Documentation Verification Report

Basic

📁 Source: Mathlib/CategoryTheory/Comma/StructuredArrow/Basic.lean

Statistics

MetricCount
DefinitionsIsUniversal, eta, homMk, homMk', isoMk, map, mapIso, mapNatIso, map₂, map₂IsoPreEquivalenceInverseCompProj, mk, mkIdTerminal, mkPrecomp, post, postIsoMap₂, pre, preEquivalence, functor, inverse, prodEquivalence, prodFunctor, prodInverse, proj, toStructuredArrow, toStructuredArrow', toCostructuredArrow, toCostructuredArrowCompProj, toStructuredArrow, toStructuredArrowCompProj, IsUniversal, desc, eta, homMk, homMk', isoMk, map, mapIso, mapIsoMap₂, mapNatIso, map₂, map₂CompMap₂Iso, map₂IsoPreEquivalenceInverseCompProj, mk, mkIdInitial, mkPostcomp, post, postIsoMap₂, pre, preEquivalence, preEquivalenceFunctor, preEquivalenceInverse, preIsoMap₂, prodEquivalence, prodFunctor, prodInverse, proj, toCostructuredArrow, toCostructuredArrow', costructuredArrowOpEquivalence, instCategoryCostructuredArrow, instCategoryStructuredArrow, structuredArrowOpEquivalence
62
TheoremsexistsUnique, fac, fac_assoc, hom_desc, hom_ext, uniq, comp_left, epi_homMk, epi_of_epi_left, eqToHom_left, eq_mk, essSurj_map₂, eta_hom_left, eta_inv_left, ext, ext_iff, faithful_map₂, full_map₂, homMk'_comp, homMk'_id, homMk'_left, homMk'_mk_comp, homMk'_mk_id, homMk'_right, homMk_left, homMk_surjective, hom_eq_iff, hom_ext, hom_ext_iff, id_left, instEssSurjCompObjPostOfFull, instEssSurjCompPre, instFaithfulCompObjPost, instFaithfulCompPre, instFullCompObjPostOfFaithful, instFullCompPre, isEquivalenceMap₂, isEquivalence_post, isEquivalence_pre, isoMk_hom_left, isoMk_inv_left, mapIso_counitIso_hom_app_left, mapIso_counitIso_inv_app_left, mapIso_functor_map_left, mapIso_functor_map_right, mapIso_functor_obj_hom, mapIso_functor_obj_left, mapIso_functor_obj_right, mapIso_inverse_map_left, mapIso_inverse_map_right, mapIso_inverse_obj_hom, mapIso_inverse_obj_left, mapIso_inverse_obj_right, mapIso_unitIso_hom_app_left, mapIso_unitIso_inv_app_left, mapNatIso_counitIso_hom_app_left, mapNatIso_counitIso_inv_app_left, mapNatIso_functor_map_left, mapNatIso_functor_map_right, mapNatIso_functor_obj_hom, mapNatIso_functor_obj_left, mapNatIso_functor_obj_right, mapNatIso_inverse_map_left, mapNatIso_inverse_map_right, mapNatIso_inverse_obj_hom, mapNatIso_inverse_obj_left, mapNatIso_inverse_obj_right, mapNatIso_unitIso_hom_app_left, mapNatIso_unitIso_inv_app_left, map_comp, map_id, map_map_left, map_map_right, map_mk, map_obj_hom, map_obj_left, map_obj_right, map₂_map_left, map₂_map_right, map₂_obj_hom, map₂_obj_left, map₂_obj_right, mkPrecomp_comp, mkPrecomp_id, mkPrecomp_left, mkPrecomp_right, mk_hom_eq_self, mk_left, mk_right, mk_surjective, mono_homMk, mono_of_mono_left, obj_ext, post_map, post_obj, functor_map_left, functor_obj_hom, functor_obj_left, functor_obj_right_as, inverse_map_left_left, inverse_obj_hom_left, inverse_obj_left_hom, inverse_obj_left_left, inverse_obj_left_right_as, inverse_obj_right_as, pre_map_left, pre_map_right, pre_obj_hom, pre_obj_left, pre_obj_right, prodEquivalence_counitIso, prodEquivalence_functor, prodEquivalence_inverse, prodEquivalence_unitIso, prodFunctor_map, prodFunctor_obj, prodInverse_map, prodInverse_obj, proj_faithful, proj_map, proj_obj, proj_reflectsIsomorphisms, right_eq_id, toStructuredArrow'_map, toStructuredArrow'_obj, toStructuredArrow_map, toStructuredArrow_obj, w, w_assoc, w_prod_fst, w_prod_fst_assoc, w_prod_snd, w_prod_snd_assoc, toCostructuredArrow_comp_proj, toCostructuredArrow_map, toCostructuredArrow_obj, toStructuredArrow_comp_proj, toStructuredArrow_map, toStructuredArrow_obj, existsUnique, fac, fac_assoc, hom_desc, hom_ext, uniq, comp_right, epi_homMk, epi_of_epi_right, eqToHom_right, eq_mk, essSurj_map₂, eta_hom_right, eta_inv_right, ext, ext_iff, faithful_map₂, full_map₂, homMk'_comp, homMk'_id, homMk'_left, homMk'_mk_comp, homMk'_mk_id, homMk'_right, homMk_right, homMk_surjective, hom_eq_iff, hom_ext, hom_ext_iff, id_right, instEssSurjCompPre, instEssSurjObjCompPostOfFull, instFaithfulCompPre, instFaithfulObjCompPost, instFullCompPre, instFullObjCompPostOfFaithful, isEquivalenceMap₂, isEquivalence_post, isEquivalence_pre, isoMk_hom_right, isoMk_inv_right, left_eq_id, mapIso_counitIso_hom_app_right, mapIso_counitIso_inv_app_right, mapIso_functor_map_left, mapIso_functor_map_right, mapIso_functor_obj_hom, mapIso_functor_obj_left, mapIso_functor_obj_right, mapIso_inverse_map_left, mapIso_inverse_map_right, mapIso_inverse_obj_hom, mapIso_inverse_obj_left, mapIso_inverse_obj_right, mapIso_unitIso_hom_app_right, mapIso_unitIso_inv_app_right, mapNatIso_counitIso_hom_app_right, mapNatIso_counitIso_inv_app_right, mapNatIso_functor_map_left, mapNatIso_functor_map_right, mapNatIso_functor_obj_hom, mapNatIso_functor_obj_left, mapNatIso_functor_obj_right, mapNatIso_inverse_map_left, mapNatIso_inverse_map_right, mapNatIso_inverse_obj_hom, mapNatIso_inverse_obj_left, mapNatIso_inverse_obj_right, mapNatIso_unitIso_hom_app_right, mapNatIso_unitIso_inv_app_right, map_comp, map_id, map_map_left, map_map_right, map_mk, map_obj_hom, map_obj_left, map_obj_right, map₂_map_left, map₂_map_right, map₂_obj_hom, map₂_obj_left, map₂_obj_right, mkPostcomp_comp, mkPostcomp_id, mkPostcomp_left, mkPostcomp_right, mk_hom_eq_self, mk_left, mk_right, mk_surjective, mono_homMk, mono_of_mono_right, obj_ext, post_map, post_obj, preEquivalenceFunctor_map_right, preEquivalenceFunctor_obj_hom, preEquivalenceFunctor_obj_left_as, preEquivalenceFunctor_obj_right, preEquivalenceInverse_map_right_right, preEquivalenceInverse_obj_hom_right, preEquivalenceInverse_obj_left_as, preEquivalenceInverse_obj_right_hom, preEquivalenceInverse_obj_right_left_as, preEquivalenceInverse_obj_right_right, preEquivalence_counitIso, preEquivalence_functor, preEquivalence_inverse, preEquivalence_unitIso, pre_map_left, pre_map_right, pre_obj_hom, pre_obj_left, pre_obj_right, prodEquivalence_counitIso, prodEquivalence_functor, prodEquivalence_inverse, prodEquivalence_unitIso, prodFunctor_map, prodFunctor_obj, prodInverse_map, prodInverse_obj, proj_faithful, proj_map, proj_obj, proj_reflectsIsomorphisms, toCostructuredArrow'_map, toCostructuredArrow'_obj, toCostructuredArrow_map, toCostructuredArrow_obj, w, w_assoc, w_prod_fst, w_prod_fst_assoc, w_prod_snd, w_prod_snd_assoc
276
Total338

