Documentation Verification Report

Basic

šŸ“ Source: Mathlib/CategoryTheory/ComposableArrows/Basic.lean

Statistics

MetricCount
Definitionsmap, obj, map, obj, app', arrow, arrowEquiv, hom, homMk, homMkSucc, homMkā‚€, homMk₁, homMkā‚‚, homMkā‚ƒ, homMkā‚„, homMkā‚…, isoMk, isoMkSucc, isoMkā‚€, isoMk₁, isoMkā‚‚, isoMkā‚ƒ, isoMkā‚„, isoMkā‚…, left, map', mkOfObjOfMapSucc, mkā‚€, mk₁, mkā‚‚, mkā‚ƒ, mkā‚„, mkā‚…, obj', opEquivalence, precomp, right, tacticValid, whiskerLeft, whiskerLeftFunctor, Ī“last, Ī“lastFunctor, Γ₀, Γ₀Functor, mapComposableArrows, mapComposableArrowsObjMk₁Iso, mapComposableArrowsObjMkā‚‚Iso, mapComposableArrowsOpIso, castSuccFunctor, succFunctor
50
Theoremsmap_comp, map_id, map_comp, map_id, map_one_one, map_one_succ, map_succ_succ, map_zero_one, map_zero_one', map_zero_succ_succ, map_zero_zero, obj_one, obj_succ, obj_zero, arrowEquiv_apply, arrowEquiv_symm_apply, ext, ext_succ, extā‚€, ext₁, extā‚‚, extā‚‚_of_arrow, extā‚ƒ, extā‚„, extā‚…, homMkSucc_app_succ, homMkSucc_app_zero, homMk_app, homMkā‚€_app, homMk₁_app, homMkā‚‚_app_one, homMkā‚‚_app_two, homMkā‚‚_app_two', homMkā‚‚_app_zero, homMkā‚ƒ_app_one, homMkā‚ƒ_app_three, homMkā‚ƒ_app_two, homMkā‚ƒ_app_zero, homMkā‚„_app_four, homMkā‚„_app_one, homMkā‚„_app_three, homMkā‚„_app_two, homMkā‚„_app_zero, homMkā‚…_app_five, homMkā‚…_app_four, homMkā‚…_app_one, homMkā‚…_app_three, homMkā‚…_app_two, homMkā‚…_app_zero, hom_ext_succ, hom_extā‚€, hom_extā‚€_iff, hom_ext₁, hom_ext₁_iff, hom_extā‚‚, hom_extā‚‚_iff, hom_extā‚ƒ, hom_extā‚ƒ_iff, hom_extā‚„, hom_extā‚„_iff, hom_extā‚…, hom_extā‚…_iff, isIso_iffā‚€, isIso_iff₁, isIso_iffā‚‚, isoMkSucc_hom, isoMkSucc_inv, isoMk_hom, isoMk_inv, isoMkā‚€_hom_app, isoMkā‚€_inv_app, isoMk₁_hom_app, isoMk₁_inv_app, isoMkā‚‚_hom, isoMkā‚‚_inv, isoMkā‚ƒ_hom, isoMkā‚ƒ_inv, isoMkā‚„_hom, isoMkā‚„_inv, isoMkā‚…_hom, isoMkā‚…_inv, map'_comp, map'_eq_hom₁, map'_inv_eq_inv_map', map'_self, mkOfObjOfMapSucc_arrow, mkOfObjOfMapSucc_exists, mkOfObjOfMapSucc_map_succ, mkOfObjOfMapSucc_obj, mkā‚€_map, mkā‚€_obj, mkā‚€_surjective, mk₁_comp_eqToHom, mk₁_eqToHom_comp, mk₁_hom, mk₁_map, mk₁_obj, mk₁_surjective, mkā‚‚_surjective, mkā‚ƒ_surjective, mkā‚„_surjective, mkā‚…_surjective, naturality', naturality'_assoc, opEquivalence_counitIso_hom_app_app, opEquivalence_counitIso_inv_app_app, opEquivalence_functor_map_app, opEquivalence_functor_obj_map, opEquivalence_functor_obj_obj, opEquivalence_inverse_map, opEquivalence_inverse_obj, opEquivalence_unitIso_hom_app, opEquivalence_unitIso_inv_app, precomp_map, precomp_obj, precomp_surjective, precomp_Γ₀, whiskerLeftFunctor_map_app, whiskerLeftFunctor_obj_map, whiskerLeftFunctor_obj_obj, whiskerLeft_map, whiskerLeft_obj, Ī“lastFunctor_map_app, Ī“lastFunctor_obj_map, Ī“lastFunctor_obj_obj, Γ₀Functor_map_app, Γ₀Functor_obj_map, Γ₀Functor_obj_obj, mapComposableArrowsObjMk₁Iso_hom_app, mapComposableArrowsObjMk₁Iso_inv_app, mapComposableArrowsObjMkā‚‚Iso_hom_app, mapComposableArrowsObjMkā‚‚Iso_inv_app, mapComposableArrows_map_app, mapComposableArrows_obj_map, mapComposableArrows_obj_obj, castSuccFunctor_map, castSuccFunctor_obj, succFunctor_map, succFunctor_obj
139
Total189

