_apply
counitForward_counitBackward 📖mathematical—OverArrows
yonedaCollectionPresheaf
yonedaCollectionPresheafToA
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.hom
CategoryTheory.Functor.obj
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
Opposite.op
counitForward
counitBackward
—OverArrows.ext
YonedaCollection.ext
OverArrows.yonedaCollectionPresheafToA_val_fst
counitForward_val_snd
CategoryTheory.FunctorToTypes.eqToHom_map_comp_apply
counitForward_naturality₁ 📖mathematical—counitForward
Opposite.unop
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.NatTrans.app
CategoryTheory.instCategoryCostructuredArrow
OverArrows.map₁
yonedaCollectionPresheaf
yonedaCollectionPresheafToA
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.hom
yonedaCollectionPresheafMap₁
—OverArrows.ext
YonedaCollection.ext
OverArrows.yonedaCollectionPresheafToA_val_fst
YonedaCollection.map₁_fst
YonedaCollection.map₁_snd
counitForward_val_snd
CategoryTheory.FunctorToTypes.naturality
CategoryTheory.FunctorToTypes.eqToHom_map_comp_apply
counitForward_naturality₂ 📖mathematical—counitForward
Opposite.unop
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.Functor.map
CategoryTheory.instCategoryCostructuredArrow
OverArrows.map₂
yonedaCollectionPresheaf
yonedaCollectionPresheafToA
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.hom
CategoryTheory.CommaMorphism.left
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
—OverArrows.ext
YonedaCollection.ext
OverArrows.yonedaCollectionPresheafToA_val_fst
YonedaCollection.map₂_fst
CategoryTheory.CommaMorphism.w
CategoryTheory.Category.comp_id
CategoryTheory.eqToHom_unop
CategoryTheory.CostructuredArrow.eqToHom_left
CategoryTheory.Category.id_comp
YonedaCollection.map₂_snd
counitForward_val_snd
CategoryTheory.FunctorToTypes.map_comp_apply
map_mkPrecomp_eqToHom
CategoryTheory.FunctorToTypes.eqToHom_map_comp_apply
counitForward_val_fst 📖mathematical—YonedaCollection.fst
Opposite.unop
Opposite.op
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.Functor.fromPUnit
OverArrows.val
yonedaCollectionPresheaf
yonedaCollectionPresheafToA
CategoryTheory.Comma.hom
counitForward
—OverArrows.yonedaCollectionPresheafToA_val_fst
counitForward_val_snd 📖mathematical—YonedaCollection.snd
Opposite.unop
Opposite.op
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.Functor.fromPUnit
OverArrows.val
yonedaCollectionPresheaf
yonedaCollectionPresheafToA
CategoryTheory.Comma.hom
counitForward
CategoryTheory.Functor.map
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
YonedaCollection.fst
CategoryTheory.eqToHom
CategoryTheory.CategoryStruct.opposite
CategoryTheory.Category.toCategoryStruct
—YonedaCollection.mk_snd
map_mkPrecomp_eqToHom 📖mathematical—CategoryTheory.Functor.map
Opposite
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.instCategoryCostructuredArrow
Opposite.op
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.CostructuredArrow.mkPrecomp
CategoryTheory.eqToHom
CategoryTheory.CategoryStruct.opposite
—CategoryTheory.FunctorToTypes.map_id_apply
restrictedYonedaObjMap₁_app 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.NatTrans.app
CategoryTheory.CostructuredArrow
CategoryTheory.yoneda
CategoryTheory.instCategoryCostructuredArrow
restrictedYonedaObj
restrictedYonedaObjMap₁
OverArrows.map₁
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
Opposite.unop
CategoryTheory.Comma.hom
——
restrictedYonedaObj_map 📖mathematical—CategoryTheory.Functor.map
Opposite
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.instCategoryCostructuredArrow
restrictedYonedaObj
OverArrows.map₂
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
Opposite.unop
CategoryTheory.Comma.hom
CategoryTheory.CommaMorphism.left
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
——
restrictedYonedaObj_obj 📖mathematical—CategoryTheory.Functor.obj
Opposite
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.instCategoryCostructuredArrow
restrictedYonedaObj
OverArrows
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
Opposite.unop
CategoryTheory.Comma.hom
——
restrictedYoneda_map 📖mathematical—CategoryTheory.Functor.map
CategoryTheory.Over
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.instCategoryOver
CategoryTheory.CostructuredArrow
CategoryTheory.yoneda
CategoryTheory.instCategoryCostructuredArrow
restrictedYoneda
restrictedYonedaObjMap₁
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.hom
CategoryTheory.CommaMorphism.left
——
restrictedYoneda_obj 📖mathematical—CategoryTheory.Functor.obj
CategoryTheory.Over
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.instCategoryOver
CategoryTheory.CostructuredArrow
CategoryTheory.yoneda
CategoryTheory.instCategoryCostructuredArrow
restrictedYoneda
restrictedYonedaObj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.hom
——
unitAuxAuxAux_hom 📖mathematical—CategoryTheory.Iso.hom
CategoryTheory.types
YonedaCollection