CategoryTheory

Definitions

NameCategoryTheorems
costructuredArrowOpEquivalence 📖CompOp—
instCategoryCostructuredArrow 📖CompOp
437 mathmath: CostructuredArrow.homMk'_id, Functor.LeftExtension.coconeAtFunctor_map_hom, TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_hom_right, LocalizerMorphism.IsRightDerivabilityStructure.Constructor.fromRightResolution_map, Limits.IndizationClosedUnderFilteredColimitsAux.exists_nonempty_limit_obj_of_isColimit, CostructuredArrow.ofCommaFstEquivalenceInverse_obj_left_hom, ObjectProperty.ColimitOfShape.toCostructuredArrow_obj, preservesFiniteLimits_iff_lan_preservesFiniteLimits, TwoSquare.instIsConnectedStructuredArrowCostructuredArrowObjCostructuredArrowRightwardsOfGuitartExact, LightProfinite.Extend.functorOp_obj, LightCondensed.lanPresheafIso_hom, CategoryOfElements.costructuredArrowYonedaEquivalenceInverseπ_hom_app, CostructuredArrow.map_comp, CostructuredArrow.toOver_obj_left, OverPresheafAux.costructuredArrowPresheafToOver_map, CategoryOfElements.costructuredArrowYonedaEquivalence_functor, OverPresheafAux.unitAux_hom, Profinite.Extend.cocone_pt, CostructuredArrow.proj_reflectsIsomorphisms, CategoryOfElements.costructuredArrowULiftYonedaEquivalence_unitIso, CostructuredArrow.ofDiagEquivalence.functor_map_left_left, NonemptyParallelPairPresentationAux.hf, Limits.Cocone.toOver_ι_app, lan_preservesFiniteLimits_of_flat, TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_left_hom, Profinite.Extend.functorOp_map, CostructuredArrow.small_proj_preimage_of_locallySmall, CostructuredArrow.prodEquivalence_counitIso, CostructuredArrow.isEquivalence_pre, OverPresheafAux.restrictedYoneda_map, TwoSquare.structuredArrowRightwardsOpEquivalence_inverse, CostructuredArrow.preEquivalence.functor_obj_right_as, CostructuredArrow.pre_obj_hom, Functor.RightExtension.postcompose₂_obj_left_map, Limits.IsIndObject.isFiltered, OverPresheafAux.restrictedYoneda_obj, Functor.RightExtension.postcompose₂_obj_right, CostructuredArrow.mkPrecomp_id, Functor.leftKanExtensionUnit_leftKanExtension_map_leftKanExtensionObjIsoColimit_hom, CostructuredArrow.CreatesConnected.mapCone_raiseCone, CostructuredArrow.mapNatIso_inverse_obj_left, CostructuredArrow.mapIso_functor_obj_hom, CostructuredArrow.functor_obj, CostructuredArrow.ofCostructuredArrowProjEquivalence.inverse_obj_left_hom, CostructuredArrow.toOver_obj_right, TwoSquare.EquivalenceJ.inverse_map, CostructuredArrow.ofDiagEquivalence.inverse_obj_left, Limits.IndObjectPresentation.instFinalICostructuredArrowFunctorOppositeTypeYonedaToCostructuredArrow, Limits.Cocone.toCostructuredArrow_comp_proj, CostructuredArrow.isEquivalenceMap₂, Limits.Cone.fromCostructuredArrow_map_hom, Limits.Cone.toCostructuredArrow_obj, TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_right_as, Functor.ι_leftKanExtensionObjIsoColimit_inv, TwoSquare.instIsConnectedCostructuredArrowStructuredArrowObjStructuredArrowDownwardsOfGuitartExact, CostructuredArrow.mapNatIso_inverse_map_right, Limits.Cocone.toCostructuredArrow_comp_toOver_comp_forget, CostructuredArrow.unop_left_comp_ofMkLEMk_unop, Functor.RightExtension.postcomp₁_obj_left_map, CostructuredArrow.post_obj, Functor.RightExtension.postcomp₁_map_right, CostructuredArrow.overEquivPresheafCostructuredArrow_inverse_map_toOverCompCoyoneda, Limits.Cocone.toCostructuredArrow_map, CostructuredArrow.mapNatIso_unitIso_inv_app_left, CostructuredArrow.hasTerminal, CostructuredArrow.prodFunctor_map, TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_left_right, TwoSquare.equivalenceJ_unitIso, CostructuredArrow.map₂_obj_right, CostructuredArrow.mapIso_unitIso_hom_app_left, CostructuredArrow.toOver_map_right, CostructuredArrow.map_obj_hom, LightProfinite.Extend.cocone_ι_app, Limits.PreservesFiniteLimitsOfIsFilteredCostructuredArrowYonedaAux.functorToInterchangeIso_inv_app_app, Condensed.lanPresheafExt_inv, Functor.costructuredArrowMapCocone_pt, CostructuredArrow.toOver_obj_hom, Functor.ι_colimitIsoColimitGrothendieck_inv_assoc, CostructuredArrow.instFullOverToOver, CostructuredArrow.ofDiagEquivalence.functor_obj_hom, CostructuredArrow.homMk'_mk_id, Limits.Cocone.fromCostructuredArrow_ι_app, Functor.LeftExtension.coconeAtWhiskerRightIso_inv_hom, Functor.RightExtension.precomp_map_left, Limits.Cocone.toCostructuredArrowCompProj_hom_app, Limits.Cone.fromCostructuredArrow_obj_π, CostructuredArrow.ofCostructuredArrowProjEquivalence.functor_obj_right_as, Functor.ι_leftKanExtensionObjIsoColimit_inv_assoc, CostructuredArrow.ofCostructuredArrowProjEquivalence.inverse_obj_hom, OverPresheafAux.counitForward_naturality₁, CostructuredArrow.mapIso_inverse_obj_right, Limits.colimit.toOver_ι_app, CostructuredArrow.costructuredArrowToOverEquivalence.functor_map, isLeftAdjoint_iff_hasTerminal_costructuredArrow, TwoSquare.costructuredArrowRightwards_map, Profinite.Extend.functorOp_obj, CostructuredArrow.ofDiagEquivalence.functor_obj_left_hom, CostructuredArrow.mapIso_functor_map_left, CostructuredArrow.instFaithfulOverToOver, instInitialCostructuredArrowOverToOver, CostructuredArrow.pre_obj_left, CostructuredArrow.post_map, CostructuredArrow.mapIso_unitIso_inv_app_left, CostructuredArrow.essSurj_map₂, CostructuredArrow.map_obj_right, CostructuredArrow.isSeparating_inverseImage_proj, CostructuredArrow.proj_obj, Functor.pointwiseLeftKanExtension_obj, Functor.pointwiseLeftKanExtension_map, IsCardinalAccessibleCategory.final_toCostructuredArrow, CostructuredArrow.preEquivalence.functor_obj_hom, CostructuredArrow.ofCommaFstEquivalence_inverse, CostructuredArrow.mapIso_functor_obj_left, Functor.Initial.out, OverPresheafAux.YonedaCollection.map₂_snd, Limits.Cone.equivCostructuredArrow_inverse, CostructuredArrow.map_obj_left, CostructuredArrow.eta_hom_left, CostructuredArrow.instEssSurjCompPre, CostructuredArrow.ofCommaFstEquivalenceFunctor_obj_hom, TwoSquare.structuredArrowRightwardsOpEquivalence_counitIso, Limits.Cocone.toCostructuredArrowCompToOverCompForget_inv_app, CostructuredArrow.toStructuredArrow'_obj, CostructuredArrow.prodInverse_obj, CostructuredArrow.instEssSurjOverToOver, CostructuredArrow.ofDiagEquivalence.functor_obj_left_left, OverPresheafAux.counitForward_val_snd, CostructuredArrow.initial_post, CostructuredArrow.ofCostructuredArrowProjEquivalence.inverse_map_left_left, Functor.instIsEquivalenceRightExtensionPostcomp₁OfIsIso, CostructuredArrow.hasColimitsOfSize, TwoSquare.equivalenceJ_counitIso, CostructuredArrow.id_left, CostructuredArrow.prodEquivalence_inverse, OverPresheafAux.yonedaCollectionFunctor_obj, CostructuredArrow.ofDiagEquivalence.inverse_obj_hom, Functor.RightExtension.coneAtFunctor_obj, Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.ι_isoColimit_hom, CostructuredArrow.map_map_right, CostructuredArrow.closedUnderLimitsOfShape_discrete_empty, Limits.IndObjectPresentation.toCostructuredArrow_obj_right_as, CostructuredArrow.ofCommaFstEquivalenceInverse_obj_right_as, CostructuredArrow.ofCommaFstEquivalenceInverse_obj_left_left, IsFinitelyAccessibleCategory.instIsFilteredCostructuredArrowFullSubcategoryIsFinitelyPresentableι, Functor.RightExtension.postcomp₁_obj_left_obj, CostructuredArrow.mapNatIso_functor_obj_hom, CostructuredArrow.CreatesConnected.natTransInCostructuredArrow_app, isCofiltered_costructuredArrow_of_isCofiltered_of_exists, CategoryOfElements.costructuredArrowYonedaEquivalence_counitIso, Functor.toCostructuredArrow_comp_proj, CategoryOfElements.costructuredArrowYonedaEquivalence_inverse, Limits.isIndObject_iff, Presheaf.final_toCostructuredArrow_comp_pre, TwoSquare.instFinalCostructuredArrowObjCostructuredArrowRightwardsOfGuitartExact, CostructuredArrow.proj_faithful, Functor.RightExtension.coneAtWhiskerRightIso_inv_hom, CostructuredArrow.mapNatIso_counitIso_inv_app_left, OverPresheafAux.counitAuxAux_inv, Functor.pointwiseLeftKanExtensionUnit_app, RepresentablyCoflat.filtered, CostructuredArrow.mapIso_counitIso_hom_app_left, Limits.IsIndObject.finallySmall, OverPresheafAux.restrictedYonedaObj_map, CostructuredArrow.epi_homMk, CostructuredArrow.mapCompιCompGrothendieckProj_inv_app, CategoryOfElements.costructuredArrowULiftYonedaEquivalence_functor_obj, CostructuredArrow.instFullCompPre, CostructuredArrow.isSeparating_proj_preimage, CostructuredArrow.toOver_map_left, Presheaf.tautologicalCocone'_pt, lan_preservesFiniteLimits_of_preservesFiniteLimits, CostructuredArrow.eta_inv_left, Limits.PreservesFiniteLimitsOfIsFilteredCostructuredArrowYonedaAux.functorToInterchangeIso_hom_app_app, CostructuredArrow.instFaithfulCompObjPost, TwoSquare.costructuredArrowDownwardsPrecomp_obj, CategoryOfElements.fromCostructuredArrow_obj_snd, CostructuredArrow.faithful_map₂, CostructuredArrow.mapIso_functor_map_right, CostructuredArrow.functor_map, StructuredArrow.toCostructuredArrow_map, CostructuredArrow.overEquivPresheafCostructuredArrow_functor_map_toOverCompYoneda, OverPresheafAux.counitBackward_counitForward, CategoryOfElements.costructuredArrowULiftYonedaEquivalence_functor_map, CostructuredArrow.mapNatIso_inverse_map_left, CostructuredArrow.costructuredArrowToOverEquivalence.functor_obj, CostructuredArrow.map₂_map_right, Limits.IndObjectPresentation.toCostructuredArrow_obj_left, TwoSquare.equivalenceJ_inverse, CostructuredArrow.ofCostructuredArrowProjEquivalence.functor_obj_left_right_as, Limits.Cocone.toOver_pt, CostructuredArrow.pre_obj_right, Limits.isFiltered_costructuredArrow_yoneda_of_preservesFiniteLimits, Condensed.lanPresheafNatIso_hom_app, CostructuredArrow.CreatesConnected.raiseCone_pt, Limits.IndObjectPresentation.toCostructuredArrow_map_left, Functor.RightExtension.precomp_obj_right, Limits.PreservesFiniteLimitsOfIsFilteredCostructuredArrowYonedaAux.isoAux_hom_app, CostructuredArrow.toStructuredArrow'_map, Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.ι_isoColimit_hom_assoc, Limits.Cone.toCostructuredArrow_map, CostructuredArrow.ofCostructuredArrowProjEquivalence.inverse_obj_right_as, Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.ι_isoColimit_inv_assoc, CostructuredArrow.ofCostructuredArrowProjEquivalence.functor_obj_left_hom, CostructuredArrow.prodEquivalence_unitIso, CostructuredArrow.full_map₂, Limits.Cocone.toCostructuredArrowCocone_ι_app, Limits.isFiltered_costructuredArrow_yoneda_iff_nonempty_preservesFiniteLimits, Functor.initial_iff_isCofiltered_costructuredArrow, CostructuredArrow.mapNatIso_inverse_obj_hom, CostructuredArrow.grothendieckProj_map, Functor.RightExtension.postcomp₁_map_left_app, CostructuredArrow.epi_of_epi_left, CostructuredArrow.mono_of_mono_left, CostructuredArrow.ofCommaFstEquivalence_functor, Condensed.instFinalOppositeDiscreteQuotientCarrierToTopTotallyDisconnectedSpaceCostructuredArrowFintypeCatProfiniteOpToProfiniteOpPtAsLimitConeFunctorOp, Functor.isDenseAt_iff, Functor.toCostructuredArrow_obj, CostructuredArrow.ofCommaFstEquivalenceFunctor_map_right, CategoryOfElements.costructuredArrowULiftYonedaEquivalence_counitIso, Functor.LeftExtension.coconeAtFunctor_obj, Limits.IndObjectPresentation.toCostructuredArrow_obj_hom, CostructuredArrow.ofDiagEquivalence.functor_obj_right_as, CostructuredArrow.prodFunctor_obj, Functor.LeftExtension.coconeAtWhiskerRightIso_hom_hom, OverPresheafAux.counitAux_hom, CostructuredArrow.mapNatIso_unitIso_hom_app_left, CategoryOfElements.fromCostructuredArrow_map_coe, CostructuredArrow.proj_map, TwoSquare.GuitartExact.isConnected_rightwards, TwoSquare.structuredArrowRightwardsOpEquivalence.functor_map_left_right, CostructuredArrow.ofCommaFstEquivalenceInverse_map_left_left, Limits.PreservesFiniteLimitsOfIsFilteredCostructuredArrowYonedaAux.flipFunctorToInterchange_inv_app_app, LightProfinite.Extend.functorOp_map, CostructuredArrow.comp_left, OverPresheafAux.unitAuxAux_inv_app_fst, instInitialCostructuredArrowCompPreOfRepresentablyCoflat, OverPresheafAux.unitAuxAux_inv_app_snd_coe, CostructuredArrow.instEssSurjCompObjPostOfFull, CostructuredArrow.homMk'_mk_comp, CostructuredArrow.preFunctor_app, TwoSquare.structuredArrowRightwardsOpEquivalence_unitIso, CostructuredArrow.ofDiagEquivalence.inverse_obj_right_as, CostructuredArrow.ofCostructuredArrowProjEquivalence.functor_map_left_left, CostructuredArrow.prodInverse_map, Limits.Cone.equivCostructuredArrow_functor, Functor.PreservesPointwiseRightKanExtensionAt.preserves, CostructuredArrow.instFaithfulCompPre, CategoryOfElements.costructuredArrow_yoneda_equivalence_naturality, CostructuredArrow.toStructuredArrow_obj, Limits.Cocone.fromCostructuredArrow_pt, instIsFilteredCostructuredArrowCompOfRepresentablyCoflat, OverPresheafAux.restrictedYonedaObj_obj, MorphismProperty.instIsClosedUnderIsomorphismsCostructuredArrowCostructuredArrowObjOfRespectsIso, CostructuredArrow.ofCostructuredArrowProjEquivalence.functor_obj_hom, CostructuredArrow.CreatesConnected.raiseCone_π_app, CategoryOfElements.costructuredArrowYonedaEquivalence_unitIso, CostructuredArrow.mapNatIso_functor_obj_left, CostructuredArrow.isoMk_inv_left, OverPresheafAux.restrictedYonedaObjMap₁_app, flat_iff_lan_flat, Functor.RightExtension.postcomp₁_obj_right, CostructuredArrow.ofCommaFstEquivalence_counitIso, Functor.leftKanExtensionUnit_leftKanExtensionObjIsoColimit_hom, CostructuredArrow.hasLimitsOfShape_of_isConnected, CategoryOfElements.toCostructuredArrow_obj, OverPresheafAux.yonedaCollectionFunctor_map, TwoSquare.costructuredArrowDownwardsPrecomp_map, CostructuredArrow.ofCommaFstEquivalenceFunctor_obj_left, LocalizerMorphism.IsRightDerivabilityStructure.Constructor.isConnected, OverPresheafAux.YonedaCollection.mk_snd, lan_flat_of_flat, Limits.Cone.equivCostructuredArrow_counitIso, Limits.Cocone.toCostructuredArrowCompToOverCompForget_hom_app, Functor.RightExtension.postcompose₂_obj_hom_app, ObjectProperty.ColimitOfShape.toCostructuredArrow_map, Functor.RightExtension.precomp_obj_hom_app, CostructuredArrow.mapNatIso_functor_obj_right, CostructuredArrow.ofCommaFstEquivalenceFunctor_map_left, Functor.RightExtension.precomp_map_right, CostructuredArrow.map_map_left, CostructuredArrow.map₂_map_left, CostructuredArrow.ofCommaFstEquivalenceFunctor_obj_right, CategoryOfElements.costructuredArrowYonedaEquivalenceFunctorProj_hom_app, Functor.RightExtension.postcompose₂ObjMkIso_inv_left_app, OverPresheafAux.YonedaCollection.map₁_comp, CostructuredArrow.preEquivalence.inverse_obj_left_left, CostructuredArrow.ofCostructuredArrowProjEquivalence.functor_obj_left_left, Functor.RightExtension.postcompose₂_map_left_app, Profinite.Extend.functorOp_final, Functor.RightExtension.postcompose₂_obj_left_obj, CostructuredArrow.ofDiagEquivalence.functor_obj_left_right_as, CostructuredArrow.map_mk, LightCondensed.lanPresheafNatIso_hom_app, TwoSquare.EquivalenceJ.functor_obj, Functor.leftKanExtensionIsoFiberwiseColimit_hom_app, TwoSquare.isConnected_rightwards_iff_downwards, CategoryOfElements.costructuredArrowULiftYonedaEquivalence_inverse_obj, Functor.RightExtension.postcompose₂_map_right, Limits.Cone.fromCostructuredArrow_obj_pt, CostructuredArrow.essentiallySmall, LightProfinite.Extend.cocone_pt, CostructuredArrow.mapNatIso_counitIso_hom_app_left, Limits.Cocone.toCostructuredArrow_obj, Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.comp_homEquiv_symm, Limits.Cocone.mapCoconeToOver_inv_hom, Functor.LeftExtension.coconeAt_pt, Functor.toCostructuredArrow_map, Profinite.Extend.cocone_ι_app, Functor.RightExtension.coneAtFunctor_map_hom, CostructuredArrow.instFullCompObjPostOfFaithful, Functor.RightExtension.coneAtWhiskerRightIso_hom_hom, CostructuredArrow.ofCommaFstEquivalenceInverse_obj_left_right, CostructuredArrow.prodEquivalence_functor, ObjectProperty.isFiltered_costructuredArrow_colimitsCardinalClosure_ι, CostructuredArrow.homMk'_comp, CostructuredArrow.ofDiagEquivalence.inverse_map_left, CostructuredArrow.mapCompιCompGrothendieckProj_hom_app, OverPresheafAux.YonedaCollection.map₁_id, CostructuredArrow.eqToHom_left, CostructuredArrow.mapNatIso_inverse_obj_right, CostructuredArrow.hasColimit, LightCondensed.lanPresheafExt_inv, Condensed.lanPresheafExt_hom, CostructuredArrow.mapNatIso_functor_map_left, TwoSquare.guitartExact_iff_isConnected_rightwards, Presheaf.restrictedULiftYonedaHomEquiv'_symm_app_naturality_left, Presheaf.tautologicalCocone_ι_app, CostructuredArrow.pre_map_right, Presheaf.tautologicalCocone'_ι_app, CategoryOfElements.costructuredArrowYonedaEquivalenceInverseπ_inv_app, CostructuredArrow.hasColimitsOfShape, CostructuredArrow.overEquivPresheafCostructuredArrow_functor_map_toOverCompCoyoneda, CostructuredArrow.ofCommaFstEquivalence_unitIso, TwoSquare.EquivalenceJ.functor_map, CostructuredArrow.costructuredArrowToOverEquivalence.inverse_obj, Limits.Cocone.toCostructuredArrowCompProj_inv_app, LightCondensed.instFinalNatCostructuredArrowOppositeFintypeCatLightProfiniteOpToLightProfiniteOpPtAsLimitConeFunctorOp, Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.ι_isoColimit_inv, Limits.Cone.equivCostructuredArrow_unitIso, CostructuredArrow.mapIso_functor_obj_right, CostructuredArrow.mono_homMk, CategoryOfElements.fromCostructuredArrow_obj_mk, TwoSquare.equivalenceJ_functor, CostructuredArrow.preEquivalence.inverse_obj_hom_left, CostructuredArrow.preEquivalence.functor_map_left, Functor.RightExtension.postcomp₁_obj_hom_app, Functor.ι_leftKanExtensionObjIsoColimit_hom, CostructuredArrow.isEquivalence_toOver, CostructuredArrow.isClosedUnderColimitsOfShape, CostructuredArrow.ofCostructuredArrowProjEquivalence.inverse_obj_left_right_as, Presheaf.restrictedULiftYonedaHomEquiv'_symm_naturality_right_assoc, CostructuredArrow.preEquivalence.inverse_obj_right_as, Limits.Cocone.toCostructuredArrowCocone_pt, Functor.LeftExtension.coconeAt_ι_app, CostructuredArrow.IsUniversal.uniq, TwoSquare.guitartExact_iff_final, Limits.IndizationClosedUnderFilteredColimitsAux.isFiltered, TwoSquare.EquivalenceJ.inverse_obj, Presheaf.restrictedULiftYonedaHomEquiv'_symm_app_naturality_left_assoc, CostructuredArrow.preEquivalence.inverse_map_left_left, LightCondensed.instHasColimitsOfShapeCostructuredArrowOppositeFintypeCatLightProfiniteOpToLightProfiniteType, OverPresheafAux.counitForward_counitBackward, OverPresheafAux.costructuredArrowPresheafToOver_obj, Limits.IndizationClosedUnderFilteredColimitsAux.exists_nonempty_limit_obj_of_colimit, CostructuredArrow.overEquivPresheafCostructuredArrow_inverse_map_toOverCompYoneda, CostructuredArrow.initial_map₂_id, CostructuredArrow.pre_map_left, Limits.Cocone.mapCoconeToOver_hom_hom, Functor.SmallCategories.instPreservesFiniteLimitsSheafSheafPullbackOfRepresentablyFlat, LocalizerMorphism.IsRightDerivabilityStructure.Constructor.fromRightResolution_obj, Limits.PreservesFiniteLimitsOfIsFilteredCostructuredArrowYonedaAux.flipFunctorToInterchange_hom_app_app, OverPresheafAux.YonedaCollection.map₁_snd, CostructuredArrow.mapNatIso_functor_map_right, Functor.leftKanExtensionUnit_leftKanExtensionObjIsoColimit_hom_assoc, CostructuredArrow.mapIso_inverse_obj_hom, CostructuredArrow.mkPrecomp_comp, IsCardinalAccessibleCategory.instIsCardinalFilteredCostructuredArrowFullSubcategoryIsCardinalPresentableι, TwoSquare.guitartExact_iff_isConnected_downwards, LightCondensed.lanPresheafExt_hom, CostructuredArrow.epi_iff_epi_left, StructuredArrow.toCostructuredArrow'_map, Limits.colimit.toCostructuredArrow_map, CostructuredArrow.preEquivalence.inverse_obj_left_right_as, CostructuredArrow.initial_proj_of_isCofiltered, CostructuredArrow.unop_left_comp_underlyingIso_hom_unop, CostructuredArrow.mapIso_inverse_map_right, StructuredArrow.toCostructuredArrow'_obj, CostructuredArrow.ofCostructuredArrowProjEquivalence.inverse_obj_left_left, instIsCofilteredCostructuredArrowProdDiagOfIsCofilteredOrEmpty, Limits.colimit.toCostructuredArrow_obj, CostructuredArrow.well_copowered_costructuredArrow, CostructuredArrow.map_id, Presheaf.tautologicalCocone_pt, TwoSquare.structuredArrowRightwardsOpEquivalence_functor, Functor.ι_leftKanExtensionObjIsoColimit_hom_assoc, Limits.colimit.toOver_pt, CostructuredArrow.mapIso_inverse_map_left, OverPresheafAux.map_mkPrecomp_eqToHom, CostructuredArrow.map₂_obj_hom, Functor.pointwiseLeftKanExtension_desc_app, CategoryOfElements.costructuredArrowULiftYonedaEquivalence_inverse_map, CostructuredArrow.map₂_obj_left, TwoSquare.costructuredArrowRightwards_obj, ObjectProperty.isCardinalFiltered_costructuredArrow_colimitsCardinalClosure_ι, Functor.ι_colimitIsoColimitGrothendieck_inv, NonemptyParallelPairPresentationAux.hg, OverPresheafAux.counitAuxAux_hom, CostructuredArrow.ofCommaFstEquivalenceInverse_obj_hom, CostructuredArrow.initial_pre, Functor.leftKanExtensionIsoFiberwiseColimit_inv_app, Functor.RightExtension.postcompose₂ObjMkIso_hom_left_app, CostructuredArrow.projectQuotient_mk, Presheaf.restrictedULiftYonedaHomEquiv'_symm_naturality_right, CostructuredArrow.preEquivalence.functor_obj_left, CostructuredArrow.toStructuredArrow_map, LightProfinite.Extend.functorOp_final, Condensed.lanPresheafIso_hom, CostructuredArrow.isEquivalence_post, CategoryOfElements.fromCostructuredArrow_obj_fst, CostructuredArrow.costructuredArrowToOverEquivalence.inverse_map, TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_left_left_as, CostructuredArrow.mapIso_counitIso_inv_app_left, CostructuredArrow.isoMk_hom_left, Functor.costructuredArrowMapCocone_ι_app, CostructuredArrow.instPreservesLimitsOfShapeProjOfIsConnected, CategoryOfElements.toCostructuredArrow_map, CategoryOfElements.costructuredArrowYonedaEquivalenceFunctorProj_inv_app, StructuredArrow.toCostructuredArrow_obj, Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.comp_homEquiv_symm_assoc, CostructuredArrow.preEquivalence.inverse_obj_left_hom, CostructuredArrow.small_inverseImage_proj_of_locallySmall, CostructuredArrow.locallySmall, Functor.RightExtension.precomp_obj_left, Functor.instIsEquivalenceRightExtensionCompPrecomp, CostructuredArrow.ofCommaFstEquivalenceInverse_map_left_right, CostructuredArrow.mapIso_inverse_obj_left, OverPresheafAux.counitForward_naturality₂
instCategoryStructuredArrow 📖CompOp
381 mathmath: Functor.LeftExtension.coconeAtFunctor_map_hom, TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_hom_right, LocalizerMorphism.IsRightDerivabilityStructure.Constructor.fromRightResolution_map, TwoSquare.instInitialStructuredArrowObjStructuredArrowDownwardsOfGuitartExact, Limits.Cone.toUnder_pt, StructuredArrow.final_pre, StructuredArrow.projectSubobject_mk, StructuredArrow.instFullUnderToUnder, StructuredArrow.map_map_right, StructuredArrow.ofCommaSndEquivalenceInverse_obj_right_left, StructuredArrow.isoMk_inv_right, TwoSquare.instIsConnectedStructuredArrowCostructuredArrowObjCostructuredArrowRightwardsOfGuitartExact, StructuredArrow.map_comp, StructuredArrow.ofCommaSndEquivalenceFunctor_map_right, Functor.toStructuredArrow_obj, Functor.leftExtensionEquivalenceOfIso₁_functor_map_left, Functor.LeftExtension.precomp₂_obj_hom_app, StructuredArrow.ofStructuredArrowProjEquivalence.inverse_obj_right_right, Limits.limit.toStructuredArrow_obj, StructuredArrow.map_obj_right, StructuredArrow.mapIso_functor_obj_left, CategoryOfElements.fromStructuredArrow_map, Bicategory.LeftLift.whiskering_map, Functor.LeftExtension.precomp₂_map_right, StructuredArrow.commaMapEquivalenceInverse_map, StructuredArrow.ofDiagEquivalence.inverse_map_right, TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_left_hom, Profinite.Extend.functorOp_map, StructuredArrow.homMk'_comp, StructuredArrow.ofCommaSndEquivalence_functor, StructuredArrow.final_map, CategoryOfElements.structuredArrowEquivalence_functor, StructuredArrow.hasLimit, TwoSquare.structuredArrowRightwardsOpEquivalence_inverse, StructuredArrow.ofStructuredArrowProjEquivalence.inverse_obj_right_left_as, StructuredArrow.mapIso_inverse_obj_hom, StructuredArrow.toUnder_obj_left, StructuredArrow.IsUniversal.uniq, Functor.pointwiseRightKanExtension_lift_app, CondensedMod.isDiscrete_tfae, Functor.LeftExtension.postcomp₁_map_right_app, StructuredArrow.map₂_obj_right, StructuredArrow.commaMapEquivalenceCounitIso_hom_app_left_right, Profinite.Extend.cone_π_app, Functor.leftExtensionEquivalenceOfIso₁_functor_obj_left, TwoSquare.EquivalenceJ.inverse_map, StructuredArrow.commaMapEquivalenceUnitIso_inv_app_right_right, Functor.RightExtension.coneAt_pt, Functor.LeftExtension.postcomp₁_obj_left, StructuredArrow.map₂_map_right, TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_right_as, StructuredArrow.preEquivalenceInverse_obj_right_hom, TwoSquare.instIsConnectedCostructuredArrowStructuredArrowObjStructuredArrowDownwardsOfGuitartExact, Functor.LeftExtension.precomp_map_right, Functor.LeftExtension.precomp₂_obj_left, StructuredArrow.proj_faithful, StructuredArrow.ofDiagEquivalence.functor_obj_right_right, Functor.RightExtension.coneAt_π_app, StructuredArrow.mapNatIso_functor_obj_right, StructuredArrow.eta_hom_right, TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_left_right, Limits.limit.toStructuredArrow_map, TwoSquare.equivalenceJ_unitIso, StructuredArrow.proj_reflectsIsomorphisms, StructuredArrow.prodInverse_map, StructuredArrow.eta_inv_right, Limits.Cone.toStructuredArrowCompProj_inv_app, StructuredArrow.instEssSurjCompPre, StructuredArrow.ofDiagEquivalence.inverse_obj_right, Functor.LeftExtension.precomp_obj_hom_app, CategoryOfElements.to_comma_map_right, StructuredArrow.ofStructuredArrowProjEquivalence.functor_obj_left_as, StructuredArrow.instEssSurjObjCompPostOfFull, TwoSquare.guitartExact_iff_initial, Functor.LeftExtension.coconeAtWhiskerRightIso_inv_hom, Limits.Cone.fromStructuredArrow_π_app, StructuredArrow.id_right, StructuredArrow.final_map₂_id, StructuredArrow.preEquivalenceFunctor_obj_left_as, StructuredArrow.map₂_obj_left, RepresentablyFlat.cofiltered, StructuredArrow.preEquivalence_unitIso, CategoryOfElements.structuredArrowEquivalence_counitIso, Functor.LeftExtension.postcompose₂_obj_right_map, StructuredArrow.functor_map, StructuredArrow.ofCommaSndEquivalence_unitIso, StructuredArrow.map₂_map_left, StructuredArrow.ofCommaSndEquivalence_counitIso, Bicategory.LeftExtension.whiskering_map, StructuredArrow.isEquivalence_pre, StructuredArrow.prodFunctor_map, Functor.leftExtensionEquivalenceOfIso₁_inverse_map_left, Limits.Cone.toStructuredArrowCompToUnderCompForget_hom_app, StructuredArrow.final_post, Functor.Final.out, StructuredArrow.prodEquivalence_functor, Functor.leftExtensionEquivalenceOfIso₁_inverse_obj_left, StructuredArrow.ofDiagEquivalence.inverse_obj_hom, StructuredArrow.mapNatIso_functor_obj_hom, StructuredArrow.mapIso_inverse_obj_right, StructuredArrow.ofDiagEquivalence.functor_obj_right_hom, StructuredArrow.mapNatIso_inverse_map_right, StructuredArrow.prodEquivalence_unitIso, StructuredArrow.full_map₂, isFiltered_structuredArrow_of_isFiltered_of_exists, StructuredArrow.mapNatIso_functor_map_right, StructuredArrow.ofCommaSndEquivalenceInverse_map_right_left, StructuredArrow.mapNatIso_inverse_obj_left, StructuredArrow.ofDiagEquivalence.functor_map_right_right, TwoSquare.structuredArrowRightwardsOpEquivalence_counitIso, CategoryOfElements.toStructuredArrow_obj, StructuredArrow.ofStructuredArrowProjEquivalence.inverse_obj_left_as, StructuredArrow.preEquivalence_inverse, StructuredArrow.preEquivalence_functor, CostructuredArrow.toStructuredArrow'_obj, Limits.Cone.fromStructuredArrow_pt, StructuredArrow.homMk'_mk_comp, Functor.LeftExtension.postcompose₂ObjMkIso_inv_right_app, Limits.Cone.toStructuredArrow_comp_toUnder_comp_forget, StructuredArrow.ofCommaSndEquivalenceFunctor_map_left, TwoSquare.equivalenceJ_counitIso, StructuredArrow.mapNatIso_unitIso_hom_app_right, StructuredArrow.eqToHom_right, Functor.RightExtension.coneAtFunctor_obj, Bicategory.Lan.CommuteWith.lanCompIsoWhisker_hom_right, Functor.toStructuredArrow_map, Functor.LeftExtension.postcompose₂_map_right_app, StructuredArrow.instFaithfulObjCompPost, StructuredArrow.small_inverseImage_proj_of_locallySmall, Limits.Cone.toStructuredArrowCone_π_app, StructuredArrow.mono_iff_mono_right, Functor.instIsEquivalenceLeftExtensionPostcomp₁OfIsIso, Limits.Cocone.toStructuredArrow_obj, StructuredArrow.epi_homMk, Functor.LeftExtension.postcompose₂_obj_hom_app, StructuredArrow.isEquivalence_toUnder, StructuredArrow.ofStructuredArrowProjEquivalence.functor_map_right_right, StructuredArrow.ofCommaSndEquivalenceFunctor_obj_right, instFinalStructuredArrowCompPreOfRepresentablyFlat, LightProfinite.Extend.functor_map, Functor.RightExtension.coneAtWhiskerRightIso_inv_hom, Functor.LeftExtension.postcomp₁_obj_hom_app, CategoryOfElements.fromStructuredArrow_obj, StructuredArrow.ofDiagEquivalence.functor_obj_right_left_as, Limits.Cocone.equivStructuredArrow_unitIso, StructuredArrow.mkPostcomp_comp, Functor.leftExtensionEquivalenceOfIso₁_inverse_map_right, StructuredArrow.isoMk_hom_right, TwoSquare.costructuredArrowDownwardsPrecomp_obj, Functor.LeftExtension.postcompose₂_obj_right_obj, StructuredArrow.ofStructuredArrowProjEquivalence.functor_obj_right_hom, StructuredArrow.toCostructuredArrow_map, StructuredArrow.hasLimitsOfShape, Functor.final_iff_isFiltered_structuredArrow, Limits.Cone.mapConeToUnder_inv_hom, StructuredArrow.toUnder_map_right, TwoSquare.equivalenceJ_inverse, StructuredArrow.isEquivalenceMap₂, Limits.Cocone.fromStructuredArrow_obj_pt, Bicategory.LeftExtension.IsKan.uniqueUpToIso_hom_right, StructuredArrow.isEquivalence_post, Bicategory.HasLeftKanLift.hasInitial, Functor.ranObjObjIsoLimit_inv_π_assoc, CategoryOfElements.structuredArrowEquivalence_inverse, Profinite.Extend.functor_obj, CostructuredArrow.toStructuredArrow'_map, Functor.leftExtensionEquivalenceOfIso₁_inverse_obj_right, MorphismProperty.instIsClosedUnderIsomorphismsStructuredArrowStructuredArrowObjOfRespectsIso, StructuredArrow.commaMapEquivalenceInverse_obj, SSet.StrictSegal.isPointwiseRightKanExtensionAt.fac_aux₂, StructuredArrow.homMk'_id, Functor.leftExtensionEquivalenceOfIso₁_counitIso_inv_app_right_app, StructuredArrow.ofStructuredArrowProjEquivalence.inverse_obj_hom, StructuredArrow.preEquivalenceInverse_obj_right_right, StructuredArrow.preEquivalenceInverse_obj_right_left_as, StructuredArrow.hasLimitsOfSize, Bicategory.Lan.CommuteWith.lanCompIsoWhisker_inv_right, StructuredArrow.mapNatIso_inverse_obj_hom, Functor.LeftExtension.postcompose₂ObjMkIso_hom_right_app, StructuredArrow.commaMapEquivalenceFunctor_obj_left, StructuredArrow.post_map, StructuredArrow.commaMapEquivalenceFunctor_map_left, StructuredArrow.instFaithfulUnderToUnder, Functor.LeftExtension.postcomp₁_obj_right_map, Functor.ranObjObjIsoLimit_hom_π_assoc, Functor.PreservesPointwiseLeftKanExtensionAt.preserves, isRightAdjoint_iff_hasInitial_structuredArrow, StructuredArrow.faithful_map₂, Functor.LeftExtension.coconeAtFunctor_obj, StructuredArrow.pre_map_left, Functor.LeftExtension.coconeAtWhiskerRightIso_hom_hom, Functor.instIsEquivalenceLeftExtensionCompPrecomp, Functor.leftExtensionEquivalenceOfIso₁_inverse_obj_hom_app, SSet.StrictSegal.isPointwiseRightKanExtensionAt.fac_aux₃, TwoSquare.GuitartExact.isConnected_rightwards, StructuredArrow.map_map_left, TwoSquare.structuredArrowRightwardsOpEquivalence.functor_map_left_right, Functor.LeftExtension.precomp_obj_right, StructuredArrow.mapIso_functor_obj_right, StructuredArrow.mapIso_unitIso_inv_app_right, StructuredArrow.prodFunctor_obj, LightProfinite.Extend.functorOp_map, StructuredArrow.proj_map, Functor.LeftExtension.postcompose₂_obj_left, Alexandrov.lowerCone_π_app, Functor.RightExtension.IsPointwiseRightKanExtensionAt.isoLimit_inv_π, Functor.LeftExtension.precomp_obj_left, StructuredArrow.ofStructuredArrowProjEquivalence.functor_obj_right_right, StructuredArrow.mapIso_functor_map_left, Functor.leftExtensionEquivalenceOfIso₁_functor_obj_hom_app, StructuredArrow.ofStructuredArrowProjEquivalence.inverse_map_right_right, TwoSquare.structuredArrowRightwardsOpEquivalence_unitIso, StructuredArrow.comp_right, StructuredArrow.commaMapEquivalenceFunctor_map_right, StructuredArrow.essentiallySmall, Limits.Cone.toStructuredArrowCompProj_hom_app, StructuredArrow.map_obj_left, Functor.pointwiseRightKanExtensionCounit_app, StructuredArrow.ofCommaSndEquivalenceInverse_obj_hom, CostructuredArrow.toStructuredArrow_obj, CondensedSet.isDiscrete_tfae, Bicategory.instHasInitialLeftExtensionOfHasLeftKanExtension, Bicategory.LeftExtension.IsKan.uniqueUpToIso_inv_right, Limits.Cocone.fromStructuredArrow_map_hom, Functor.pointwiseRightKanExtension_obj, StructuredArrow.mapNatIso_counitIso_hom_app_right, TwoSquare.costructuredArrowDownwardsPrecomp_map, LocalizerMorphism.IsRightDerivabilityStructure.Constructor.isConnected, Functor.LeftExtension.postcompose₂_map_left, Functor.LeftExtension.postcomp₁_obj_right_obj, StructuredArrow.toUnder_obj_hom, StructuredArrow.commaMapEquivalenceCounitIso_hom_app_right_right, StructuredArrow.map_mk, Limits.Cone.toStructuredArrow_obj, StructuredArrow.mono_homMk, StructuredArrow.ofCommaSndEquivalenceInverse_map_right_right, Bicategory.LeftLift.whiskerOfIdCompIsoSelf_hom_right, instIsCofilteredStructuredArrowCompOfRepresentablyFlat, Bicategory.HasLeftKanExtension.hasInitial, StructuredArrow.preEquivalenceInverse_map_right_right, Functor.Final.zigzag_of_eqvGen_colimitTypeRel, TwoSquare.EquivalenceJ.functor_obj, TwoSquare.isConnected_rightwards_iff_downwards, StructuredArrow.mapIso_unitIso_hom_app_right, Functor.RightExtension.IsPointwiseRightKanExtensionAt.isoLimit_inv_π_assoc, Functor.LeftExtension.precomp_map_left, StructuredArrow.commaMapEquivalenceUnitIso_hom_app_right_right, Limits.Cocone.equivStructuredArrow_inverse, StructuredArrow.pre_map_right, Functor.LeftExtension.precomp₂_obj_right, StructuredArrow.mapIso_functor_obj_hom, StructuredArrow.mapNatIso_unitIso_inv_app_right, Functor.ranObjObjIsoLimit_hom_π, Alexandrov.projSup_obj, StructuredArrow.instFaithfulCompPre, StructuredArrow.functor_obj, Functor.pointwiseRightKanExtension_map, Functor.LeftExtension.postcomp₁_map_left, StructuredArrow.mono_of_mono_right, Functor.RightExtension.coneAtFunctor_map_hom, Alexandrov.lowerCone_pt, Limits.WalkingParallelPair.instIsConnectedStructuredArrowWalkingReflexivePairInclusionWalkingReflexivePair, Functor.RightExtension.coneAtWhiskerRightIso_hom_hom, StructuredArrow.mapIso_inverse_map_right, Profinite.Extend.cone_pt, TwoSquare.structuredArrowDownwards_map, Bicategory.LeftExtension.whiskerOfCompIdIsoSelf_hom_right, Functor.RightExtension.IsPointwiseRightKanExtensionAt.isoLimit_hom_π, StructuredArrow.ofCommaSndEquivalenceFunctor_obj_left, StructuredArrow.ofDiagEquivalence.functor_obj_hom, CategoryOfElements.structuredArrowEquivalence_unitIso, Bicategory.LeftLift.IsKan.uniqueUpToIso_hom_right, TwoSquare.structuredArrowDownwards_obj, Limits.Cone.toUnder_π_app, Functor.leftExtensionEquivalenceOfIso₁_unitIso_hom_app_right_app, TwoSquare.guitartExact_iff_isConnected_rightwards, StructuredArrow.prodEquivalence_inverse, StructuredArrow.ofDiagEquivalence.inverse_obj_left_as, StructuredArrow.mapNatIso_functor_obj_left, StructuredArrow.commaMapEquivalenceUnitIso_hom_app_right_left, StructuredArrow.preEquivalenceFunctor_map_right, Limits.Cone.toStructuredArrow_comp_proj, SSet.StrictSegal.isPointwiseRightKanExtensionAt.fac_aux₁, StructuredArrow.preEquivalenceInverse_obj_hom_right, Bicategory.instHasInitialLeftLiftOfHasLeftKanLift, Limits.Cone.mapConeToUnder_hom_hom, LightProfinite.Extend.functor_initial, Functor.ranObjObjIsoLimit_inv_π, TwoSquare.EquivalenceJ.functor_map, StructuredArrow.mapIso_inverse_obj_left, StructuredArrow.commaMapEquivalenceUnitIso_inv_app_right_left, StructuredArrow.mapIso_functor_map_right, Functor.structuredArrowMapCone_pt, StructuredArrow.ofCommaSndEquivalence_inverse, StructuredArrow.pre_obj_hom, Limits.Cocone.toStructuredArrow_map, Bicategory.LanLift.CommuteWith.lanLiftCompIsoWhisker_inv_right, TwoSquare.equivalenceJ_functor, StructuredArrow.toUnder_map_left, StructuredArrow.prodInverse_obj, Limits.Cone.toStructuredArrow_map, StructuredArrow.preEquivalence_counitIso, StructuredArrow.preEquivalenceInverse_obj_left_as, LightProfinite.Extend.functor_obj, Bicategory.LeftExtension.whiskerOfCompIdIsoSelf_inv_right, StructuredArrow.preEquivalenceFunctor_obj_right, StructuredArrow.proj_obj, Bicategory.LeftLift.IsKan.uniqueUpToIso_inv_right, StructuredArrow.ofStructuredArrowProjEquivalence.functor_obj_right_left_as, StructuredArrow.essSurj_map₂, TwoSquare.EquivalenceJ.inverse_obj, StructuredArrow.isCoseparating_proj_preimage, StructuredArrow.map_obj_hom, Functor.LeftExtension.precomp₂_map_left, Bicategory.LeftLift.whiskering_obj, ObjectProperty.LimitOfShape.toStructuredArrow_obj, StructuredArrow.prodEquivalence_counitIso, StructuredArrow.mapIso_inverse_map_left, StructuredArrow.ofCommaSndEquivalenceInverse_obj_right_hom, StructuredArrow.instEssSurjUnderToUnder, LocalizerMorphism.IsRightDerivabilityStructure.Constructor.fromRightResolution_obj, Limits.Cone.toStructuredArrowCompToUnderCompForget_inv_app, StructuredArrow.map_id, ObjectProperty.LimitOfShape.toStructuredArrow_map, StructuredArrow.locallySmall, StructuredArrow.instFullCompPre, StructuredArrow.wellPowered_structuredArrow, TwoSquare.guitartExact_iff_isConnected_downwards, Bicategory.LeftExtension.whiskering_obj, StructuredArrow.toCostructuredArrow'_map, StructuredArrow.post_obj, StructuredArrow.toCostructuredArrow'_obj, StructuredArrow.ofCommaSndEquivalenceInverse_obj_left_as, Functor.leftExtensionEquivalenceOfIso₁_counitIso_hom_app_right_app, Bicategory.LeftLift.whiskerOfIdCompIsoSelf_inv_right, TwoSquare.structuredArrowRightwardsOpEquivalence_functor, Limits.Cocone.equivStructuredArrow_functor, instIsFilteredStructuredArrowProdDiagOfIsFilteredOrEmpty, StructuredArrow.mapNatIso_inverse_map_left, Limits.Cocone.fromStructuredArrow_obj_ι, Profinite.Extend.functor_initial, Limits.Cocone.equivStructuredArrow_counitIso, Limits.Cone.toStructuredArrowCone_pt, Functor.RightExtension.IsPointwiseRightKanExtensionAt.isoLimit_hom_π_assoc, StructuredArrow.instFullObjCompPostOfFaithful, StructuredArrow.ofDiagEquivalence.functor_obj_left_as, Profinite.Extend.functor_map, StructuredArrow.toUnder_obj_right, Functor.toStructuredArrow_comp_proj, StructuredArrow.commaMapEquivalenceCounitIso_inv_app_left_right, StructuredArrow.mapNatIso_functor_map_left, StructuredArrow.map₂_obj_hom, StructuredArrow.mapNatIso_counitIso_inv_app_right, StructuredArrow.commaMapEquivalenceFunctor_obj_right, Functor.leftExtensionEquivalenceOfIso₁_functor_map_right, StructuredArrow.isCoseparating_inverseImage_proj, StructuredArrow.ofStructuredArrowProjEquivalence.inverse_obj_right_hom, CostructuredArrow.toStructuredArrow_map, StructuredArrow.ofCommaSndEquivalenceFunctor_obj_hom, Functor.leftExtensionEquivalenceOfIso₁_unitIso_inv_app_right_app, StructuredArrow.homMk'_mk_id, Alexandrov.projSup_map, StructuredArrow.pre_obj_left, StructuredArrow.epi_of_epi_right, TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_left_left_as, StructuredArrow.mkPostcomp_id, StructuredArrow.commaMapEquivalenceCounitIso_inv_app_right_right, StructuredArrow.mapIso_counitIso_hom_app_right, StructuredArrow.toCostructuredArrow_obj, StructuredArrow.final_proj_of_isFiltered, StructuredArrow.ofStructuredArrowProjEquivalence.functor_obj_hom, StructuredArrow.mapNatIso_inverse_obj_right, StructuredArrow.ofCommaSndEquivalenceInverse_obj_right_right, StructuredArrow.preEquivalenceFunctor_obj_hom, StructuredArrow.mapIso_counitIso_inv_app_right, Bicategory.LanLift.CommuteWith.lanLiftCompIsoWhisker_hom_right, StructuredArrow.commaMapEquivalenceFunctor_obj_hom, StructuredArrow.pre_obj_right, StructuredArrow.small_proj_preimage_of_locallySmall, Functor.leftExtensionEquivalenceOfIso₁_functor_obj_right, Functor.structuredArrowMapCone_π_app
structuredArrowOpEquivalence 📖CompOp—