CategoryTheory.ComposableArrows

Definitions

NameCategoryTheorems
app' šŸ“–CompOp
19 mathmath: hom_extā‚…_iff, CategoryTheory.Abelian.epi_of_mono_of_epi_of_mono', CategoryTheory.Abelian.mono_of_epi_of_epi_mono', CategoryTheory.Abelian.mono_of_epi_of_mono_of_mono', CategoryTheory.Abelian.epi_of_epi_of_epi_of_mono', CategoryTheory.Abelian.epi_of_epi_of_epi_of_mono, CategoryTheory.Abelian.mono_of_epi_of_mono_of_mono, CategoryTheory.Abelian.epi_of_epi_of_epi_of_epi, hom_extā‚ƒ_iff, CategoryTheory.Abelian.isIso_of_epi_of_isIso_of_isIso_of_mono, naturality', CategoryTheory.Abelian.epi_of_mono_of_epi_of_mono, hom_ext₁_iff, hom_extā‚‚_iff, hom_extā‚€_iff, hom_extā‚„_iff, naturality'_assoc, CategoryTheory.Abelian.mono_of_epi_of_epi_of_mono, CategoryTheory.Abelian.mono_of_mono_of_mono_of_mono
arrow šŸ“–CompOp
1 mathmath: mkOfObjOfMapSucc_arrow
arrowEquiv šŸ“–CompOp
2 mathmath: arrowEquiv_symm_apply, arrowEquiv_apply
hom šŸ“–CompOp
15 mathmath: CategoryTheory.MorphismProperty.TransfiniteCompositionOfShape.ofComposableArrows_incl_app, mk₁_hom, CategoryTheory.nerve.homEquiv_apply, CategoryTheory.MorphismProperty.TransfiniteCompositionOfShape.ofComposableArrows_isColimit_desc, CategoryTheory.TransfiniteCompositionOfShape.ofComposableArrows_F, CategoryTheory.nerve.mk₁_homEquiv_apply, CategoryTheory.MorphismProperty.TransfiniteCompositionOfShape.ofComposableArrows_F, CategoryTheory.MorphismProperty.TransfiniteCompositionOfShape.ofComposableArrows_isoBot_inv, map'_eq_hom₁, CategoryTheory.TransfiniteCompositionOfShape.ofComposableArrows_isoBot, arrowEquiv_apply, SSet.OneTruncationā‚‚.nerveHomEquiv_apply, CategoryTheory.TransfiniteCompositionOfShape.ofComposableArrows_incl_app, CategoryTheory.TransfiniteCompositionOfShape.ofComposableArrows_isColimit, CategoryTheory.MorphismProperty.TransfiniteCompositionOfShape.ofComposableArrows_isoBot_hom
homMk šŸ“–CompOp
3 mathmath: isoMk_inv, isoMk_hom, homMk_app
homMkSucc šŸ“–CompOp
4 mathmath: isoMkSucc_hom, homMkSucc_app_zero, isoMkSucc_inv, homMkSucc_app_succ
homMkā‚€ šŸ“–CompOp
1 mathmath: homMkā‚€_app
homMk₁ šŸ“–CompOp
8 mathmath: CategoryTheory.Triangulated.SpectralObject.ω₂_map_hom₁, mapFunctorArrows_app, CategoryTheory.Triangulated.SpectralObject.ω₂_obj_morā‚‚, CategoryTheory.Triangulated.SpectralObject.ω₂_map_homā‚‚, functorArrows_map, CategoryTheory.Triangulated.SpectralObject.ω₂_obj_mor₁, CategoryTheory.Triangulated.SpectralObject.ω₂_map_homā‚ƒ, homMk₁_app
homMkā‚‚ šŸ“–CompOp
6 mathmath: homMkā‚‚_app_two, isoMkā‚‚_inv, homMkā‚‚_app_zero, isoMkā‚‚_hom, homMkā‚‚_app_one, homMkā‚‚_app_two'
homMkā‚ƒ šŸ“–CompOp
7 mathmath: homMkā‚ƒ_app_three, isoMkā‚ƒ_hom, homMkā‚ƒ_app_two, isoMkā‚ƒ_inv, homMkā‚ƒ_app_one, HomologicalComplex.HomologySequence.composableArrowsā‚ƒFunctor_map, homMkā‚ƒ_app_zero
homMkā‚„ šŸ“–CompOp
7 mathmath: homMkā‚„_app_four, homMkā‚„_app_three, homMkā‚„_app_zero, isoMkā‚„_hom, homMkā‚„_app_one, isoMkā‚„_inv, homMkā‚„_app_two
homMkā‚… šŸ“–CompOp
9 mathmath: homMkā‚…_app_five, homMkā‚…_app_zero, isoMkā‚…_inv, CategoryTheory.ShortComplex.SnakeInput.composableArrowsFunctor_map, homMkā‚…_app_two, homMkā‚…_app_three, isoMkā‚…_hom, homMkā‚…_app_one, homMkā‚…_app_four
isoMk šŸ“–CompOp
2 mathmath: isoMk_inv, isoMk_hom
isoMkSucc šŸ“–CompOp
2 mathmath: isoMkSucc_hom, isoMkSucc_inv
isoMkā‚€ šŸ“–CompOp
2 mathmath: isoMkā‚€_inv_app, isoMkā‚€_hom_app
isoMk₁ šŸ“–CompOp
2 mathmath: isoMk₁_hom_app, isoMk₁_inv_app
isoMkā‚‚ šŸ“–CompOp
2 mathmath: isoMkā‚‚_inv, isoMkā‚‚_hom
isoMkā‚ƒ šŸ“–CompOp
2 mathmath: isoMkā‚ƒ_hom, isoMkā‚ƒ_inv
isoMkā‚„ šŸ“–CompOp
2 mathmath: isoMkā‚„_hom, isoMkā‚„_inv
isoMkā‚… šŸ“–CompOp
2 mathmath: isoMkā‚…_inv, isoMkā‚…_hom
left šŸ“–CompOp