restrictedYonedaObj
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
unitAuxAuxAux
unitForward
——
unitAuxAuxAux_inv 📖mathematical—CategoryTheory.Iso.inv
CategoryTheory.types
YonedaCollection
restrictedYonedaObj
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
unitAuxAuxAux
unitBackward
——
unitAuxAux_hom_app 📖mathematical—CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
yonedaCollectionPresheaf
restrictedYonedaObj
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
unitAuxAux
unitForward
Opposite.unop
——
unitAuxAux_inv_app_fst 📖mathematical—CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Opposite.op
Opposite.unop
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.instCategoryCostructuredArrow
restrictedYonedaObj
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.yonedaEquiv
CategoryTheory.NatTrans.app
yonedaCollectionPresheaf
CategoryTheory.Iso.inv
unitAuxAux
—Equiv.apply_symm_apply
unitAuxAux_inv_app_snd_coe 📖mathematical—CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Opposite.op
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.Functor.fromPUnit
Opposite.unop
CategoryTheory.CostructuredArrow
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.yonedaEquiv
CategoryTheory.NatTrans.app
MakesOverArrow
CategoryTheory.Comma.hom
CategoryTheory.instCategoryCostructuredArrow
restrictedYonedaObj
yonedaCollectionPresheaf
CategoryTheory.Iso.inv
unitAuxAux
OverArrows.val
—CategoryTheory.eqToHom_unop
CategoryTheory.CostructuredArrow.eqToHom_left
CategoryTheory.FunctorToTypes.map_id_apply
unitAux_hom 📖mathematical—CategoryTheory.Iso.hom
CategoryTheory.Over
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.instCategoryOver
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
CategoryTheory.CostructuredArrow
CategoryTheory.yoneda
CategoryTheory.instCategoryCostructuredArrow
restrictedYoneda
costructuredArrowPresheafToOver
unitAux
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
yonedaCollectionPresheaf
restrictedYonedaObj
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
yonedaCollectionPresheafToA
unitAuxAux
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
——
unitBackward_unitForward 📖mathematical—YonedaCollection
restrictedYonedaObj
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Opposite.op
unitBackward
unitForward
—YonedaCollection.ext
YonedaCollection.mk_fst
Equiv.symm_apply_apply
OverArrows.app_val
OverArrows.ext
CategoryTheory.eqToHom_unop
CategoryTheory.CostructuredArrow.eqToHom_left
OverArrows.map₂.congr_simp
CategoryTheory.FunctorToTypes.map_id_apply
unitForward_naturality₁ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
unitForward
YonedaCollection.map₁
restrictedYonedaObj
restrictedYonedaObjMap₁
CategoryTheory.NatTrans.app
Opposite.op
—CategoryTheory.eqToHom_unop
CategoryTheory.CostructuredArrow.eqToHom_left
YonedaCollection.map₁_snd
OverArrows.map₂.congr_simp
OverArrows.map₁_map₂
CategoryTheory.FunctorToTypes.map_id_apply
unitForward_naturality₂ 📖mathematical—unitForward
YonedaCollection.map₂
restrictedYonedaObj
CategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
—CategoryTheory.eqToHom_unop
CategoryTheory.CostructuredArrow.eqToHom_left
CategoryTheory.Category.id_comp
YonedaCollection.map₂_snd
OverArrows.map₂.congr_simp
unitForward_unitBackward 📖mathematical—CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Opposite.op
YonedaCollection
restrictedYonedaObj
unitForward
unitBackward
—CategoryTheory.eqToHom_unop
CategoryTheory.CostructuredArrow.eqToHom_left
OverArrows.map₂.congr_simp
CategoryTheory.FunctorToTypes.map_id_apply
yonedaCollectionFunctor_map 📖mathematical—CategoryTheory.Functor.map
CategoryTheory.Functor
Opposite
CategoryTheory.CostructuredArrow
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.instCategoryCostructuredArrow
yonedaCollectionFunctor
yonedaCollectionPresheafMap₁
——
yonedaCollectionFunctor_obj 📖mathematical—CategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
CategoryTheory.CostructuredArrow
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.instCategoryCostructuredArrow
yonedaCollectionFunctor
yonedaCollectionPresheaf
——
yonedaCollectionPresheafMap₁_app 📖mathematical—CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
yonedaCollectionPresheaf
yonedaCollectionPresheafMap₁
YonedaCollection.map₁
Opposite.unop
——
yonedaCollectionPresheafToA_app 📖mathematical—CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
yonedaCollectionPresheaf
yonedaCollectionPresheafToA
YonedaCollection.yonedaEquivFst
Opposite.unop
——
yonedaCollectionPresheaf_map 📖mathematical—CategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
yonedaCollectionPresheaf
YonedaCollection.map₂
Opposite.unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
——
yonedaCollectionPresheaf_obj 📖mathematical—CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
yonedaCollectionPresheaf
YonedaCollection
Opposite.unop
——