CategoryTheory.CostructuredArrow

Definitions

NameCategoryTheorems
IsUniversal 📖CompOp
1 mathmath: CategoryTheory.Functor.IsRightKanExtension.nonempty_isUniversal
eta 📖CompOp
3 mathmath: eta_hom_left, eta_inv_left, CategoryTheory.Limits.Cone.equivCostructuredArrow_counitIso
homMk 📖CompOp
33 mathmath: CategoryTheory.LocalizerMorphism.IsRightDerivabilityStructure.Constructor.fromRightResolution_map, CategoryTheory.OverPresheafAux.costructuredArrowPresheafToOver_map, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_unitIso, Profinite.Extend.functorOp_map, CategoryTheory.TwoSquare.EquivalenceJ.inverse_map, CategoryTheory.Limits.Cocone.toCostructuredArrow_map, prodFunctor_map, commaToGrothendieckPrecompFunctor_map_fiber, costructuredArrowToOverEquivalence.functor_map, CategoryTheory.TwoSquare.costructuredArrowRightwards_map, post_map, epi_homMk, CategoryTheory.StructuredArrow.toCostructuredArrow_map, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_functor_map, CategoryTheory.Limits.Cone.toCostructuredArrow_map, CategoryTheory.Limits.Cocone.toCostructuredArrowCocone_ι_app, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_counitIso, LightProfinite.Extend.functorOp_map, homMk_left, prodInverse_map, CreatesConnected.raiseCone_π_app, CategoryTheory.TwoSquare.costructuredArrowDownwardsPrecomp_map, CategoryTheory.ObjectProperty.ColimitOfShape.toCostructuredArrow_map, CategoryTheory.Functor.toCostructuredArrow_map, CategoryTheory.TwoSquare.EquivalenceJ.functor_map, mono_homMk, CategoryTheory.TwoSquare.EquivalenceJ.inverse_obj, preEquivalence.inverse_map_left_left, CategoryTheory.StructuredArrow.toCostructuredArrow'_map, CategoryTheory.Limits.colimit.toCostructuredArrow_map, homMk_surjective, costructuredArrowToOverEquivalence.inverse_map, CategoryTheory.CategoryOfElements.toCostructuredArrow_map
homMk' 📖CompOp
6 mathmath: homMk'_id, homMk'_mk_id, homMk'_right, homMk'_left, homMk'_mk_comp, homMk'_comp
isoMk 📖CompOp
4 mathmath: CategoryTheory.CategoryOfElements.costructuredArrowYonedaEquivalence_counitIso, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_counitIso, isoMk_inv_left, isoMk_hom_left
map 📖CompOp
20 mathmath: map_comp, CategoryTheory.NonemptyParallelPairPresentationAux.hf, map_obj_hom, map_obj_right, CategoryTheory.Functor.pointwiseLeftKanExtension_map, map_obj_left, map_map_right, mapCompΚCompGrothendieckProj_inv_app, functor_map, CategoryTheory.Limits.Cocone.toCostructuredArrowCocone_Κ_app, grothendieckProj_map, CategoryTheory.CategoryOfElements.costructuredArrow_yoneda_equivalence_naturality, map_map_left, map_mk, mapCompΚCompGrothendieckProj_hom_app, CategoryTheory.Presheaf.restrictedULiftYonedaHomEquiv'_symm_app_naturality_left, CategoryTheory.Limits.Cocone.toCostructuredArrowCocone_pt, CategoryTheory.Presheaf.restrictedULiftYonedaHomEquiv'_symm_app_naturality_left_assoc, map_id, CategoryTheory.NonemptyParallelPairPresentationAux.hg
mapIso 📖CompOp
14 mathmath: mapIso_functor_obj_hom, mapIso_unitIso_hom_app_left, mapIso_inverse_obj_right, mapIso_functor_map_left, mapIso_unitIso_inv_app_left, mapIso_functor_obj_left, mapIso_counitIso_hom_app_left, mapIso_functor_map_right, mapIso_functor_obj_right, mapIso_inverse_obj_hom, mapIso_inverse_map_right, mapIso_inverse_map_left, mapIso_counitIso_inv_app_left, mapIso_inverse_obj_left
mapNatIso 📖CompOp
14 mathmath: mapNatIso_inverse_obj_left, mapNatIso_inverse_map_right, mapNatIso_unitIso_inv_app_left, mapNatIso_functor_obj_hom, mapNatIso_counitIso_inv_app_left, mapNatIso_inverse_map_left, mapNatIso_inverse_obj_hom, mapNatIso_unitIso_hom_app_left, mapNatIso_functor_obj_left, mapNatIso_functor_obj_right, mapNatIso_counitIso_hom_app_left, mapNatIso_inverse_obj_right, mapNatIso_functor_map_left, mapNatIso_functor_map_right
map₂ 📖CompOp
10 mathmath: isEquivalenceMap₂, map₂_obj_right, essSurj_map₂, faithful_map₂, map₂_map_right, full_map₂, map₂_map_left, initial_map₂_id, map₂_obj_hom, map₂_obj_left
map₂IsoPreEquivalenceInverseCompProj 📖CompOp—
mk 📖CompOp—
mkIdTerminal 📖CompOp—
mkPrecomp 📖CompOp
6 mathmath: mkPrecomp_id, mkPrecomp_left, mkPrecomp_right, CategoryTheory.OverPresheafAux.YonedaCollection.map₂_snd, mkPrecomp_comp, CategoryTheory.OverPresheafAux.map_mkPrecomp_eqToHom
post 📖CompOp
9 mathmath: post_obj, post_map, initial_post, instFaithfulCompObjPost, instEssSurjCompObjPostOfFull, CategoryTheory.TwoSquare.EquivalenceJ.functor_obj, instFullCompObjPostOfFaithful, CategoryTheory.TwoSquare.EquivalenceJ.functor_map, isEquivalence_post
postIsoMap₂ 📖CompOp—
pre 📖CompOp
29 mathmath: CategoryTheory.TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_hom_right, isEquivalence_pre, preEquivalence.functor_obj_right_as, pre_obj_hom, CategoryTheory.TwoSquare.costructuredArrowRightwards_map, pre_obj_left, preEquivalence.functor_obj_hom, instEssSurjCompPre, CategoryTheory.Presheaf.final_toCostructuredArrow_comp_pre, instFullCompPre, pre_obj_right, CategoryTheory.Limits.IndObjectPresentation.toCostructuredArrow_map_left, CategoryTheory.Limits.Cocone.toCostructuredArrowCocone_Κ_app, CategoryTheory.instInitialCostructuredArrowCompPreOfRepresentablyCoflat, preFunctor_app, instFaithfulCompPre, preEquivalence.inverse_obj_left_left, pre_map_right, preEquivalence.inverse_obj_hom_left, preEquivalence.functor_map_left, preEquivalence.inverse_obj_right_as, CategoryTheory.Limits.Cocone.toCostructuredArrowCocone_pt, preEquivalence.inverse_map_left_left, pre_map_left, preEquivalence.inverse_obj_left_right_as, CategoryTheory.TwoSquare.costructuredArrowRightwards_obj, initial_pre, preEquivalence.functor_obj_left, preEquivalence.inverse_obj_left_hom
preEquivalence 📖CompOp—
prodEquivalence 📖CompOp
4 mathmath: prodEquivalence_counitIso, prodEquivalence_inverse, prodEquivalence_unitIso, prodEquivalence_functor
prodFunctor 📖CompOp
5 mathmath: prodEquivalence_counitIso, prodFunctor_map, prodEquivalence_unitIso, prodFunctor_obj, prodEquivalence_functor
prodInverse 📖CompOp
5 mathmath: prodEquivalence_counitIso, prodInverse_obj, prodEquivalence_inverse, prodEquivalence_unitIso, prodInverse_map
proj 📖CompOp
107 mathmath: CategoryTheory.Functor.LeftExtension.coconeAtFunctor_map_hom, CategoryTheory.preservesFiniteLimits_iff_lan_preservesFiniteLimits, LightCondensed.lanPresheafIso_hom, CategoryTheory.CategoryOfElements.costructuredArrowYonedaEquivalenceInverseπ_hom_app, Profinite.Extend.cocone_pt, proj_reflectsIsomorphisms, ofDiagEquivalence.functor_map_left_left, CategoryTheory.lan_preservesFiniteLimits_of_flat, small_proj_preimage_of_locallySmall, CategoryTheory.Functor.leftKanExtensionUnit_leftKanExtension_map_leftKanExtensionObjIsoColimit_hom, CreatesConnected.mapCone_raiseCone, ofCostructuredArrowProjEquivalence.inverse_obj_left_hom, CategoryTheory.Limits.Cocone.toCostructuredArrow_comp_proj, CategoryTheory.Functor.ι_leftKanExtensionObjIsoColimit_inv, LightProfinite.Extend.cocone_ι_app, CategoryTheory.Limits.PreservesFiniteLimitsOfIsFilteredCostructuredArrowYonedaAux.functorToInterchangeIso_inv_app_app, Condensed.lanPresheafExt_inv, CategoryTheory.Functor.costructuredArrowMapCocone_pt, CategoryTheory.Functor.ι_colimitIsoColimitGrothendieck_inv_assoc, CategoryTheory.Limits.Cocone.fromCostructuredArrow_ι_app, CategoryTheory.Functor.LeftExtension.coconeAtWhiskerRightIso_inv_hom, CategoryTheory.Limits.Cocone.toCostructuredArrowCompProj_hom_app, ofCostructuredArrowProjEquivalence.functor_obj_right_as, CategoryTheory.Functor.ι_leftKanExtensionObjIsoColimit_inv_assoc, ιCompGrothendieckProj_inv_app, ofCostructuredArrowProjEquivalence.inverse_obj_hom, isSeparating_inverseImage_proj, proj_obj, CategoryTheory.Functor.pointwiseLeftKanExtension_obj, CategoryTheory.Functor.pointwiseLeftKanExtension_map, ofCostructuredArrowProjEquivalence.inverse_map_left_left, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.ι_isoColimit_hom, ιCompGrothendieckPrecompFunctorToCommaCompFst_inv_app, CreatesConnected.natTransInCostructuredArrow_app, CategoryTheory.Functor.toCostructuredArrow_comp_proj, proj_faithful, CategoryTheory.Functor.pointwiseLeftKanExtensionUnit_app, mapCompιCompGrothendieckProj_inv_app, isSeparating_proj_preimage, CategoryTheory.Presheaf.tautologicalCocone'_pt, CategoryTheory.lan_preservesFiniteLimits_of_preservesFiniteLimits, CategoryTheory.Limits.PreservesFiniteLimitsOfIsFilteredCostructuredArrowYonedaAux.functorToInterchangeIso_hom_app_app, ofCostructuredArrowProjEquivalence.functor_obj_left_right_as, Condensed.lanPresheafNatIso_hom_app, CreatesConnected.raiseCone_pt, CategoryTheory.Limits.PreservesFiniteLimitsOfIsFilteredCostructuredArrowYonedaAux.isoAux_hom_app, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.ι_isoColimit_hom_assoc, ofCostructuredArrowProjEquivalence.inverse_obj_right_as, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.ι_isoColimit_inv_assoc, ofCostructuredArrowProjEquivalence.functor_obj_left_hom, CategoryTheory.Functor.isDenseAt_iff, CategoryTheory.Functor.LeftExtension.coconeAtFunctor_obj, CategoryTheory.Functor.LeftExtension.coconeAtWhiskerRightIso_hom_hom, proj_map, CategoryTheory.Limits.PreservesFiniteLimitsOfIsFilteredCostructuredArrowYonedaAux.flipFunctorToInterchange_inv_app_app, ofCostructuredArrowProjEquivalence.functor_map_left_left, CategoryTheory.Limits.Cocone.fromCostructuredArrow_pt, ofCostructuredArrowProjEquivalence.functor_obj_hom, CreatesConnected.raiseCone_π_app, CategoryTheory.flat_iff_lan_flat, CategoryTheory.Functor.leftKanExtensionUnit_leftKanExtensionObjIsoColimit_hom, CategoryTheory.lan_flat_of_flat, CategoryTheory.CategoryOfElements.costructuredArrowYonedaEquivalenceFunctorProj_hom_app, ofCostructuredArrowProjEquivalence.functor_obj_left_left, LightCondensed.lanPresheafNatIso_hom_app, CategoryTheory.Functor.leftKanExtensionIsoFiberwiseColimit_hom_app, LightProfinite.Extend.cocone_pt, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.comp_homEquiv_symm, CategoryTheory.Functor.LeftExtension.coconeAt_pt, Profinite.Extend.cocone_ι_app, ofDiagEquivalence.inverse_map_left, mapCompιCompGrothendieckProj_hom_app, LightCondensed.lanPresheafExt_inv, Condensed.lanPresheafExt_hom, ιCompGrothendieckPrecompFunctorToCommaCompFst_hom_app, CategoryTheory.Presheaf.restrictedULiftYonedaHomEquiv'_symm_app_naturality_left, CategoryTheory.Presheaf.tautologicalCocone_ι_app, CategoryTheory.Presheaf.tautologicalCocone'_ι_app, CategoryTheory.CategoryOfElements.costructuredArrowYonedaEquivalenceInverseπ_inv_app, CategoryTheory.Limits.Cocone.toCostructuredArrowCompProj_inv_app, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.ι_isoColimit_inv, CategoryTheory.Functor.ι_leftKanExtensionObjIsoColimit_hom, ofCostructuredArrowProjEquivalence.inverse_obj_left_right_as, CategoryTheory.Presheaf.restrictedULiftYonedaHomEquiv'_symm_naturality_right_assoc, CategoryTheory.Functor.LeftExtension.coconeAt_ι_app, CategoryTheory.Presheaf.restrictedULiftYonedaHomEquiv'_symm_app_naturality_left_assoc, ιCompGrothendieckProj_hom_app, CategoryTheory.Functor.SmallCategories.instPreservesFiniteLimitsSheafSheafPullbackOfRepresentablyFlat, CategoryTheory.Limits.PreservesFiniteLimitsOfIsFilteredCostructuredArrowYonedaAux.flipFunctorToInterchange_hom_app_app, CategoryTheory.Functor.leftKanExtensionUnit_leftKanExtensionObjIsoColimit_hom_assoc, LightCondensed.lanPresheafExt_hom, initial_proj_of_isCofiltered, ofCostructuredArrowProjEquivalence.inverse_obj_left_left, CategoryTheory.Presheaf.tautologicalCocone_pt, CategoryTheory.Functor.ι_leftKanExtensionObjIsoColimit_hom_assoc, CategoryTheory.Functor.pointwiseLeftKanExtension_desc_app, CategoryTheory.Functor.ι_colimitIsoColimitGrothendieck_inv, CategoryTheory.MonoidalCategory.DayFunctor.η_comp_isoPointwiseLeftKanExtension_hom, CategoryTheory.Functor.leftKanExtensionIsoFiberwiseColimit_inv_app, CategoryTheory.Presheaf.restrictedULiftYonedaHomEquiv'_symm_naturality_right, Condensed.lanPresheafIso_hom, CategoryTheory.MonoidalCategory.DayFunctor.ι_comp_isoPointwiseLeftKanExtension_inv, CategoryTheory.Functor.costructuredArrowMapCocone_ι_app, instPreservesLimitsOfShapeProjOfIsConnected, CategoryTheory.CategoryOfElements.costructuredArrowYonedaEquivalenceFunctorProj_inv_app, CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.comp_homEquiv_symm_assoc, small_inverseImage_proj_of_locallySmall
toStructuredArrow 📖CompOp
2 mathmath: toStructuredArrow_obj, toStructuredArrow_map
toStructuredArrow' 📖CompOp
2 mathmath: toStructuredArrow'_obj, toStructuredArrow'_map