16 mathmath: CategoryTheory.MorphismProperty.TransfiniteCompositionOfShape.ofComposableArrows_incl_app, mk₁_hom, CategoryTheory.nerve.homEquiv_apply, CategoryTheory.MorphismProperty.TransfiniteCompositionOfShape.ofComposableArrows_isColimit_desc, Precomp.map_zero_succ_succ, CategoryTheory.TransfiniteCompositionOfShape.ofComposableArrows_F, CategoryTheory.nerve.left_edge, CategoryTheory.nerve.mk₁_homEquiv_apply, CategoryTheory.MorphismProperty.TransfiniteCompositionOfShape.ofComposableArrows_F, CategoryTheory.MorphismProperty.TransfiniteCompositionOfShape.ofComposableArrows_isoBot_inv, CategoryTheory.TransfiniteCompositionOfShape.ofComposableArrows_isoBot, arrowEquiv_apply, SSet.OneTruncationā‚‚.nerveHomEquiv_apply, CategoryTheory.TransfiniteCompositionOfShape.ofComposableArrows_incl_app, CategoryTheory.TransfiniteCompositionOfShape.ofComposableArrows_isColimit, CategoryTheory.MorphismProperty.TransfiniteCompositionOfShape.ofComposableArrows_isoBot_hom
map' šŸ“–CompOp
49 mathmath: HomotopyCategory.spectralObjectMappingCone_Ī“'_app, exact_iff_Ī“last, Exact.cokerIsoKer'_hom_inv_id_assoc, IsComplex.zero'_assoc, CategoryTheory.nerve.Γ₂_zero, CategoryTheory.instMonoMap'KernelCokernelCompSequenceOfNatNat, Exact.cokerIsoKer'_hom, IsComplex.opcyclesToCycles_fac_assoc, Precomp.map_zero_succ_succ, HomologicalComplex.HomologySequence.instEpiMap'ComposableArrowsā‚ƒOfNatNat, exact_iff_Γ₀, mkOfObjOfMapSucc_map_succ, IsComplex.mono_cokerToKer', map'_comp, IsComplex.zero_assoc, Exact.opcyclesIsoCycles_hom_fac_assoc, Exact.opcyclesIsoCycles_hom_fac, IsComplex.opcyclesToCycles_fac, Exact.cokerIsoKer'_inv_hom_id, HomotopyCategory.composableArrowsFunctor_obj, mapFunctorArrows_app, Exact.cokerIsoKer'_hom_inv_id, naturality', CategoryTheory.instEpiMap'KernelCokernelCompSequenceOfNatNat, CategoryTheory.Triangulated.SpectralObject.ω₂_obj_morā‚‚, isComplexā‚‚_iff, Exact.cokerIsoKer'_inv_hom_id_assoc, HomotopyCategory.composableArrowsFunctor_map, Exact.cokerIsoKer_hom_fac_assoc, map'_eq_hom₁, HomologicalComplex.HomologySequence.instMonoMap'ComposableArrowsā‚ƒOfNatNat, Exact.cokerIsoKer_hom_fac, IsComplex.epi_cokerToKer', map'_self, Exact.isIso_cokerToKer', Precomp.map_succ_succ, mkOfObjOfMapSucc_exists, functorArrows_map, IsComplex.cokerToKer'_fac_assoc, CategoryTheory.Triangulated.SpectralObject.ω₂_obj_mor₁, naturality'_assoc, Precomp.map_one_succ, functorArrows_obj, IsComplex.cokerToKer'_fac, IsComplex.zero, IsComplex.cokerToKer_fac, CategoryTheory.nerve.Γ₂_two, IsComplex.zero', IsComplex.cokerToKer_fac_assoc
mkOfObjOfMapSucc šŸ“–CompOp
3 mathmath: mkOfObjOfMapSucc_arrow, mkOfObjOfMapSucc_map_succ, mkOfObjOfMapSucc_obj
mkā‚€ šŸ“–CompOp
5 mathmath: mkā‚€_surjective, mkā‚€_obj, CategoryTheory.nerve.Ļƒā‚€_mkā‚€_eq, mkā‚€_map, CategoryTheory.nerveMap_app_mkā‚€
mk₁ šŸ“–CompOp
51 mathmath: CategoryTheory.Triangulated.SpectralObject.Hom.comm, CategoryTheory.nerve.edgeMk_edge, CategoryTheory.Functor.mapComposableArrowsObjMkā‚‚Iso_inv_app, CategoryTheory.nerve.Γ₂_zero, twoΓ₁ToΓ₀_app_zero, CategoryTheory.Functor.mapComposableArrowsObjMk₁Iso_inv_app, mk₁_eqToHom_comp, mk₁_hom, mk₁_surjective, mkOfObjOfMapSucc_arrow, CategoryTheory.Triangulated.SpectralObject.ω₂_map_hom₁, twoΓ₂ToΓ₁_app_zero, CategoryTheory.Triangulated.SpectralObject.triangle_objā‚‚, CategoryTheory.nerve.mk₁_homEquiv_apply, mk₁_comp_eqToHom, CategoryTheory.nerveMap_app_mk₁, CategoryTheory.Functor.mapComposableArrowsObjMkā‚‚Iso_hom_app, arrowEquiv_symm_apply, mk₁_obj, CategoryTheory.Functor.mapComposableArrowsObjMk₁Iso_hom_app, CategoryTheory.Triangulated.SpectralObject.triangle_morā‚‚, CategoryTheory.nerve.Γ₁_mkā‚‚_eq, CategoryTheory.Triangulated.SpectralObject.Hom.comm_assoc, CategoryTheory.Triangulated.SpectralObject.ω₂_obj_morā‚‚, twoΓ₁ToΓ₀_app_one, mk₁_map, SSet.Truncated.HomotopyCategory.homToNerveMk_app_one, CategoryTheory.nerve.Ļƒā‚€_mkā‚€_eq, CategoryTheory.Triangulated.SpectralObject.triangle_mor₁, CategoryTheory.Triangulated.SpectralObject.mapTriangulatedFunctor_Ī“, CategoryTheory.nerve.Γ₂_mkā‚‚_eq, instIsIsoOfNatNatTwoΓ₁ToΓ₀, CategoryTheory.ShortComplex.toComposableArrows_map, CategoryTheory.nerve.σ_zero_nerveEquiv_symm, twoΓ₂ToΓ₁_app_one, SSet.Truncated.HomotopyCategory.homToNerveMk_app_edge, CategoryTheory.ShortComplex.toComposableArrows_obj, CategoryTheory.Triangulated.SpectralObject.ω₂_map_homā‚‚, CategoryTheory.Triangulated.SpectralObject.triangle_objā‚ƒ, CategoryTheory.Triangulated.SpectralObject.ω₂_obj_objā‚‚, CategoryTheory.Triangulated.SpectralObject.triangle_obj₁, functorArrows_map, CategoryTheory.Triangulated.SpectralObject.ω₂_obj_mor₁, CategoryTheory.Triangulated.SpectralObject.ω₂_map_homā‚ƒ, instIsIsoOfNatNatTwoΓ₂ToΓ₁, functorArrows_obj, CategoryTheory.nerve.Γ₀_mkā‚‚_eq, CategoryTheory.Triangulated.SpectralObject.ω₂_obj_obj₁, CategoryTheory.nerve.Γ₂_two, CategoryTheory.Triangulated.SpectralObject.ω₂_obj_objā‚ƒ, CategoryTheory.nerve.homEquiv_symm_apply