CategoryTheory.OverPresheafAux.MakesOverArrow

Theorems

NameKindAssumesProvesValidatesDepends On
app 📖mathematicalCategoryTheory.OverPresheafAux.MakesOverArrowCategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Opposite.op
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Functor
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.yoneda
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.yonedaEquiv
——
map₁ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.OverPresheafAux.MakesOverArrow
CategoryTheory.NatTrans.app
Opposite.op
—CategoryTheory.comp_apply
Mathlib.Tactic.Elementwise.hom_elementwise
CategoryTheory.NatTrans.comp_app
app
map₂ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.yoneda
CategoryTheory.Functor.map
CategoryTheory.OverPresheafAux.MakesOverArrow
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
—CategoryTheory.FunctorToTypes.naturality
app
CategoryTheory.yonedaEquiv_naturality
of_arrow 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.yoneda
CategoryTheory.OverPresheafAux.MakesOverArrow
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.yonedaEquiv
——
of_yoneda_arrow 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.yoneda
CategoryTheory.Functor.map
CategoryTheory.OverPresheafAux.MakesOverArrow—CategoryTheory.yonedaEquiv_yoneda_map
of_arrow

CategoryTheory.OverPresheafAux.OverArrows

Definitions

NameCategoryTheorems
costructuredArrowIso 📖CompOp—
map₁ 📖CompOp
4 mathmath: CategoryTheory.OverPresheafAux.counitForward_naturality₁, map₁_map₂, CategoryTheory.OverPresheafAux.restrictedYonedaObjMap₁_app, map₁_val
map₂ 📖CompOp
4 mathmath: map₂_val, map₁_map₂, CategoryTheory.OverPresheafAux.restrictedYonedaObj_map, CategoryTheory.OverPresheafAux.counitForward_naturality₂
val 📖CompOp
11 mathmath: yonedaCollectionPresheafToA_val_fst, ext_iff, val_mk, map₂_val, CategoryTheory.OverPresheafAux.counitForward_val_snd, yonedaArrow_val, CategoryTheory.OverPresheafAux.unitAuxAux_inv_app_snd_coe, app_val, map₁_val, map_val, CategoryTheory.OverPresheafAux.counitForward_val_fst
yonedaArrow 📖CompOp
1 mathmath: yonedaArrow_val

Theorems

NameKindAssumesProvesValidatesDepends On
app_val 📖mathematical—CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Opposite.op
val
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Functor
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.yoneda
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.yonedaEquiv
—CategoryTheory.OverPresheafAux.MakesOverArrow.app
Subtype.prop
ext 📖—val———
ext_iff 📖mathematical—val—ext
map_val 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.yoneda
Opposite.unop
Opposite.op
CategoryTheory.Functor.map
val
—Equiv.injective
CategoryTheory.yonedaEquiv_comp
CategoryTheory.yonedaEquiv_yoneda_map
app_val
map₁_map₂ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.yoneda
CategoryTheory.Functor.map
map₂
map₁
—ext
CategoryTheory.comp_apply
Mathlib.Tactic.Elementwise.hom_elementwise
CategoryTheory.NatTrans.naturality
map₁_val 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
val
map₁
CategoryTheory.NatTrans.app
Opposite.op
——
map₂_val 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.yoneda
CategoryTheory.Functor.map
val
map₂
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
——
val_mk 📖mathematicalCategoryTheory.OverPresheafAux.MakesOverArrowval
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Opposite.op
——
yonedaArrow_val 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.yoneda
CategoryTheory.Functor.map
val
yonedaArrow
——
yonedaCollectionPresheafToA_val_fst 📖mathematical—CategoryTheory.OverPresheafAux.YonedaCollection.fst
Opposite.unop
Opposite.op
val
CategoryTheory.OverPresheafAux.yonedaCollectionPresheaf
CategoryTheory.OverPresheafAux.yonedaCollectionPresheafToA
—EquivLike.toEmbeddingLike
app_val

CategoryTheory.OverPresheafAux.YonedaCollection

Definitions

NameCategoryTheorems
fst 📖CompOp
10 mathmath: CategoryTheory.OverPresheafAux.OverArrows.yonedaCollectionPresheafToA_val_fst, map₂_snd, yonedaEquivFst_eq, CategoryTheory.OverPresheafAux.counitForward_val_snd, mk_snd, map₁_snd, map₁_fst, map₂_fst, CategoryTheory.OverPresheafAux.counitForward_val_fst, mk_fst
map₁ 📖CompOp
8 mathmath: map₁_yonedaEquivFst, map₁_map₂, map₁_comp, map₁_id, CategoryTheory.OverPresheafAux.yonedaCollectionPresheafMap₁_app, map₁_snd, CategoryTheory.OverPresheafAux.unitForward_naturality₁, map₁_fst
map₂ 📖CompOp
8 mathmath: map₂_comp, map₂_yonedaEquivFst, CategoryTheory.OverPresheafAux.yonedaCollectionPresheaf_map, map₂_snd, CategoryTheory.OverPresheafAux.unitForward_naturality₂, map₂_id, map₁_map₂, map₂_fst
mk 📖CompOp—
snd 📖CompOp
4 mathmath: map₂_snd, CategoryTheory.OverPresheafAux.counitForward_val_snd, mk_snd, map₁_snd
yonedaEquivFst 📖CompOp
5 mathmath: map₂_yonedaEquivFst, yonedaEquivFst_eq, CategoryTheory.OverPresheafAux.yonedaCollectionPresheafToA_app, map₁_yonedaEquivFst, CategoryTheory.OverPresheafAux.app_unitForward