Theorems

NameKindAssumesProvesValidatesDepends On
comp_left 📖mathematical—CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.CategoryStruct.comp
CategoryTheory.CostructuredArrow
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Comma.left
——
epi_homMk 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.right
CategoryTheory.Functor.map
CategoryTheory.Comma.hom
CategoryTheory.Epi
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
homMk
—CategoryTheory.Functor.epi_of_epi_map
CategoryTheory.Functor.reflectsEpimorphisms_of_faithful
proj_faithful
epi_of_epi_left 📖mathematical—CategoryTheory.Epi
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
—CategoryTheory.Functor.epi_of_epi_map
CategoryTheory.Functor.reflectsEpimorphisms_of_faithful
proj_faithful
eqToHom_left 📖mathematical—CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.eqToHom
CategoryTheory.CostructuredArrow
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Comma.left
——
eq_mk 📖mathematical—CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.right
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
——
essSurj_map₂ 📖mathematical—CategoryTheory.Functor.EssSurj
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
map₂
—CategoryTheory.Comma.essSurj_map
CategoryTheory.Functor.instEssSurjId
CategoryTheory.Discrete.instIsIsoFunctorNatTrans
eta_hom_left 📖mathematical—CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
CategoryTheory.Iso.hom
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
eta
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
eta_inv_left 📖mathematical—CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
CategoryTheory.Iso.inv
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
eta
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
ext 📖—CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
——CategoryTheory.CommaMorphism.ext
CategoryTheory.Discrete.instSubsingletonDiscreteHom
ext_iff 📖mathematical—CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
—ext
faithful_map₂ 📖mathematical—CategoryTheory.Functor.Faithful
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
map₂
—CategoryTheory.Comma.faithful_map
CategoryTheory.Functor.Faithful.id
full_map₂ 📖mathematical—CategoryTheory.Functor.Full
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
map₂
—CategoryTheory.Comma.full_map
CategoryTheory.Functor.Full.id
CategoryTheory.Discrete.instIsIsoFunctorNatTrans
homMk'_comp 📖mathematical—homMk'
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.CostructuredArrow
CategoryTheory.Functor.obj
CategoryTheory.Comma.right
CategoryTheory.Functor.map
CategoryTheory.Comma.hom
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.eqToHom
—eqToHom_left
CategoryTheory.Category.id_comp
homMk'_id 📖mathematical—homMk'
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.eqToHom
CategoryTheory.CostructuredArrow
CategoryTheory.Functor.obj
CategoryTheory.Comma.right
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
CategoryTheory.Comma.hom
—eqToHom_left
homMk'_left 📖mathematical—CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma.right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Functor.map
CategoryTheory.Comma.hom
homMk'
——
homMk'_mk_comp 📖mathematical—homMk'
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.CostructuredArrow
CategoryTheory.Functor.obj
CategoryTheory.Comma.right
CategoryTheory.Functor.map
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Comma.hom
CategoryTheory.eqToHom
—homMk'_comp
homMk'_mk_id 📖mathematical—homMk'
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.eqToHom
CategoryTheory.CostructuredArrow
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.right
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.CategoryStruct.comp
CategoryTheory.Comma.left
CategoryTheory.Functor.map
CategoryTheory.Comma.hom
—homMk'_id
homMk'_right 📖mathematical—CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma.right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Functor.map
CategoryTheory.Comma.hom
homMk'
CategoryTheory.CategoryStruct.id
——
homMk_left 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
CategoryTheory.Comma.hom
CategoryTheory.CommaMorphism.left
homMk
——
homMk_surjective 📖mathematical—homMk—w
hom_eq_iff 📖mathematical—CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
—hom_ext
hom_ext 📖—CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
——CategoryTheory.CommaMorphism.ext
CategoryTheory.Discrete.instSubsingletonDiscreteHom
hom_ext_iff 📖mathematical—CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
—hom_ext
id_left 📖mathematical—CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.CategoryStruct.id
CategoryTheory.CostructuredArrow
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Comma.left
——
instEssSurjCompObjPostOfFull 📖mathematical—CategoryTheory.Functor.EssSurj
CategoryTheory.CostructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.instCategoryCostructuredArrow
post
—CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
CategoryTheory.Functor.map_preimage
instEssSurjCompPre 📖mathematical—CategoryTheory.Functor.EssSurj
CategoryTheory.CostructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.instCategoryCostructuredArrow
pre
—CategoryTheory.Comma.instEssSurjCompPreLeft
instFaithfulCompObjPost 📖mathematical—CategoryTheory.Functor.Faithful
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
post
——
instFaithfulCompPre 📖mathematical—CategoryTheory.Functor.Faithful
CategoryTheory.CostructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.instCategoryCostructuredArrow
pre
—CategoryTheory.Comma.instFaithfulCompPreLeft
instFullCompObjPostOfFaithful 📖mathematical—CategoryTheory.Functor.Full
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
post
—CategoryTheory.Functor.map_injective
CategoryTheory.Functor.map_comp
CategoryTheory.Discrete.functor_map_id
CategoryTheory.Category.comp_id
CategoryTheory.CommaMorphism.w
instFullCompPre 📖mathematical—CategoryTheory.Functor.Full
CategoryTheory.CostructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.instCategoryCostructuredArrow
pre
—CategoryTheory.Comma.instFullCompPreLeft
isEquivalenceMap₂ 📖mathematical—CategoryTheory.Functor.IsEquivalence
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
map₂
—CategoryTheory.Comma.isEquivalenceMap
CategoryTheory.Functor.isEquivalence_refl
CategoryTheory.Discrete.instIsIsoFunctorNatTrans
isEquivalence_post 📖mathematical—CategoryTheory.Functor.IsEquivalence
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
post
—instFaithfulCompObjPost
instFullCompObjPostOfFaithful
instEssSurjCompObjPostOfFull
isEquivalence_pre 📖mathematical—CategoryTheory.Functor.IsEquivalence
CategoryTheory.CostructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.instCategoryCostructuredArrow
pre
—CategoryTheory.Comma.isEquivalence_preLeft
isoMk_hom_left 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
CategoryTheory.Comma.hom
CategoryTheory.CommaMorphism.left
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
isoMk
——
isoMk_inv_left 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
CategoryTheory.Comma.hom
CategoryTheory.CommaMorphism.left
CategoryTheory.Iso.inv
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
isoMk
——
mapIso_counitIso_hom_app_left 📖mathematical—CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.comp
CategoryTheory.Comma.mapRight
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.mapIso
CategoryTheory.Functor.const
CategoryTheory.Iso.hom
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Equivalence.counitIso
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
mapIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
—CategoryTheory.Category.comp_id
mapIso_counitIso_inv_app_left 📖mathematical—CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Comma.mapRight
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.mapIso
CategoryTheory.Functor.const
CategoryTheory.Iso.hom
CategoryTheory.NatTrans.app
CategoryTheory.Equivalence.counitIso
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
mapIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
—CategoryTheory.Category.comp_id
mapIso_functor_map_left 📖mathematical—CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comma.hom
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.mapIso
CategoryTheory.Functor.const
CategoryTheory.Functor.map
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.functor
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
mapIso
——
mapIso_functor_map_right 📖mathematical—CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comma.hom
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.mapIso
CategoryTheory.Functor.const
CategoryTheory.Functor.map
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.functor
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
mapIso
CategoryTheory.CategoryStruct.id
——
mapIso_functor_obj_hom 📖mathematical—CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.functor
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
mapIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Iso.hom
——
mapIso_functor_obj_left 📖mathematical—CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.functor
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
mapIso
——
mapIso_functor_obj_right 📖mathematical—CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.functor
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
mapIso
——
mapIso_inverse_map_left 📖mathematical—CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comma.hom
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.mapIso
CategoryTheory.Functor.const
CategoryTheory.Functor.map
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.inverse
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
mapIso
——
mapIso_inverse_map_right 📖mathematical—CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comma.hom
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.mapIso
CategoryTheory.Functor.const
CategoryTheory.Functor.map
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.inverse
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
mapIso
CategoryTheory.CategoryStruct.id
——
mapIso_inverse_obj_hom 📖mathematical—CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.inverse
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
mapIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Iso.inv
——
mapIso_inverse_obj_left 📖mathematical—CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.inverse
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
mapIso
——
mapIso_inverse_obj_right 📖mathematical—CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.inverse
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
mapIso
——
mapIso_unitIso_hom_app_left 📖mathematical—CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Comma.mapRight
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.mapIso
CategoryTheory.Functor.const
CategoryTheory.Iso.inv
CategoryTheory.NatTrans.app
CategoryTheory.Equivalence.unitIso
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
mapIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
—CategoryTheory.Category.comp_id
mapIso_unitIso_inv_app_left 📖mathematical—CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.comp
CategoryTheory.Comma.mapRight
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.mapIso
CategoryTheory.Functor.const
CategoryTheory.Iso.inv
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Equivalence.unitIso
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
mapIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
—CategoryTheory.Category.comp_id
mapNatIso_counitIso_hom_app_left 📖mathematical—CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.comp
CategoryTheory.Comma.mapLeft
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Iso.inv
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Equivalence.counitIso
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
mapNatIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
—CategoryTheory.Category.comp_id
mapNatIso_counitIso_inv_app_left 📖mathematical—CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Comma.mapLeft
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Iso.inv
CategoryTheory.NatTrans.app
CategoryTheory.Equivalence.counitIso
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
mapNatIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
—CategoryTheory.Category.comp_id
mapNatIso_functor_map_left 📖mathematical—CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.functor
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
mapNatIso
——
mapNatIso_functor_map_right 📖mathematical—CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.functor
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
mapNatIso
CategoryTheory.CategoryStruct.id
——
mapNatIso_functor_obj_hom 📖mathematical—CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.functor
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
mapNatIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
——
mapNatIso_functor_obj_left 📖mathematical—CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.functor
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
mapNatIso
——
mapNatIso_functor_obj_right 📖mathematical—CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.functor
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
mapNatIso
——
mapNatIso_inverse_map_left 📖mathematical—CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.inverse
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
mapNatIso
——
mapNatIso_inverse_map_right 📖mathematical—CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.inverse
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
mapNatIso
CategoryTheory.CategoryStruct.id
——
mapNatIso_inverse_obj_hom 📖mathematical—CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.inverse
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
mapNatIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
——
mapNatIso_inverse_obj_left 📖mathematical—CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.inverse
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
mapNatIso
——
mapNatIso_inverse_obj_right 📖mathematical—CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.inverse
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
mapNatIso
——
mapNatIso_unitIso_hom_app_left 📖mathematical—CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Comma.mapLeft
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Iso.hom
CategoryTheory.NatTrans.app
CategoryTheory.Equivalence.unitIso
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
mapNatIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
—CategoryTheory.Category.comp_id
mapNatIso_unitIso_inv_app_left 📖mathematical—CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.comp
CategoryTheory.Comma.mapLeft
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Iso.hom
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Equivalence.unitIso
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
mapNatIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
—CategoryTheory.Category.comp_id
map_comp 📖mathematical—CategoryTheory.Functor.obj
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
map
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
—CategoryTheory.Category.assoc
map_id 📖mathematical—CategoryTheory.Functor.obj
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
map
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
—CategoryTheory.Category.comp_id
map_map_left 📖mathematical—CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comma.hom
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
map
——
map_map_right 📖mathematical—CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comma.hom
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
map
CategoryTheory.CategoryStruct.id
——
map_mk 📖mathematical—CategoryTheory.Functor.obj
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
map
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
——
map_obj_hom 📖mathematical—CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
map
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
——
map_obj_left 📖mathematical—CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
map
——
map_obj_right 📖mathematical—CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
map
——
map₂_map_left 📖mathematical—CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
CategoryTheory.Comma.hom
CategoryTheory.Discrete.natTrans
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
map₂
——
map₂_map_right 📖mathematical—CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
CategoryTheory.Comma.hom
CategoryTheory.Discrete.natTrans
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
map₂
CategoryTheory.CategoryStruct.id
——
map₂_obj_hom 📖mathematical—CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
map₂
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Functor.map
——
map₂_obj_left 📖mathematical—CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
map₂
——
map₂_obj_right 📖mathematical—CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
map₂
——
mkPrecomp_comp 📖mathematical—mkPrecomp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.eqToHom
—eqToHom_left
CategoryTheory.Category.id_comp
mkPrecomp_id 📖mathematical—mkPrecomp
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.eqToHom
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
—eqToHom_left
mkPrecomp_left 📖mathematical—CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
mkPrecomp
——
mkPrecomp_right 📖mathematical—CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
mkPrecomp
CategoryTheory.CategoryStruct.id
CategoryTheory.Comma.right
——
mk_hom_eq_self 📖mathematical—CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
——
mk_left 📖mathematical—CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
——
mk_right 📖mathematical—CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
——
mk_surjective 📖—————
mono_homMk 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.right
CategoryTheory.Functor.map
CategoryTheory.Comma.hom
CategoryTheory.Mono
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
homMk
—CategoryTheory.Functor.mono_of_mono_map
CategoryTheory.Functor.reflectsMonomorphisms_of_faithful
proj_faithful
mono_of_mono_left 📖mathematical—CategoryTheory.Mono
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
—CategoryTheory.Functor.mono_of_mono_map
CategoryTheory.Functor.reflectsMonomorphisms_of_faithful
proj_faithful
obj_ext 📖—CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comma.right
CategoryTheory.Functor.map
CategoryTheory.eqToHom
CategoryTheory.Comma.hom
——CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
post_map 📖mathematical—CategoryTheory.Functor.map
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
post
homMk
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.hom
CategoryTheory.CommaMorphism.left
——
post_obj 📖mathematical—CategoryTheory.Functor.obj
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.comp
post
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.map
CategoryTheory.Comma.hom
——
pre_map_left 📖mathematical—CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.Functor.comp
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
pre
——
pre_map_right 📖mathematical—CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.Functor.comp
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
pre
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
pre_obj_hom 📖mathematical—CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.CostructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.instCategoryCostructuredArrow
pre
——
pre_obj_left 📖mathematical—CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.CostructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.instCategoryCostructuredArrow
pre
——
pre_obj_right 📖mathematical—CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.CostructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.instCategoryCostructuredArrow
pre
——
prodEquivalence_counitIso 📖mathematical—CategoryTheory.Equivalence.counitIso
CategoryTheory.CostructuredArrow
CategoryTheory.prod'
CategoryTheory.Functor.prod
CategoryTheory.instCategoryCostructuredArrow
prodEquivalence
CategoryTheory.NatIso.ofComponents
CategoryTheory.Functor.comp
prodInverse
prodFunctor
CategoryTheory.Functor.id
CategoryTheory.Iso.refl
CategoryTheory.Functor.obj
——
prodEquivalence_functor 📖mathematical—CategoryTheory.Equivalence.functor
CategoryTheory.CostructuredArrow
CategoryTheory.prod'
CategoryTheory.Functor.prod
CategoryTheory.instCategoryCostructuredArrow
prodEquivalence
prodFunctor
——
prodEquivalence_inverse 📖mathematical—CategoryTheory.Equivalence.inverse
CategoryTheory.CostructuredArrow
CategoryTheory.prod'
CategoryTheory.Functor.prod
CategoryTheory.instCategoryCostructuredArrow
prodEquivalence
prodInverse
——
prodEquivalence_unitIso 📖mathematical—CategoryTheory.Equivalence.unitIso
CategoryTheory.CostructuredArrow
CategoryTheory.prod'
CategoryTheory.Functor.prod
CategoryTheory.instCategoryCostructuredArrow
prodEquivalence
CategoryTheory.NatIso.ofComponents
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
prodFunctor
prodInverse
CategoryTheory.Iso.refl
CategoryTheory.Functor.obj
——
prodFunctor_map 📖mathematical—CategoryTheory.Functor.map
CategoryTheory.CostructuredArrow
CategoryTheory.prod'
CategoryTheory.Functor.prod
CategoryTheory.instCategoryCostructuredArrow
prodFunctor
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
homMk
CategoryTheory.CommaMorphism.left
——
prodFunctor_obj 📖mathematical—CategoryTheory.Functor.obj
CategoryTheory.CostructuredArrow
CategoryTheory.prod'
CategoryTheory.Functor.prod
CategoryTheory.instCategoryCostructuredArrow
prodFunctor
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
——
prodInverse_map 📖mathematical—CategoryTheory.Functor.map
CategoryTheory.CostructuredArrow
CategoryTheory.prod'
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.prod
prodInverse
homMk
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comma.hom
CategoryTheory.CommaMorphism.left
——
prodInverse_obj 📖mathematical—CategoryTheory.Functor.obj
CategoryTheory.CostructuredArrow
CategoryTheory.prod'
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.prod
prodInverse
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.hom
——
proj_faithful 📖mathematical—CategoryTheory.Functor.Faithful
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
proj
—ext
proj_map 📖mathematical—CategoryTheory.Functor.map
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
proj
CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
——
proj_obj 📖mathematical—CategoryTheory.Functor.obj
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
proj
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
——
proj_reflectsIsomorphisms 📖mathematical—CategoryTheory.Functor.ReflectsIsomorphisms
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
proj
—CategoryTheory.Functor.map_isIso
CategoryTheory.Functor.map_inv
CategoryTheory.IsIso.inv_comp_eq
CategoryTheory.CommaMorphism.w
CategoryTheory.Category.comp_id
hom_ext
CategoryTheory.IsIso.hom_inv_id
CategoryTheory.IsIso.inv_hom_id
right_eq_id 📖mathematical—CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
——
toStructuredArrow'_map 📖mathematical—CategoryTheory.Functor.map
Opposite
CategoryTheory.CostructuredArrow
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
Opposite.op
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
toStructuredArrow'
CategoryTheory.StructuredArrow.homMk
Opposite.unop
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.CommaMorphism.left
——
toStructuredArrow'_obj 📖mathematical—CategoryTheory.Functor.obj
Opposite
CategoryTheory.CostructuredArrow
CategoryTheory.Category.opposite
CategoryTheory.Functor.op
Opposite.op
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
toStructuredArrow'
Opposite.unop
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
——
toStructuredArrow_map 📖mathematical—CategoryTheory.Functor.map
Opposite
CategoryTheory.CostructuredArrow
CategoryTheory.Category.opposite
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.StructuredArrow
Opposite.op
CategoryTheory.Functor.op
CategoryTheory.instCategoryStructuredArrow
toStructuredArrow
CategoryTheory.StructuredArrow.homMk
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
Opposite.unop
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.CommaMorphism.left
Quiver.Hom.unop
——
toStructuredArrow_obj 📖mathematical—CategoryTheory.Functor.obj
Opposite
CategoryTheory.CostructuredArrow
CategoryTheory.Category.opposite
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.StructuredArrow
Opposite.op
CategoryTheory.Functor.op
CategoryTheory.instCategoryStructuredArrow
toStructuredArrow
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
Opposite.unop
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
——
w 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.right
CategoryTheory.Functor.map
CategoryTheory.CommaMorphism.left
CategoryTheory.Comma.hom
—CategoryTheory.CommaMorphism.w
CategoryTheory.Category.comp_id
w_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.map
CategoryTheory.CommaMorphism.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
w
w_prod_fst 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.prod'
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.prod
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.right
CategoryTheory.Functor.map
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.CommaMorphism.left
CategoryTheory.Comma.hom
—w
w_prod_fst_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.prod'
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.prod
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.map
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.CommaMorphism.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
w_prod_fst
w_prod_snd 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.prod'
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.prod
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.right
CategoryTheory.Functor.map
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.CommaMorphism.left
CategoryTheory.Comma.hom
—w
w_prod_snd_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.prod'
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.prod
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.map
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.CommaMorphism.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
w_prod_snd

CategoryTheory.CostructuredArrow.IsUniversal

Theorems

NameKindAssumesProvesValidatesDepends On
existsUnique 📖mathematical—ExistsUnique
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma.right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
CategoryTheory.Comma.hom
—fac
hom_ext
fac 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.right
CategoryTheory.Functor.map
lift
CategoryTheory.Comma.hom
—CategoryTheory.CommaMorphism.w
CategoryTheory.Category.comp_id
fac_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.map
lift
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
fac
hom_desc 📖mathematical—lift
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.map
CategoryTheory.Comma.hom
—CategoryTheory.Limits.IsTerminal.hom_ext
hom_ext 📖—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.right
CategoryTheory.Functor.map
CategoryTheory.Comma.hom
——hom_desc
uniq 📖mathematical—CategoryTheory.Limits.IsTerminal.from
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
—CategoryTheory.Limits.IsTerminal.hom_ext

CategoryTheory.CostructuredArrow.preEquivalence

Definitions

NameCategoryTheorems
functor 📖CompOp
4 mathmath: functor_obj_right_as, functor_obj_hom, functor_map_left, functor_obj_left
inverse 📖CompOp
6 mathmath: inverse_obj_left_left, inverse_obj_hom_left, inverse_obj_right_as, inverse_map_left_left, inverse_obj_left_right_as, inverse_obj_left_hom

Theorems

NameKindAssumesProvesValidatesDepends On
functor_map_left 📖mathematical—CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Functor.comp
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.CostructuredArrow.pre
CategoryTheory.Functor.obj
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
functor
——
functor_obj_hom 📖mathematical—CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Functor.obj
CategoryTheory.CostructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.CostructuredArrow.pre
functor
CategoryTheory.CommaMorphism.left
——
functor_obj_left 📖mathematical—CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.CostructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.CostructuredArrow.pre
functor
——
functor_obj_right_as 📖mathematical—CategoryTheory.Discrete.as
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Functor.obj
CategoryTheory.CostructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.CostructuredArrow.pre
functor
——
inverse_map_left_left 📖mathematical—CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.comp
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma.right
CategoryTheory.Comma.left
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.CostructuredArrow.pre
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.map
CategoryTheory.Comma.hom
CategoryTheory.CostructuredArrow.homMk
inverse
——
inverse_obj_hom_left 📖mathematical—CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.CostructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.Comma.right
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.CostructuredArrow.pre
CategoryTheory.Comma.left
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.map
CategoryTheory.Comma.hom
inverse
——
inverse_obj_left_hom 📖mathematical—CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.comp
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma.right
CategoryTheory.Comma.left
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.CostructuredArrow.pre
inverse
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.map
——
inverse_obj_left_left 📖mathematical—CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.comp
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma.right
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.CostructuredArrow.pre
inverse
——
inverse_obj_left_right_as 📖mathematical—CategoryTheory.Discrete.as
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.comp
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.CostructuredArrow.pre
inverse
——
inverse_obj_right_as 📖mathematical—CategoryTheory.Discrete.as
CategoryTheory.Comma.right
CategoryTheory.CostructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.CostructuredArrow.pre
CategoryTheory.Comma.left
inverse
——

CategoryTheory.Functor

Definitions

NameCategoryTheorems
toCostructuredArrow 📖CompOp
4 mathmath: CategoryTheory.CostructuredArrow.ofCostructuredArrowProjEquivalence.inverse_map_left_left, toCostructuredArrow_comp_proj, toCostructuredArrow_obj, toCostructuredArrow_map
toCostructuredArrowCompProj 📖CompOp—
toStructuredArrow 📖CompOp
4 mathmath: toStructuredArrow_obj, toStructuredArrow_map, CategoryTheory.StructuredArrow.ofStructuredArrowProjEquivalence.inverse_map_right_right, toStructuredArrow_comp_proj
toStructuredArrowCompProj 📖CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
toCostructuredArrow_comp_proj 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
map
comp
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
toCostructuredArrow
CategoryTheory.CostructuredArrow.proj
——
toCostructuredArrow_map 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
map
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
toCostructuredArrow
CategoryTheory.CostructuredArrow.homMk
——
toCostructuredArrow_obj 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
map
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
toCostructuredArrow
——
toStructuredArrow_comp_proj 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
map
comp
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
toStructuredArrow
CategoryTheory.StructuredArrow.proj
——
toStructuredArrow_map 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
map
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
toStructuredArrow
CategoryTheory.StructuredArrow.homMk
——
toStructuredArrow_obj 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
map
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
toStructuredArrow
——