mkā‚‚ šŸ“–CompOp
19 mathmath: threeΓ₂ToΓ₁_app_zero, CategoryTheory.Functor.mapComposableArrowsObjMkā‚‚Iso_inv_app, exact_iff_Ī“last, threeΓ₂ToΓ₁_app_one, threeΓ₁ToΓ₀_app_zero, threeĪ“ā‚ƒToΓ₂_app_one, threeΓ₂ToΓ₁_app_two, exact_iff_Γ₀, CochainComplex.mappingConeCompTriangle_morā‚ƒ_naturality, CategoryTheory.Functor.mapComposableArrowsObjMkā‚‚Iso_hom_app, CategoryTheory.nerve.Γ₁_mkā‚‚_eq, threeΓ₁ToΓ₀_app_two, CategoryTheory.nerve.Γ₂_mkā‚‚_eq, threeĪ“ā‚ƒToΓ₂_app_two, threeΓ₁ToΓ₀_app_one, threeĪ“ā‚ƒToΓ₂_app_zero, CochainComplex.mappingConeCompTriangle_morā‚ƒ_naturality_assoc, CategoryTheory.nerve.Γ₀_mkā‚‚_eq, mkā‚‚_surjective
mkā‚ƒ šŸ“–CompOp
17 mathmath: fourΓ₁ToΓ₀_app_zero, fourΓ₄ToĪ“ā‚ƒ_app_two, fourΓ₄ToĪ“ā‚ƒ_app_one, fourΓ₂ToΓ₁_app_three, fourΓ₂ToΓ₁_app_zero, fourΓ₁ToΓ₀_app_two, fourΓ₂ToΓ₁_app_one, fourĪ“ā‚ƒToΓ₂_app_one, mkā‚ƒ_surjective, fourΓ₂ToΓ₁_app_two, fourĪ“ā‚ƒToΓ₂_app_two, fourĪ“ā‚ƒToΓ₂_app_three, fourΓ₁ToΓ₀_app_one, fourΓ₄ToĪ“ā‚ƒ_app_zero, fourΓ₁ToΓ₀_app_three, fourΓ₄ToĪ“ā‚ƒ_app_three, fourĪ“ā‚ƒToΓ₂_app_zero
mkā‚„ šŸ“–CompOp
1 mathmath: mkā‚„_surjective
mkā‚… šŸ“–CompOp
1 mathmath: mkā‚…_surjective
obj' šŸ“–CompOp
17 mathmath: CategoryTheory.Abelian.epi_of_mono_of_epi_of_mono', CategoryTheory.Abelian.mono_of_epi_of_epi_mono', CategoryTheory.Abelian.mono_of_epi_of_mono_of_mono', CategoryTheory.Abelian.epi_of_epi_of_epi_of_mono', Precomp.obj_one, CategoryTheory.Abelian.epi_of_epi_of_epi_of_mono, CategoryTheory.Abelian.mono_of_epi_of_mono_of_mono, CategoryTheory.Abelian.epi_of_epi_of_epi_of_epi, CategoryTheory.Abelian.isIso_of_epi_of_isIso_of_isIso_of_mono, naturality', CategoryTheory.Abelian.epi_of_mono_of_epi_of_mono, CategoryTheory.Triangulated.SpectralObject.ω₂_obj_morā‚‚, Precomp.obj_succ, CategoryTheory.Triangulated.SpectralObject.ω₂_obj_mor₁, naturality'_assoc, CategoryTheory.Abelian.mono_of_epi_of_epi_of_mono, CategoryTheory.Abelian.mono_of_mono_of_mono_of_mono
opEquivalence šŸ“–CompOp
9 mathmath: opEquivalence_counitIso_inv_app_app, opEquivalence_unitIso_inv_app, opEquivalence_functor_obj_map, opEquivalence_functor_map_app, opEquivalence_inverse_obj, opEquivalence_unitIso_hom_app, opEquivalence_functor_obj_obj, opEquivalence_inverse_map, opEquivalence_counitIso_hom_app_app
precomp šŸ“–CompOp
4 mathmath: precomp_obj, precomp_Γ₀, precomp_surjective, precomp_map
right šŸ“–CompOp
15 mathmath: CategoryTheory.MorphismProperty.TransfiniteCompositionOfShape.ofComposableArrows_incl_app, mk₁_hom, CategoryTheory.nerve.homEquiv_apply, CategoryTheory.nerve.right_edge, CategoryTheory.MorphismProperty.TransfiniteCompositionOfShape.ofComposableArrows_isColimit_desc, CategoryTheory.TransfiniteCompositionOfShape.ofComposableArrows_F, CategoryTheory.nerve.mk₁_homEquiv_apply, CategoryTheory.MorphismProperty.TransfiniteCompositionOfShape.ofComposableArrows_F, CategoryTheory.MorphismProperty.TransfiniteCompositionOfShape.ofComposableArrows_isoBot_inv, CategoryTheory.TransfiniteCompositionOfShape.ofComposableArrows_isoBot, arrowEquiv_apply, SSet.OneTruncationā‚‚.nerveHomEquiv_apply, CategoryTheory.TransfiniteCompositionOfShape.ofComposableArrows_incl_app, CategoryTheory.TransfiniteCompositionOfShape.ofComposableArrows_isColimit, CategoryTheory.MorphismProperty.TransfiniteCompositionOfShape.ofComposableArrows_isoBot_hom
tacticValid šŸ“–CompOp—
whiskerLeft šŸ“–CompOp
3 mathmath: whiskerLeft_obj, whiskerLeft_map, CategoryTheory.nerve_map
whiskerLeftFunctor šŸ“–CompOp
3 mathmath: whiskerLeftFunctor_obj_map, whiskerLeftFunctor_obj_obj, whiskerLeftFunctor_map_app
Ī“last šŸ“–CompOp
2 mathmath: exact_iff_Γlast, Exact.Γlast
Ī“lastFunctor šŸ“–CompOp
3 mathmath: ΓlastFunctor_obj_obj, ΓlastFunctor_map_app, ΓlastFunctor_obj_map
Γ₀ šŸ“–CompOp
4 mathmath: exact_iff_Γ₀, precomp_Γ₀, CategoryTheory.nerve.Γ₀_eq, Exact.Γ₀
Γ₀Functor šŸ“–CompOp
3 mathmath: Γ₀Functor_obj_map, Γ₀Functor_obj_obj, Γ₀Functor_map_app