Theorems

NameKindAssumesProvesValidatesDepends On
ext 📖—fst
CategoryTheory.Functor.map
Opposite
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.instCategoryCostructuredArrow
Opposite.op
CategoryTheory.eqToHom
CategoryTheory.CategoryStruct.opposite
CategoryTheory.Category.toCategoryStruct
snd
——CategoryTheory.FunctorToTypes.map_id_apply
Equiv.injective
map₁_comp 📖mathematical—map₁
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
Opposite
CategoryTheory.CostructuredArrow
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Category.toCategoryStruct
CategoryTheory.OverPresheafAux.YonedaCollection
—ext
CategoryTheory.NatTrans.ext'
CategoryTheory.types_ext
map₁_fst
map₁_snd
CategoryTheory.FunctorToTypes.naturality
CategoryTheory.FunctorToTypes.eqToHom_map_comp_apply
map₁_fst 📖mathematical—fst
map₁
—mk_fst
map₁_id 📖mathematical—map₁
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
Opposite
CategoryTheory.CostructuredArrow
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Category.toCategoryStruct
CategoryTheory.OverPresheafAux.YonedaCollection
—ext
CategoryTheory.NatTrans.ext'
CategoryTheory.types_ext
map₁_fst
map₁_map₂ 📖mathematical—map₂
map₁
—ext
CategoryTheory.NatTrans.ext'
CategoryTheory.types_ext
map₂_fst
map₁_fst
map₁_snd
map₂_snd
CategoryTheory.FunctorToTypes.map_comp_apply
CategoryTheory.FunctorToTypes.naturality
CategoryTheory.FunctorToTypes.eqToHom_map_comp_apply
CategoryTheory.OverPresheafAux.map_mkPrecomp_eqToHom
map₁_snd 📖mathematical—snd
map₁
CategoryTheory.Functor.map
Opposite
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.instCategoryCostructuredArrow
Opposite.op
fst
CategoryTheory.eqToHom
CategoryTheory.CategoryStruct.opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
——
map₁_yonedaEquivFst 📖mathematical—yonedaEquivFst
map₁
—map₁_fst
map₂_comp 📖mathematical—map₂
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.OverPresheafAux.YonedaCollection
—ext
CategoryTheory.NatTrans.ext'
CategoryTheory.types_ext
map₂_fst
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
map₂_snd
CategoryTheory.FunctorToTypes.map_comp_apply
CategoryTheory.OverPresheafAux.map_mkPrecomp_eqToHom
CategoryTheory.FunctorToTypes.eqToHom_map_comp_apply
CategoryTheory.CostructuredArrow.mkPrecomp_comp
CategoryTheory.eqToHom_op
CategoryTheory.eqToHom_trans
map₂_fst 📖mathematical—fst
map₂
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.yoneda
CategoryTheory.Functor.map
—mk_fst
map₂_id 📖mathematical—map₂
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.OverPresheafAux.YonedaCollection
—ext
CategoryTheory.NatTrans.ext'
CategoryTheory.types_ext
map₂_fst
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
map₂_snd
CategoryTheory.CostructuredArrow.mkPrecomp_id
CategoryTheory.eqToHom_op
CategoryTheory.eqToHom_trans
map₂_snd 📖mathematical—snd
map₂
CategoryTheory.Functor.map
Opposite
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.instCategoryCostructuredArrow
Opposite.op
fst
CategoryTheory.CategoryStruct.comp
CategoryTheory.CategoryStruct.opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.CostructuredArrow.mkPrecomp
CategoryTheory.eqToHom
—CategoryTheory.FunctorToTypes.map_comp_apply
map₂_yonedaEquivFst 📖mathematical—yonedaEquivFst
map₂
CategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
—map₂_fst
CategoryTheory.yonedaEquiv_naturality
mk_fst 📖mathematical—fst—Equiv.apply_symm_apply
mk_snd 📖mathematical—snd
CategoryTheory.Functor.map
Opposite
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.instCategoryCostructuredArrow
Opposite.op
fst
CategoryTheory.eqToHom
CategoryTheory.CategoryStruct.opposite
CategoryTheory.Category.toCategoryStruct
——
yonedaEquivFst_eq 📖mathematical—yonedaEquivFst
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.yoneda
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.yonedaEquiv
fst
——

---

← Back to Index