CategoryTheory.StructuredArrow

Definitions

NameCategoryTheorems
IsUniversal 📖CompOp
1 mathmath: CategoryTheory.Functor.IsLeftKanExtension.nonempty_isUniversal
eta 📖CompOp
3 mathmath: eta_hom_right, eta_inv_right, CategoryTheory.Limits.Cocone.equivStructuredArrow_counitIso
homMk 📖CompOp
31 mathmath: CategoryTheory.LocalizerMorphism.IsRightDerivabilityStructure.Constructor.fromRightResolution_map, commaMapEquivalenceInverse_map, Profinite.Extend.functorOp_map, CategoryTheory.TwoSquare.EquivalenceJ.inverse_map, CategoryTheory.Limits.limit.toStructuredArrow_map, prodInverse_map, prodFunctor_map, CategoryTheory.Functor.toStructuredArrow_map, CategoryTheory.Limits.Cone.toStructuredArrowCone_π_app, epi_homMk, LightProfinite.Extend.functor_map, homMk_right, CategoryTheory.CostructuredArrow.toStructuredArrow'_map, post_map, commaMapEquivalenceFunctor_map_left, LightProfinite.Extend.functorOp_map, commaMapEquivalenceFunctor_map_right, CategoryTheory.TwoSquare.costructuredArrowDownwardsPrecomp_map, mono_homMk, preEquivalenceInverse_map_right_right, CategoryTheory.TwoSquare.EquivalenceJ.functor_obj, CategoryTheory.TwoSquare.structuredArrowDownwards_map, CategoryTheory.TwoSquare.EquivalenceJ.functor_map, CategoryTheory.Limits.Cocone.toStructuredArrow_map, CategoryTheory.Limits.Cone.toStructuredArrow_map, CategoryTheory.LocalizerMorphism.IsRightDerivabilityStructure.Constructor.fromRightResolution_obj, CategoryTheory.ObjectProperty.LimitOfShape.toStructuredArrow_map, Profinite.Extend.functor_map, CategoryTheory.CostructuredArrow.toStructuredArrow_map, homMk_surjective, commaMapEquivalenceFunctor_obj_hom
homMk' 📖CompOp
6 mathmath: homMk'_comp, homMk'_mk_comp, homMk'_left, homMk'_id, homMk'_right, homMk'_mk_id
isoMk 📖CompOp
4 mathmath: isoMk_inv_right, preEquivalence_unitIso, isoMk_hom_right, preEquivalence_counitIso
map 📖CompOp
15 mathmath: map_map_right, map_comp, map_obj_right, CategoryTheory.Functor.LeftExtension.precomp₂_map_right, final_map, functor_map, CategoryTheory.Limits.Cone.toStructuredArrowCone_π_app, map_map_left, map_obj_left, map_mk, CategoryTheory.Functor.pointwiseRightKanExtension_map, map_obj_hom, CategoryTheory.Functor.LeftExtension.precomp₂_map_left, map_id, CategoryTheory.Limits.Cone.toStructuredArrowCone_pt
mapIso 📖CompOp
14 mathmath: mapIso_functor_obj_left, mapIso_inverse_obj_hom, mapIso_inverse_obj_right, mapIso_functor_obj_right, mapIso_unitIso_inv_app_right, mapIso_functor_map_left, mapIso_unitIso_hom_app_right, mapIso_functor_obj_hom, mapIso_inverse_map_right, mapIso_inverse_obj_left, mapIso_functor_map_right, mapIso_inverse_map_left, mapIso_counitIso_hom_app_right, mapIso_counitIso_inv_app_right
mapIsoMap₂ 📖CompOp—
mapNatIso 📖CompOp
14 mathmath: mapNatIso_functor_obj_right, mapNatIso_functor_obj_hom, mapNatIso_inverse_map_right, mapNatIso_functor_map_right, mapNatIso_inverse_obj_left, mapNatIso_unitIso_hom_app_right, mapNatIso_inverse_obj_hom, mapNatIso_counitIso_hom_app_right, mapNatIso_unitIso_inv_app_right, mapNatIso_functor_obj_left, mapNatIso_inverse_map_left, mapNatIso_functor_map_left, mapNatIso_counitIso_inv_app_right, mapNatIso_inverse_obj_right
map₂ 📖CompOp
25 mathmath: commaMapEquivalenceInverse_map, map₂_obj_right, commaMapEquivalenceCounitIso_hom_app_left_right, commaMapEquivalenceUnitIso_inv_app_right_right, map₂_map_right, final_map₂_id, map₂_obj_left, map₂_map_left, full_map₂, isEquivalenceMap₂, commaMapEquivalenceInverse_obj, commaMapEquivalenceFunctor_obj_left, commaMapEquivalenceFunctor_map_left, faithful_map₂, commaMapEquivalenceFunctor_map_right, commaMapEquivalenceCounitIso_hom_app_right_right, commaMapEquivalenceUnitIso_hom_app_right_right, commaMapEquivalenceUnitIso_hom_app_right_left, commaMapEquivalenceUnitIso_inv_app_right_left, essSurj_map₂, commaMapEquivalenceCounitIso_inv_app_left_right, map₂_obj_hom, commaMapEquivalenceFunctor_obj_right, commaMapEquivalenceCounitIso_inv_app_right_right, commaMapEquivalenceFunctor_obj_hom
map₂CompMap₂Iso 📖CompOp—
map₂IsoPreEquivalenceInverseCompProj 📖CompOp—
mk 📖CompOp—
mkIdInitial 📖CompOp—
mkPostcomp 📖CompOp
4 mathmath: mkPostcomp_left, mkPostcomp_comp, mkPostcomp_right, mkPostcomp_id
post 📖CompOp
9 mathmath: CategoryTheory.TwoSquare.EquivalenceJ.inverse_map, instEssSurjObjCompPostOfFull, final_post, instFaithfulObjCompPost, isEquivalence_post, post_map, CategoryTheory.TwoSquare.EquivalenceJ.inverse_obj, post_obj, instFullObjCompPostOfFaithful
postIsoMap₂ 📖CompOp—
pre 📖CompOp
29 mathmath: final_pre, preEquivalenceInverse_obj_right_hom, instEssSurjCompPre, preEquivalenceFunctor_obj_left_as, preEquivalence_unitIso, isEquivalence_pre, preEquivalence_inverse, preEquivalence_functor, CategoryTheory.Limits.Cone.toStructuredArrowCone_π_app, CategoryTheory.instFinalStructuredArrowCompPreOfRepresentablyFlat, preEquivalenceInverse_obj_right_right, preEquivalenceInverse_obj_right_left_as, pre_map_left, preEquivalenceInverse_map_right_right, pre_map_right, instFaithfulCompPre, CategoryTheory.TwoSquare.structuredArrowDownwards_map, CategoryTheory.TwoSquare.structuredArrowDownwards_obj, preEquivalenceFunctor_map_right, preEquivalenceInverse_obj_hom_right, pre_obj_hom, preEquivalence_counitIso, preEquivalenceInverse_obj_left_as, preEquivalenceFunctor_obj_right, instFullCompPre, CategoryTheory.Limits.Cone.toStructuredArrowCone_pt, pre_obj_left, preEquivalenceFunctor_obj_hom, pre_obj_right
preEquivalence 📖CompOp
4 mathmath: preEquivalence_unitIso, preEquivalence_inverse, preEquivalence_functor, preEquivalence_counitIso
preEquivalenceFunctor 📖CompOp
7 mathmath: preEquivalenceFunctor_obj_left_as, preEquivalence_unitIso, preEquivalence_functor, preEquivalenceFunctor_map_right, preEquivalence_counitIso, preEquivalenceFunctor_obj_right, preEquivalenceFunctor_obj_hom
preEquivalenceInverse 📖CompOp
9 mathmath: preEquivalenceInverse_obj_right_hom, preEquivalence_unitIso, preEquivalence_inverse, preEquivalenceInverse_obj_right_right, preEquivalenceInverse_obj_right_left_as, preEquivalenceInverse_map_right_right, preEquivalenceInverse_obj_hom_right, preEquivalence_counitIso, preEquivalenceInverse_obj_left_as
preIsoMap₂ 📖CompOp—
prodEquivalence 📖CompOp
4 mathmath: prodEquivalence_functor, prodEquivalence_unitIso, prodEquivalence_inverse, prodEquivalence_counitIso
prodFunctor 📖CompOp
5 mathmath: prodFunctor_map, prodEquivalence_functor, prodEquivalence_unitIso, prodFunctor_obj, prodEquivalence_counitIso
prodInverse 📖CompOp
5 mathmath: prodInverse_map, prodEquivalence_unitIso, prodEquivalence_inverse, prodInverse_obj, prodEquivalence_counitIso
proj 📖CompOp
56 mathmath: CategoryTheory.Functor.IsDenseSubsite.instIsIsoSheafAppCounitSheafAdjunctionCocontinuous, ofStructuredArrowProjEquivalence.inverse_obj_right_right, ofDiagEquivalence.inverse_map_right, ofStructuredArrowProjEquivalence.inverse_obj_right_left_as, CategoryTheory.Functor.pointwiseRightKanExtension_lift_app, Profinite.Extend.cone_π_app, CategoryTheory.Functor.RightExtension.coneAt_pt, proj_faithful, CategoryTheory.Functor.RightExtension.coneAt_π_app, proj_reflectsIsomorphisms, CategoryTheory.Limits.Cone.toStructuredArrowCompProj_inv_app, ofStructuredArrowProjEquivalence.functor_obj_left_as, CategoryTheory.Limits.Cone.fromStructuredArrow_π_app, ofDiagEquivalence.functor_map_right_right, ofStructuredArrowProjEquivalence.inverse_obj_left_as, CategoryTheory.Limits.Cone.fromStructuredArrow_pt, CategoryTheory.Functor.RightExtension.coneAtFunctor_obj, small_inverseImage_proj_of_locallySmall, ofStructuredArrowProjEquivalence.functor_map_right_right, CategoryTheory.Functor.RightExtension.coneAtWhiskerRightIso_inv_hom, ofStructuredArrowProjEquivalence.functor_obj_right_hom, CategoryTheory.Functor.ranObjObjIsoLimit_inv_π_assoc, SSet.StrictSegal.isPointwiseRightKanExtensionAt.fac_aux₂, ofStructuredArrowProjEquivalence.inverse_obj_hom, CategoryTheory.Functor.ranObjObjIsoLimit_hom_π_assoc, SSet.StrictSegal.isPointwiseRightKanExtensionAt.fac_aux₃, proj_map, CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtensionAt.isoLimit_inv_π, ofStructuredArrowProjEquivalence.functor_obj_right_right, ofStructuredArrowProjEquivalence.inverse_map_right_right, CategoryTheory.Limits.Cone.toStructuredArrowCompProj_hom_app, CategoryTheory.Functor.pointwiseRightKanExtensionCounit_app, CategoryTheory.Functor.pointwiseRightKanExtension_obj, CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtensionAt.isoLimit_inv_π_assoc, CategoryTheory.Functor.ranObjObjIsoLimit_hom_π, CategoryTheory.Functor.pointwiseRightKanExtension_map, CategoryTheory.Functor.RightExtension.coneAtFunctor_map_hom, CategoryTheory.Functor.RightExtension.coneAtWhiskerRightIso_hom_hom, Profinite.Extend.cone_pt, CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtensionAt.isoLimit_hom_π, CategoryTheory.Limits.Cone.toStructuredArrow_comp_proj, SSet.StrictSegal.isPointwiseRightKanExtensionAt.fac_aux₁, CategoryTheory.Functor.ranObjObjIsoLimit_inv_π, CategoryTheory.Functor.structuredArrowMapCone_pt, proj_obj, ofStructuredArrowProjEquivalence.functor_obj_right_left_as, isCoseparating_proj_preimage, CategoryTheory.Functor.IsDenseSubsite.isIso_ranCounit_app_of_isDenseSubsite, CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtensionAt.isoLimit_hom_π_assoc, CategoryTheory.Functor.toStructuredArrow_comp_proj, isCoseparating_inverseImage_proj, ofStructuredArrowProjEquivalence.inverse_obj_right_hom, final_proj_of_isFiltered, ofStructuredArrowProjEquivalence.functor_obj_hom, small_proj_preimage_of_locallySmall, CategoryTheory.Functor.structuredArrowMapCone_π_app
toCostructuredArrow 📖CompOp
2 mathmath: toCostructuredArrow_map, toCostructuredArrow_obj
toCostructuredArrow' 📖CompOp
2 mathmath: toCostructuredArrow'_map, toCostructuredArrow'_obj