Theorems

NameKindAssumesProvesValidatesDepends On
arrowEquiv_apply šŸ“–mathematical—DFunLike.coe
Equiv
CategoryTheory.ComposableArrows
CategoryTheory.Arrow
EquivLike.toFunLike
Equiv.instEquivLike
arrowEquiv
left
right
hom
——
arrowEquiv_symm_apply šŸ“–mathematical—DFunLike.coe
Equiv
CategoryTheory.Arrow
CategoryTheory.ComposableArrows
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
arrowEquiv
mk₁
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
——
ext šŸ“–ā€”CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
map'
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.eqToHom
——CategoryTheory.Functor.ext_of_iso
CategoryTheory.Category.assoc
CategoryTheory.eqToHom_trans
CategoryTheory.Category.comp_id
ext_succ šŸ“–ā€”obj'
Γ₀
map'
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.eqToHom
CategoryTheory.Functor.congr_obj
CategoryTheory.ComposableArrows
——CategoryTheory.Functor.congr_obj
CategoryTheory.Functor.ext_of_iso
CategoryTheory.eqToHom_app
CategoryTheory.Category.assoc
CategoryTheory.eqToHom_trans
CategoryTheory.eqToHom_refl
CategoryTheory.Category.comp_id
extā‚€ šŸ“–ā€”obj'
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
——ext
ext₁ šŸ“–ā€”left
right
hom
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.eqToHom
——CategoryTheory.Functor.ext_of_iso
CategoryTheory.Category.assoc
CategoryTheory.eqToHom_trans
CategoryTheory.Category.comp_id
Fintype.complete
extā‚‚ šŸ“–ā€”obj'
map'
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.eqToHom
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
——ext_succ
ext₁
extā‚‚_of_arrow šŸ“–ā€”CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
map'
——mkā‚‚_surjective
extā‚ƒ šŸ“–ā€”obj'
map'
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.eqToHom
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
——ext_succ
extā‚‚
extā‚„ šŸ“–ā€”obj'
map'
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.eqToHom
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
——ext_succ
extā‚ƒ
extā‚… šŸ“–ā€”obj'
map'
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.eqToHom
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
——ext_succ
extā‚„
homMkSucc_app_succ šŸ“–mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
obj'
Γ₀
CategoryTheory.CategoryStruct.comp
map'
app'
CategoryTheory.NatTrans.app
homMkSucc
——
homMkSucc_app_zero šŸ“–mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
obj'
Γ₀
CategoryTheory.CategoryStruct.comp
map'
app'
CategoryTheory.NatTrans.app
homMkSucc
——
homMk_app šŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
map'
CategoryTheory.NatTrans.app
homMk
——
homMkā‚€_app šŸ“–mathematical—CategoryTheory.NatTrans.app
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
homMkā‚€
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
——
homMk₁_app šŸ“–mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
obj'
CategoryTheory.CategoryStruct.comp
map'
CategoryTheory.NatTrans.app
homMk₁
——
homMkā‚‚_app_one šŸ“–mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
obj'
CategoryTheory.CategoryStruct.comp
map'
CategoryTheory.NatTrans.app
homMkā‚‚
——
homMkā‚‚_app_two šŸ“–mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
obj'
CategoryTheory.CategoryStruct.comp
map'
CategoryTheory.NatTrans.app
homMkā‚‚
——
homMkā‚‚_app_two' šŸ“–mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
obj'
CategoryTheory.CategoryStruct.comp
map'
CategoryTheory.NatTrans.app
homMkā‚‚
——
homMkā‚‚_app_zero šŸ“–mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
obj'
CategoryTheory.CategoryStruct.comp
map'
CategoryTheory.NatTrans.app
homMkā‚‚
——
homMkā‚ƒ_app_one šŸ“–mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
obj'
CategoryTheory.CategoryStruct.comp
map'
CategoryTheory.NatTrans.app
homMkā‚ƒ
——
homMkā‚ƒ_app_three šŸ“–mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
obj'
CategoryTheory.CategoryStruct.comp
map'
CategoryTheory.NatTrans.app
homMkā‚ƒ
——
homMkā‚ƒ_app_two šŸ“–mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
obj'
CategoryTheory.CategoryStruct.comp
map'
CategoryTheory.NatTrans.app
homMkā‚ƒ
——
homMkā‚ƒ_app_zero šŸ“–mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
obj'
CategoryTheory.CategoryStruct.comp
map'
CategoryTheory.NatTrans.app
homMkā‚ƒ
——
homMkā‚„_app_four šŸ“–mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
obj'
CategoryTheory.CategoryStruct.comp
map'
CategoryTheory.NatTrans.app
homMkā‚„
——
homMkā‚„_app_one šŸ“–mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
obj'
CategoryTheory.CategoryStruct.comp
map'
CategoryTheory.NatTrans.app
homMkā‚„
——
homMkā‚„_app_three šŸ“–mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
obj'
CategoryTheory.CategoryStruct.comp
map'
CategoryTheory.NatTrans.app
homMkā‚„
——
homMkā‚„_app_two šŸ“–mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
obj'
CategoryTheory.CategoryStruct.comp
map'
CategoryTheory.NatTrans.app
homMkā‚„
——
homMkā‚„_app_zero šŸ“–mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
obj'
CategoryTheory.CategoryStruct.comp
map'
CategoryTheory.NatTrans.app
homMkā‚„
——
homMkā‚…_app_five šŸ“–mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
obj'
CategoryTheory.CategoryStruct.comp
map'
CategoryTheory.NatTrans.app
homMkā‚…
——
homMkā‚…_app_four šŸ“–mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
obj'
CategoryTheory.CategoryStruct.comp
map'
CategoryTheory.NatTrans.app
homMkā‚…
——
homMkā‚…_app_one šŸ“–mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
obj'
CategoryTheory.CategoryStruct.comp
map'
CategoryTheory.NatTrans.app
homMkā‚…
——
homMkā‚…_app_three šŸ“–mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
obj'
CategoryTheory.CategoryStruct.comp
map'
CategoryTheory.NatTrans.app
homMkā‚…
——
homMkā‚…_app_two šŸ“–mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
obj'
CategoryTheory.CategoryStruct.comp
map'
CategoryTheory.NatTrans.app
homMkā‚…
——
homMkā‚…_app_zero šŸ“–mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
obj'
CategoryTheory.CategoryStruct.comp
map'
CategoryTheory.NatTrans.app
homMkā‚…
——
hom_ext_succ šŸ“–ā€”app'
CategoryTheory.Functor.map
CategoryTheory.ComposableArrows
CategoryTheory.Functor.category
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
Γ₀Functor
——CategoryTheory.NatTrans.ext'
CategoryTheory.congr_app
hom_extā‚€ šŸ“–ā€”app'——CategoryTheory.NatTrans.ext'
Fintype.complete
hom_extā‚€_iff šŸ“–mathematical—app'—hom_extā‚€
hom_ext₁ šŸ“–ā€”app'——CategoryTheory.NatTrans.ext'
hom_ext₁_iff šŸ“–mathematical—app'—hom_ext₁
hom_extā‚‚ šŸ“–ā€”app'——hom_ext_succ
hom_ext₁
hom_extā‚‚_iff šŸ“–mathematical—app'—hom_extā‚‚
hom_extā‚ƒ šŸ“–ā€”app'——hom_ext_succ
hom_extā‚‚
hom_extā‚ƒ_iff šŸ“–mathematical—app'—hom_extā‚ƒ
hom_extā‚„ šŸ“–ā€”app'——hom_ext_succ
hom_extā‚ƒ
hom_extā‚„_iff šŸ“–mathematical—app'—hom_extā‚„
hom_extā‚… šŸ“–ā€”app'——hom_ext_succ
hom_extā‚„
hom_extā‚…_iff šŸ“–mathematical—app'—hom_extā‚…
isIso_iffā‚€ šŸ“–mathematical—CategoryTheory.IsIso
CategoryTheory.ComposableArrows
CategoryTheory.Functor.category
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
—CategoryTheory.NatTrans.isIso_iff_isIso_app
Fintype.complete
isIso_iff₁ šŸ“–mathematical—CategoryTheory.IsIso
CategoryTheory.ComposableArrows
CategoryTheory.Functor.category
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
—CategoryTheory.NatTrans.isIso_iff_isIso_app
Fintype.complete
isIso_iffā‚‚ šŸ“–mathematical—CategoryTheory.IsIso
CategoryTheory.ComposableArrows
CategoryTheory.Functor.category
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
—CategoryTheory.NatTrans.isIso_iff_isIso_app
Fintype.complete
isoMkSucc_hom šŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
obj'
Γ₀
map'
app'
CategoryTheory.Iso.hom
CategoryTheory.ComposableArrows
CategoryTheory.Functor.category
isoMkSucc
homMkSucc
——
isoMkSucc_inv šŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
obj'
Γ₀
map'
app'
CategoryTheory.Iso.hom
CategoryTheory.ComposableArrows
CategoryTheory.Functor.category
CategoryTheory.Iso.inv
isoMkSucc
homMkSucc
——
isoMk_hom šŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
map'
CategoryTheory.Iso.hom
CategoryTheory.ComposableArrows
CategoryTheory.Functor.category
isoMk
homMk
——
isoMk_inv šŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
map'
CategoryTheory.Iso.hom
CategoryTheory.Iso.inv
CategoryTheory.ComposableArrows
CategoryTheory.Functor.category
isoMk
homMk
——
isoMkā‚€_hom_app šŸ“–mathematical—CategoryTheory.NatTrans.app
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.Iso.hom
CategoryTheory.ComposableArrows
CategoryTheory.Functor.category
isoMkā‚€
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
——
isoMkā‚€_inv_app šŸ“–mathematical—CategoryTheory.NatTrans.app
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.Iso.inv
CategoryTheory.ComposableArrows
CategoryTheory.Functor.category
isoMkā‚€
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
——
isoMk₁_hom_app šŸ“–mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
obj'
CategoryTheory.CategoryStruct.comp
map'
CategoryTheory.Iso.hom
CategoryTheory.NatTrans.app
CategoryTheory.ComposableArrows
CategoryTheory.Functor.category
isoMk₁
——
isoMk₁_inv_app šŸ“–mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
obj'
CategoryTheory.CategoryStruct.comp
map'
CategoryTheory.Iso.hom
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.ComposableArrows
CategoryTheory.Functor.category
isoMk₁
——
isoMkā‚‚_hom šŸ“–mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
obj'
CategoryTheory.CategoryStruct.comp
map'
CategoryTheory.Iso.hom
CategoryTheory.ComposableArrows
CategoryTheory.Functor.category
isoMkā‚‚
homMkā‚‚
——
isoMkā‚‚_inv šŸ“–mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
obj'
CategoryTheory.CategoryStruct.comp
map'
CategoryTheory.Iso.hom
CategoryTheory.Iso.inv
CategoryTheory.ComposableArrows
CategoryTheory.Functor.category
isoMkā‚‚
homMkā‚‚
——
isoMkā‚ƒ_hom šŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
obj'
map'
CategoryTheory.Iso.hom
CategoryTheory.ComposableArrows
CategoryTheory.Functor.category
isoMkā‚ƒ
homMkā‚ƒ
——
isoMkā‚ƒ_inv šŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
obj'
map'
CategoryTheory.Iso.hom
CategoryTheory.Iso.inv
CategoryTheory.ComposableArrows
CategoryTheory.Functor.category
isoMkā‚ƒ
homMkā‚ƒ
——
isoMkā‚„_hom šŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
obj'
map'
CategoryTheory.Iso.hom
CategoryTheory.ComposableArrows
CategoryTheory.Functor.category
isoMkā‚„
homMkā‚„
——
isoMkā‚„_inv šŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
obj'
map'
CategoryTheory.Iso.hom
CategoryTheory.Iso.inv
CategoryTheory.ComposableArrows
CategoryTheory.Functor.category
isoMkā‚„
homMkā‚„
——
isoMkā‚…_hom šŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
obj'
map'
CategoryTheory.Iso.hom
CategoryTheory.ComposableArrows
CategoryTheory.Functor.category
isoMkā‚…
homMkā‚…
——
isoMkā‚…_inv šŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
obj'
map'
CategoryTheory.Iso.hom
CategoryTheory.Iso.inv
CategoryTheory.ComposableArrows
CategoryTheory.Functor.category
isoMkā‚…
homMkā‚…
——
map'_comp šŸ“–mathematical—map'
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
—CategoryTheory.Functor.map_comp
map'_eq_hom₁ šŸ“–mathematical—map'
hom
——
map'_inv_eq_inv_map' šŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
obj'
map'
CategoryTheory.Iso.hom
CategoryTheory.Iso.inv—CategoryTheory.cancel_epi
CategoryTheory.IsSplitEpi.epi
CategoryTheory.IsSplitEpi.of_iso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.comp_id
CategoryTheory.Iso.hom_inv_id_assoc
map'_self šŸ“–mathematical—map'
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
—CategoryTheory.Functor.map_id
mkOfObjOfMapSucc_arrow šŸ“–mathematical—arrow
mkOfObjOfMapSucc
mk₁
—ext₁
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
mkOfObjOfMapSucc_map_succ
mkOfObjOfMapSucc_exists šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.Iso.inv
map'
CategoryTheory.Iso.hom
—CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
mkOfObjOfMapSucc_map_succ šŸ“–mathematical—map'
mkOfObjOfMapSucc
—mkOfObjOfMapSucc_exists
mkOfObjOfMapSucc_obj šŸ“–mathematical—CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
mkOfObjOfMapSucc
——
mkā‚€_map šŸ“–mathematical—CategoryTheory.Functor.map
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
mkā‚€
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
mkā‚€_obj šŸ“–mathematical—CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
mkā‚€
——
mkā‚€_surjective šŸ“–mathematical—mk₀—le_rfl
extā‚€
mk₁_comp_eqToHom šŸ“–mathematical—mk₁
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.eqToHom
—CategoryTheory.Category.comp_id
mk₁_eqToHom_comp šŸ“–mathematical—mk₁
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.eqToHom
—CategoryTheory.Category.id_comp
mk₁_hom šŸ“–mathematical—mk₁
left
right
hom
—ext₁
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
mk₁_map šŸ“–mathematical—CategoryTheory.Functor.map
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
mk₁
Mk₁.map
——
mk₁_obj šŸ“–mathematical—CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
mk₁
Mk₁.obj
——
mk₁_surjective šŸ“–mathematical—mk₁—le_rfl
ext₁
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
mkā‚‚_surjective šŸ“–mathematical—mk₂—le_rfl
extā‚‚
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
mkā‚ƒ_surjective šŸ“–mathematical—mkā‚ƒā€”le_rfl
extā‚ƒ
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
mkā‚„_surjective šŸ“–mathematical—mk₄—le_rfl
extā‚„
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
mkā‚…_surjective šŸ“–mathematical—mk₅—le_rfl
extā‚…
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
naturality' šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
obj'
map'
app'
—CategoryTheory.NatTrans.naturality
naturality'_assoc šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
map'
obj'
app'
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
naturality'
opEquivalence_counitIso_hom_app_app šŸ“–mathematical—CategoryTheory.NatTrans.app
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.obj
CategoryTheory.ComposableArrows
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor
CategoryTheory.Equivalence.inverse
CategoryTheory.Functor.leftOpRightOpEquiv
CategoryTheory.Equivalence.op
CategoryTheory.Equivalence.congrLeft
CategoryTheory.Equivalence.symm
CategoryTheory.Equivalence.trans
OrderDual
OrderDual.instPreorder
CategoryTheory.orderDualEquivalence
OrderIso.equivalence
Fin.revOrderIso
CategoryTheory.Equivalence.functor
CategoryTheory.Functor.id
CategoryTheory.Iso.hom
CategoryTheory.Equivalence.counitIso
opEquivalence
CategoryTheory.Functor.map
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.op
Monotone.functor
DFunLike.coe
OrderIso
Preorder.toLE
instFunLikeOrderIso
OrderIso.monotone
OrderIso.symm
CategoryTheory.Equivalence.counitInv
—OrderIso.monotone
CategoryTheory.Equivalence.invFunIdAssoc_inv_app
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
opEquivalence_counitIso_inv_app_app šŸ“–mathematical—CategoryTheory.NatTrans.app
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.obj
CategoryTheory.ComposableArrows
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Functor
CategoryTheory.Equivalence.inverse
CategoryTheory.Functor.leftOpRightOpEquiv
CategoryTheory.Equivalence.op
CategoryTheory.Equivalence.congrLeft
CategoryTheory.Equivalence.symm
CategoryTheory.Equivalence.trans
OrderDual
OrderDual.instPreorder
CategoryTheory.orderDualEquivalence