Theorems

NameKindAssumesProvesValidatesDepends On
comp_right 📖mathematical—CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.CategoryStruct.comp
CategoryTheory.StructuredArrow
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Comma.right
——
epi_homMk 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
CategoryTheory.Epi
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
homMk
—CategoryTheory.Functor.epi_of_epi_map
CategoryTheory.Functor.reflectsEpimorphisms_of_faithful
proj_faithful
epi_of_epi_right 📖mathematical—CategoryTheory.Epi
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
—CategoryTheory.Functor.epi_of_epi_map
CategoryTheory.Functor.reflectsEpimorphisms_of_faithful
proj_faithful
eqToHom_right 📖mathematical—CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.eqToHom
CategoryTheory.StructuredArrow
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Comma.right
——
eq_mk 📖mathematical—CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
——
essSurj_map₂ 📖mathematical—CategoryTheory.Functor.EssSurj
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
map₂
—CategoryTheory.Comma.essSurj_map
CategoryTheory.Functor.instEssSurjId
CategoryTheory.Discrete.instIsIsoFunctorNatTrans
eta_hom_right 📖mathematical—CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Iso.hom
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
eta
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
eta_inv_right 📖mathematical—CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Iso.inv
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
eta
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
ext 📖—CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
——CategoryTheory.CommaMorphism.ext
CategoryTheory.Discrete.instSubsingletonDiscreteHom
ext_iff 📖mathematical—CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
—ext
faithful_map₂ 📖mathematical—CategoryTheory.Functor.Faithful
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
map₂
—CategoryTheory.Comma.faithful_map
CategoryTheory.Functor.Faithful.id
full_map₂ 📖mathematical—CategoryTheory.Functor.Full
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
map₂
—CategoryTheory.Comma.full_map
CategoryTheory.Functor.Full.id
CategoryTheory.Discrete.instIsIsoFunctorNatTrans
homMk'_comp 📖mathematical—homMk'
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Functor.obj
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
CategoryTheory.Comma.left
CategoryTheory.eqToHom
—eqToHom_right
CategoryTheory.Category.comp_id
homMk'_id 📖mathematical—homMk'
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.eqToHom
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.obj
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
—eqToHom_right
homMk'_left 📖mathematical—CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
homMk'
CategoryTheory.CategoryStruct.id
CategoryTheory.Comma.left
——
homMk'_mk_comp 📖mathematical—homMk'
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Functor.obj
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
CategoryTheory.eqToHom
—homMk'_comp
homMk'_mk_id 📖mathematical—homMk'
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.eqToHom
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.obj
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
—homMk'_id
homMk'_right 📖mathematical—CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
homMk'
——
homMk_right 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
CategoryTheory.CommaMorphism.right
homMk
——
homMk_surjective 📖mathematical—homMk—w
hom_eq_iff 📖mathematical—CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
—hom_ext
hom_ext 📖—CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
——CategoryTheory.CommaMorphism.ext
CategoryTheory.Discrete.instSubsingletonDiscreteHom
hom_ext_iff 📖mathematical—CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
—hom_ext
id_right 📖mathematical—CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.CategoryStruct.id
CategoryTheory.StructuredArrow
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Comma.right
——
instEssSurjCompPre 📖mathematical—CategoryTheory.Functor.EssSurj
CategoryTheory.StructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.instCategoryStructuredArrow
pre
—CategoryTheory.Comma.instEssSurjCompPreRight
instEssSurjObjCompPostOfFull 📖mathematical—CategoryTheory.Functor.EssSurj
CategoryTheory.StructuredArrow
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
CategoryTheory.instCategoryStructuredArrow
post
—CategoryTheory.Functor.map_preimage
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
instFaithfulCompPre 📖mathematical—CategoryTheory.Functor.Faithful
CategoryTheory.StructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.instCategoryStructuredArrow
pre
—CategoryTheory.Comma.instFaithfulCompPreRight
instFaithfulObjCompPost 📖mathematical—CategoryTheory.Functor.Faithful
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
post
——
instFullCompPre 📖mathematical—CategoryTheory.Functor.Full
CategoryTheory.StructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.instCategoryStructuredArrow
pre
—CategoryTheory.Comma.instFullCompPreRight
instFullObjCompPostOfFaithful 📖mathematical—CategoryTheory.Functor.Full
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
post
—CategoryTheory.Functor.map_injective
CategoryTheory.Functor.map_comp
CategoryTheory.Discrete.functor_map_id
CategoryTheory.Category.id_comp
CategoryTheory.CommaMorphism.w
isEquivalenceMap₂ 📖mathematical—CategoryTheory.Functor.IsEquivalence
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
map₂
—CategoryTheory.Comma.isEquivalenceMap
CategoryTheory.Functor.isEquivalence_refl
CategoryTheory.Discrete.instIsIsoFunctorNatTrans
isEquivalence_post 📖mathematical—CategoryTheory.Functor.IsEquivalence
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
post
—instFaithfulObjCompPost
instFullObjCompPostOfFaithful
instEssSurjObjCompPostOfFull
isEquivalence_pre 📖mathematical—CategoryTheory.Functor.IsEquivalence
CategoryTheory.StructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.instCategoryStructuredArrow
pre
—CategoryTheory.Comma.isEquivalence_preRight
isoMk_hom_right 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
CategoryTheory.CommaMorphism.right
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
isoMk
——
isoMk_inv_right 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
CategoryTheory.CommaMorphism.right
CategoryTheory.Iso.inv
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
isoMk
——
left_eq_id 📖mathematical—CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
——
mapIso_counitIso_hom_app_right 📖mathematical—CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.comp
CategoryTheory.Comma.mapLeft
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.mapIso
CategoryTheory.Functor.const
CategoryTheory.Iso.inv
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Equivalence.counitIso
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
mapIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
—CategoryTheory.Category.comp_id
mapIso_counitIso_inv_app_right 📖mathematical—CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Comma.mapLeft
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.mapIso
CategoryTheory.Functor.const
CategoryTheory.Iso.inv
CategoryTheory.NatTrans.app
CategoryTheory.Equivalence.counitIso
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
mapIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
—CategoryTheory.Category.comp_id
mapIso_functor_map_left 📖mathematical—CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.mapIso
CategoryTheory.Functor.const
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.functor
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
mapIso
CategoryTheory.CategoryStruct.id
——
mapIso_functor_map_right 📖mathematical—CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.mapIso
CategoryTheory.Functor.const
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.functor
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
mapIso
——
mapIso_functor_obj_hom 📖mathematical—CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.functor
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
mapIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
CategoryTheory.Iso.inv
——
mapIso_functor_obj_left 📖mathematical—CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.functor
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
mapIso
——
mapIso_functor_obj_right 📖mathematical—CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.functor
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
mapIso
——
mapIso_inverse_map_left 📖mathematical—CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.mapIso
CategoryTheory.Functor.const
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.inverse
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
mapIso
CategoryTheory.CategoryStruct.id
——
mapIso_inverse_map_right 📖mathematical—CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.mapIso
CategoryTheory.Functor.const
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.inverse
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
mapIso
——
mapIso_inverse_obj_hom 📖mathematical—CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.inverse
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
mapIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
CategoryTheory.Iso.hom
——
mapIso_inverse_obj_left 📖mathematical—CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.inverse
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
mapIso
——
mapIso_inverse_obj_right 📖mathematical—CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.inverse
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
mapIso
——
mapIso_unitIso_hom_app_right 📖mathematical—CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Comma.mapLeft
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.mapIso
CategoryTheory.Functor.const
CategoryTheory.Iso.hom
CategoryTheory.NatTrans.app
CategoryTheory.Equivalence.unitIso
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
mapIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
—CategoryTheory.Category.comp_id
mapIso_unitIso_inv_app_right 📖mathematical—CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.comp
CategoryTheory.Comma.mapLeft
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.mapIso
CategoryTheory.Functor.const
CategoryTheory.Iso.hom
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Equivalence.unitIso
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
mapIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
—CategoryTheory.Category.comp_id
mapNatIso_counitIso_hom_app_right 📖mathematical—CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.comp
CategoryTheory.Comma.mapRight
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Iso.hom
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Equivalence.counitIso
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
mapNatIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
—CategoryTheory.Category.comp_id
mapNatIso_counitIso_inv_app_right 📖mathematical—CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Comma.mapRight
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Iso.hom
CategoryTheory.NatTrans.app
CategoryTheory.Equivalence.counitIso
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
mapNatIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
—CategoryTheory.Category.comp_id
mapNatIso_functor_map_left 📖mathematical—CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comma.hom
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.map
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.functor
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
mapNatIso
CategoryTheory.CategoryStruct.id
——
mapNatIso_functor_map_right 📖mathematical—CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comma.hom
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.map
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.functor
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
mapNatIso
——
mapNatIso_functor_obj_hom 📖mathematical—CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.functor
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
mapNatIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
——
mapNatIso_functor_obj_left 📖mathematical—CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.functor
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
mapNatIso
——
mapNatIso_functor_obj_right 📖mathematical—CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.functor
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
mapNatIso
——
mapNatIso_inverse_map_left 📖mathematical—CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comma.hom
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.map
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.inverse
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
mapNatIso
CategoryTheory.CategoryStruct.id
——
mapNatIso_inverse_map_right 📖mathematical—CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comma.hom
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.map
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.inverse
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
mapNatIso
——
mapNatIso_inverse_obj_hom 📖mathematical—CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.inverse
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
mapNatIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
——
mapNatIso_inverse_obj_left 📖mathematical—CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.inverse
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
mapNatIso
——
mapNatIso_inverse_obj_right 📖mathematical—CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.inverse
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
mapNatIso
——
mapNatIso_unitIso_hom_app_right 📖mathematical—CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Comma.mapRight
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Iso.inv
CategoryTheory.NatTrans.app
CategoryTheory.Equivalence.unitIso
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
mapNatIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
—CategoryTheory.Category.comp_id
mapNatIso_unitIso_inv_app_right 📖mathematical—CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.comp
CategoryTheory.Comma.mapRight
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Iso.inv
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Equivalence.unitIso
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
mapNatIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
—CategoryTheory.Category.comp_id
map_comp 📖mathematical—CategoryTheory.Functor.obj
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
map
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
—CategoryTheory.Category.assoc
map_id 📖mathematical—CategoryTheory.Functor.obj
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
map
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
—CategoryTheory.Category.id_comp
map_map_left 📖mathematical—CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Comma.hom
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
map
CategoryTheory.CategoryStruct.id
——
map_map_right 📖mathematical—CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Comma.hom
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
map
——
map_mk 📖mathematical—CategoryTheory.Functor.obj
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
map
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
——
map_obj_hom 📖mathematical—CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
map
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
——
map_obj_left 📖mathematical—CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
map
——
map_obj_right 📖mathematical—CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
map
——
map₂_map_left 📖mathematical—CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
CategoryTheory.Discrete.natTrans
CategoryTheory.Functor.map
CategoryTheory.Comma.hom
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
map₂
CategoryTheory.CategoryStruct.id
——
map₂_map_right 📖mathematical—CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
CategoryTheory.Discrete.natTrans
CategoryTheory.Functor.map
CategoryTheory.Comma.hom
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
map₂
——
map₂_obj_hom 📖mathematical—CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
map₂
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
——
map₂_obj_left 📖mathematical—CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
map₂
——
map₂_obj_right 📖mathematical—CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
map₂
——
mkPostcomp_comp 📖mathematical—mkPostcomp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.eqToHom
—eqToHom_right
CategoryTheory.Category.comp_id
mkPostcomp_id 📖mathematical—mkPostcomp
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.eqToHom
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
—eqToHom_right
mkPostcomp_left 📖mathematical—CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
mkPostcomp
CategoryTheory.CategoryStruct.id
CategoryTheory.Comma.left
——
mkPostcomp_right 📖mathematical—CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
mkPostcomp
——
mk_hom_eq_self 📖mathematical—CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
——
mk_left 📖mathematical—CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
——
mk_right 📖mathematical—CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
——
mk_surjective 📖—————
mono_homMk 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
CategoryTheory.Mono
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
homMk
—CategoryTheory.Functor.mono_of_mono_map
CategoryTheory.Functor.reflectsMonomorphisms_of_faithful
proj_faithful
mono_of_mono_right 📖mathematical—CategoryTheory.Mono
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
—CategoryTheory.Functor.mono_of_mono_map
CategoryTheory.Functor.reflectsMonomorphisms_of_faithful
proj_faithful
obj_ext 📖—CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
CategoryTheory.eqToHom
——CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
post_map 📖mathematical—CategoryTheory.Functor.map
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
post
homMk
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.hom
CategoryTheory.CommaMorphism.right
——
post_obj 📖mathematical—CategoryTheory.Functor.obj
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Functor.comp
post
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.map
CategoryTheory.Comma.hom
——
preEquivalenceFunctor_map_right 📖mathematical—CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.right
CategoryTheory.Functor.comp
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
pre
CategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
preEquivalenceFunctor
——
preEquivalenceFunctor_obj_hom 📖mathematical—CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.right
CategoryTheory.Functor.obj
CategoryTheory.StructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.instCategoryStructuredArrow
pre
preEquivalenceFunctor
CategoryTheory.CommaMorphism.right
——
preEquivalenceFunctor_obj_left_as 📖mathematical—CategoryTheory.Discrete.as
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.right
CategoryTheory.Functor.obj
CategoryTheory.StructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.instCategoryStructuredArrow
pre
preEquivalenceFunctor
——
preEquivalenceFunctor_obj_right 📖mathematical—CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.StructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.instCategoryStructuredArrow
pre
preEquivalenceFunctor
——
preEquivalenceInverse_map_right_right 📖mathematical—CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.Functor.comp
CategoryTheory.Comma.right
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
pre
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
homMk
preEquivalenceInverse
——
preEquivalenceInverse_obj_hom_right 📖mathematical—CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.StructuredArrow
CategoryTheory.Comma.left
CategoryTheory.Functor.comp
CategoryTheory.instCategoryStructuredArrow
pre
CategoryTheory.Comma.right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
preEquivalenceInverse
——
preEquivalenceInverse_obj_left_as 📖mathematical—CategoryTheory.Discrete.as
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.StructuredArrow
CategoryTheory.Functor.obj
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.comp
CategoryTheory.instCategoryStructuredArrow
pre
CategoryTheory.Comma.right
preEquivalenceInverse
——
preEquivalenceInverse_obj_right_hom 📖mathematical—CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.Functor.comp
CategoryTheory.Comma.right
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
pre
preEquivalenceInverse
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.map
——
preEquivalenceInverse_obj_right_left_as 📖mathematical—CategoryTheory.Discrete.as
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
CategoryTheory.Comma.right
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
pre
preEquivalenceInverse
——
preEquivalenceInverse_obj_right_right 📖mathematical—CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.Functor.comp
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
pre
preEquivalenceInverse
——
preEquivalence_counitIso 📖mathematical—CategoryTheory.Equivalence.counitIso
CategoryTheory.StructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.instCategoryStructuredArrow
pre
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
preEquivalence
CategoryTheory.NatIso.ofComponents
preEquivalenceInverse
preEquivalenceFunctor
CategoryTheory.Functor.id
isoMk
CategoryTheory.Functor.obj
CategoryTheory.Iso.refl
——
preEquivalence_functor 📖mathematical—CategoryTheory.Equivalence.functor
CategoryTheory.StructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.instCategoryStructuredArrow
pre
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
preEquivalence
preEquivalenceFunctor
——
preEquivalence_inverse 📖mathematical—CategoryTheory.Equivalence.inverse
CategoryTheory.StructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.instCategoryStructuredArrow
pre
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
preEquivalence
preEquivalenceInverse
——
preEquivalence_unitIso 📖mathematical—CategoryTheory.Equivalence.unitIso
CategoryTheory.StructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.instCategoryStructuredArrow
pre
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
preEquivalence
CategoryTheory.NatIso.ofComponents
CategoryTheory.Functor.id
preEquivalenceFunctor
preEquivalenceInverse
isoMk
CategoryTheory.Functor.obj
CategoryTheory.Iso.refl
——
pre_map_left 📖mathematical—CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
pre
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
pre_map_right 📖mathematical—CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
pre
——
pre_obj_hom 📖mathematical—CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.StructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.instCategoryStructuredArrow
pre
——
pre_obj_left 📖mathematical—CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.StructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.instCategoryStructuredArrow
pre
——
pre_obj_right 📖mathematical—CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.StructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.instCategoryStructuredArrow
pre
——
prodEquivalence_counitIso 📖mathematical—CategoryTheory.Equivalence.counitIso
CategoryTheory.StructuredArrow
CategoryTheory.prod'
CategoryTheory.Functor.prod
CategoryTheory.instCategoryStructuredArrow
prodEquivalence
CategoryTheory.NatIso.ofComponents
CategoryTheory.Functor.comp
prodInverse
prodFunctor
CategoryTheory.Functor.id
CategoryTheory.Iso.refl
CategoryTheory.Functor.obj
——
prodEquivalence_functor 📖mathematical—CategoryTheory.Equivalence.functor
CategoryTheory.StructuredArrow
CategoryTheory.prod'
CategoryTheory.Functor.prod
CategoryTheory.instCategoryStructuredArrow
prodEquivalence
prodFunctor
——
prodEquivalence_inverse 📖mathematical—CategoryTheory.Equivalence.inverse
CategoryTheory.StructuredArrow
CategoryTheory.prod'
CategoryTheory.Functor.prod
CategoryTheory.instCategoryStructuredArrow
prodEquivalence
prodInverse
——
prodEquivalence_unitIso 📖mathematical—CategoryTheory.Equivalence.unitIso
CategoryTheory.StructuredArrow
CategoryTheory.prod'
CategoryTheory.Functor.prod
CategoryTheory.instCategoryStructuredArrow
prodEquivalence
CategoryTheory.NatIso.ofComponents
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
prodFunctor
prodInverse
CategoryTheory.Iso.refl
CategoryTheory.Functor.obj
——
prodFunctor_map 📖mathematical—CategoryTheory.Functor.map
CategoryTheory.StructuredArrow
CategoryTheory.prod'
CategoryTheory.Functor.prod
CategoryTheory.instCategoryStructuredArrow
prodFunctor
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
homMk
CategoryTheory.CommaMorphism.right
——
prodFunctor_obj 📖mathematical—CategoryTheory.Functor.obj
CategoryTheory.StructuredArrow
CategoryTheory.prod'
CategoryTheory.Functor.prod
CategoryTheory.instCategoryStructuredArrow
prodFunctor
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
——
prodInverse_map 📖mathematical—CategoryTheory.Functor.map
CategoryTheory.StructuredArrow
CategoryTheory.prod'
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Functor.prod
prodInverse
homMk
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comma.hom
CategoryTheory.CommaMorphism.right
——
prodInverse_obj 📖mathematical—CategoryTheory.Functor.obj
CategoryTheory.StructuredArrow
CategoryTheory.prod'
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Functor.prod
prodInverse
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.hom
——
proj_faithful 📖mathematical—CategoryTheory.Functor.Faithful
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
proj
—ext
proj_map 📖mathematical—CategoryTheory.Functor.map
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
proj
CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
——
proj_obj 📖mathematical—CategoryTheory.Functor.obj
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
proj
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
——
proj_reflectsIsomorphisms 📖mathematical—CategoryTheory.Functor.ReflectsIsomorphisms
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
proj
—CategoryTheory.Functor.map_isIso
CategoryTheory.Functor.map_inv
CategoryTheory.IsIso.comp_inv_eq
w
CategoryTheory.CommaMorphism.ext
CategoryTheory.IsIso.hom_inv_id
CategoryTheory.IsIso.inv_hom_id
toCostructuredArrow'_map 📖mathematical—CategoryTheory.Functor.map
Opposite
CategoryTheory.StructuredArrow
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Functor.op
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
toCostructuredArrow'
CategoryTheory.CostructuredArrow.homMk
Opposite.unop
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
CategoryTheory.CommaMorphism.right
——
toCostructuredArrow'_obj 📖mathematical—CategoryTheory.Functor.obj
Opposite
CategoryTheory.StructuredArrow
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Functor.op
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.CostructuredArrow
CategoryTheory.instCategoryCostructuredArrow
toCostructuredArrow'
Opposite.unop
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
——
toCostructuredArrow_map 📖mathematical—CategoryTheory.Functor.map
Opposite
CategoryTheory.StructuredArrow
CategoryTheory.Category.opposite
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.CostructuredArrow
CategoryTheory.Functor.op
Opposite.op
CategoryTheory.instCategoryCostructuredArrow
toCostructuredArrow
CategoryTheory.CostructuredArrow.homMk
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
Opposite.unop
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
CategoryTheory.CommaMorphism.right
Quiver.Hom.unop
——
toCostructuredArrow_obj 📖mathematical—CategoryTheory.Functor.obj
Opposite
CategoryTheory.StructuredArrow
CategoryTheory.Category.opposite
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.CostructuredArrow
CategoryTheory.Functor.op
Opposite.op
CategoryTheory.instCategoryCostructuredArrow
toCostructuredArrow
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
Opposite.unop
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
——
w 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
CategoryTheory.CommaMorphism.right
—CategoryTheory.CommaMorphism.w
CategoryTheory.Category.id_comp
w_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
CategoryTheory.CommaMorphism.right
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
w
w_prod_fst 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.prod'
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Functor.prod
CategoryTheory.Comma.right
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
CategoryTheory.CommaMorphism.right
—w
w_prod_fst_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.prod'
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Functor.prod
CategoryTheory.Comma.right
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
CategoryTheory.CommaMorphism.right
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
w_prod_fst
w_prod_snd 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.prod'
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Functor.prod
CategoryTheory.Comma.right
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
CategoryTheory.CommaMorphism.right
—w
w_prod_snd_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.prod'
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Functor.prod
CategoryTheory.Comma.right
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
CategoryTheory.CommaMorphism.right
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
w_prod_snd

CategoryTheory.StructuredArrow.IsUniversal

Definitions

NameCategoryTheorems
desc 📖CompOp
3 mathmath: hom_desc, fac_assoc, fac

Theorems

NameKindAssumesProvesValidatesDepends On
existsUnique 📖mathematical—ExistsUnique
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.CategoryStruct.comp
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
—fac
hom_ext
fac 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
desc
—CategoryTheory.CommaMorphism.w
CategoryTheory.Category.id_comp
fac_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
desc
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
fac
hom_desc 📖mathematical—desc
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
—CategoryTheory.Limits.IsInitial.hom_ext
hom_ext 📖—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
——hom_desc
uniq 📖mathematical—CategoryTheory.Limits.IsInitial.to
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
—CategoryTheory.Limits.IsInitial.hom_ext

---

← Back to Index