OrderIso.equivalence
Fin.revOrderIso
CategoryTheory.Equivalence.functor
CategoryTheory.Iso.inv
CategoryTheory.Equivalence.counitIso
opEquivalence
CategoryTheory.Functor.map
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.op
Monotone.functor
DFunLike.coe
OrderIso
Preorder.toLE
instFunLikeOrderIso
OrderIso.monotone
OrderIso.symm
CategoryTheory.Equivalence.unitInv
—OrderIso.monotone
CategoryTheory.Equivalence.invFunIdAssoc_hom_app
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
opEquivalence_functor_map_app šŸ“–mathematical—CategoryTheory.NatTrans.app
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.ComposableArrows
CategoryTheory.Equivalence.functor
CategoryTheory.Functor.leftOpRightOpEquiv
CategoryTheory.Equivalence.op
CategoryTheory.Equivalence.congrLeft
CategoryTheory.Equivalence.symm
CategoryTheory.Equivalence.trans
OrderDual
OrderDual.instPreorder
CategoryTheory.orderDualEquivalence
OrderIso.equivalence
Fin.revOrderIso
CategoryTheory.Functor.map
opEquivalence
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.unop
Quiver.Hom.unop
——
opEquivalence_functor_obj_map šŸ“–mathematical—CategoryTheory.Functor.map
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.ComposableArrows
CategoryTheory.Equivalence.functor
opEquivalence
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.unop
OrderDual
OrderDual.instPreorder
Monotone.functor
DFunLike.coe
OrderIso
Preorder.toLE
instFunLikeOrderIso
Fin.revOrderIso
OrderIso.monotone
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
CategoryTheory.homOfLE
Opposite.op
——
opEquivalence_functor_obj_obj šŸ“–mathematical—CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.ComposableArrows
CategoryTheory.Equivalence.functor
opEquivalence
Opposite.op
Opposite.unop
——
opEquivalence_inverse_map šŸ“–mathematical—CategoryTheory.Functor.map
CategoryTheory.ComposableArrows
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.Functor
CategoryTheory.Equivalence.inverse
opEquivalence
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.comp
OrderDual
OrderDual.instPreorder
Monotone.functor
DFunLike.coe
OrderIso
Preorder.toLE
instFunLikeOrderIso
OrderIso.symm
Fin.revOrderIso
CategoryTheory.Equivalence.functor
CategoryTheory.orderDualEquivalence
CategoryTheory.Functor.leftOp
CategoryTheory.Functor.whiskerLeft
CategoryTheory.NatTrans.leftOp
——
opEquivalence_inverse_obj šŸ“–mathematical—CategoryTheory.Functor.obj
CategoryTheory.ComposableArrows
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.Functor
CategoryTheory.Equivalence.inverse
opEquivalence
Opposite.op
CategoryTheory.Functor.comp
OrderDual
OrderDual.instPreorder
Monotone.functor
DFunLike.coe
OrderIso
Preorder.toLE
instFunLikeOrderIso
OrderIso.symm
Fin.revOrderIso
CategoryTheory.Equivalence.functor
CategoryTheory.orderDualEquivalence
CategoryTheory.Functor.leftOp
——
opEquivalence_unitIso_hom_app šŸ“–mathematical—CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Functor
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.ComposableArrows
CategoryTheory.Equivalence.functor
CategoryTheory.Equivalence.op
CategoryTheory.Equivalence.congrLeft
CategoryTheory.Equivalence.symm
CategoryTheory.Equivalence.trans
OrderDual
OrderDual.instPreorder
CategoryTheory.orderDualEquivalence
OrderIso.equivalence
Fin.revOrderIso
CategoryTheory.Functor.leftOpRightOpEquiv
CategoryTheory.Equivalence.inverse
CategoryTheory.Iso.hom
CategoryTheory.Equivalence.unitIso
opEquivalence
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Opposite.op
Monotone.functor
DFunLike.coe
OrderIso
Preorder.toLE
instFunLikeOrderIso
OrderIso.symm
OrderIso.monotone
Opposite.unop
CategoryTheory.Functor.leftOp
CategoryTheory.Functor.obj
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Equivalence.funInvIdAssoc
CategoryTheory.Functor.whiskerLeft
CategoryTheory.Functor.rightOp
CategoryTheory.Functor.rightOpLeftOpIso
—OrderIso.monotone
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
opEquivalence_unitIso_inv_app šŸ“–mathematical—CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Functor
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.ComposableArrows
CategoryTheory.Equivalence.functor
CategoryTheory.Equivalence.op
CategoryTheory.Equivalence.congrLeft
CategoryTheory.Equivalence.symm
CategoryTheory.Equivalence.trans
OrderDual
OrderDual.instPreorder
CategoryTheory.orderDualEquivalence
OrderIso.equivalence
Fin.revOrderIso
CategoryTheory.Functor.leftOpRightOpEquiv
CategoryTheory.Equivalence.inverse
CategoryTheory.Functor.id
CategoryTheory.Iso.inv
CategoryTheory.Equivalence.unitIso
opEquivalence
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Opposite.op
Monotone.functor
DFunLike.coe
OrderIso
Preorder.toLE
instFunLikeOrderIso
OrderIso.symm
CategoryTheory.Functor.leftOp
CategoryTheory.Functor.obj
OrderIso.monotone
Opposite.unop
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Functor.whiskerLeft
CategoryTheory.Functor.rightOp
CategoryTheory.Functor.rightOpLeftOpIso
CategoryTheory.Equivalence.funInvIdAssoc
—OrderIso.monotone
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
precomp_map šŸ“–mathematical—CategoryTheory.Functor.map
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
precomp
Precomp.map
——
precomp_obj šŸ“–mathematical—CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
precomp
Precomp.obj
——
precomp_surjective šŸ“–mathematical—precomp—ext_succ
CategoryTheory.Functor.congr_obj
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
precomp_Γ₀ šŸ“–mathematical—Γ₀
precomp
——
whiskerLeftFunctor_map_app šŸ“–mathematical—CategoryTheory.NatTrans.app
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.Functor.comp
CategoryTheory.Functor.map
CategoryTheory.ComposableArrows
CategoryTheory.Functor.category
whiskerLeftFunctor
CategoryTheory.Functor.obj
——
whiskerLeftFunctor_obj_map šŸ“–mathematical—CategoryTheory.Functor.map
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.Functor.obj
CategoryTheory.ComposableArrows
CategoryTheory.Functor.category
whiskerLeftFunctor
——
whiskerLeftFunctor_obj_obj šŸ“–mathematical—CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.ComposableArrows
CategoryTheory.Functor.category
whiskerLeftFunctor
——
whiskerLeft_map šŸ“–mathematical—CategoryTheory.Functor.map
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
whiskerLeft
CategoryTheory.Functor.obj
——
whiskerLeft_obj šŸ“–mathematical—CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
whiskerLeft
——
Ī“lastFunctor_map_app šŸ“–mathematical—CategoryTheory.NatTrans.app
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.Functor.comp
Fin.castSuccFunctor
CategoryTheory.Functor.map
CategoryTheory.ComposableArrows
CategoryTheory.Functor.category
ΓlastFunctor
——
Ī“lastFunctor_obj_map šŸ“–mathematical—CategoryTheory.Functor.map
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.Functor.obj
CategoryTheory.ComposableArrows
CategoryTheory.Functor.category
ΓlastFunctor
——
Ī“lastFunctor_obj_obj šŸ“–mathematical—CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.ComposableArrows
CategoryTheory.Functor.category
ΓlastFunctor
——
Γ₀Functor_map_app šŸ“–mathematical—CategoryTheory.NatTrans.app
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.Functor.comp
Fin.succFunctor
CategoryTheory.Functor.map
CategoryTheory.ComposableArrows
CategoryTheory.Functor.category
Γ₀Functor
——
Γ₀Functor_obj_map šŸ“–mathematical—CategoryTheory.Functor.map
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.Functor.obj
CategoryTheory.ComposableArrows
CategoryTheory.Functor.category
Γ₀Functor
CategoryTheory.homOfLE
——
Γ₀Functor_obj_obj šŸ“–mathematical—CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.ComposableArrows
CategoryTheory.Functor.category
Γ₀Functor
——

CategoryTheory.ComposableArrows.Mk₁

Definitions

NameCategoryTheorems
map šŸ“–CompOp
3 mathmath: CategoryTheory.ComposableArrows.mk₁_map, map_comp, map_id
obj šŸ“–CompOp
3 mathmath: CategoryTheory.ComposableArrows.mk₁_obj, map_comp, map_id

Theorems

NameKindAssumesProvesValidatesDepends On
map_comp šŸ“–mathematical—map
LE.le.trans
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
—LE.le.trans
map_id
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
map_id šŸ“–mathematical—map
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
obj
——

CategoryTheory.ComposableArrows.Precomp

Definitions

NameCategoryTheorems
map šŸ“–CompOp
11 mathmath: map_zero_one', map_zero_one, map_zero_succ_succ, CategoryTheory.ShortComplex.toComposableArrows_map, map_comp, map_succ_succ, map_one_succ, map_zero_zero, map_id, CategoryTheory.ComposableArrows.precomp_map, map_one_one
obj šŸ“–CompOp
9 mathmath: CategoryTheory.Functor.mapComposableArrowsObjMkā‚‚Iso_inv_app, obj_one, CategoryTheory.ComposableArrows.precomp_obj, CategoryTheory.Functor.mapComposableArrowsObjMkā‚‚Iso_hom_app, obj_succ, obj_zero, CategoryTheory.ShortComplex.toComposableArrows_obj, map_comp, map_id

Theorems

NameKindAssumesProvesValidatesDepends On
map_comp šŸ“–mathematical—map
LE.le.trans
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
—LE.le.trans
CategoryTheory.Category.id_comp
zero_add
Fin.instNeZeroHAddNatOfNat_mathlib
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
CategoryTheory.Category.assoc
CategoryTheory.Functor.map_comp
CategoryTheory.homOfLE_comp
map_id šŸ“–mathematical—map
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
obj
—CategoryTheory.Functor.map_id
map_one_one šŸ“–mathematical—map
CategoryTheory.Functor.map
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
map_one_succ šŸ“–mathematical—map
CategoryTheory.ComposableArrows.map'
——
map_succ_succ šŸ“–mathematical—map
CategoryTheory.ComposableArrows.map'
——
map_zero_one šŸ“–mathematical—map——
map_zero_one' šŸ“–mathematical—map——
map_zero_succ_succ šŸ“–mathematical—map
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ComposableArrows.left
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.ComposableArrows.map'
——
map_zero_zero šŸ“–mathematical—map
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
obj_one šŸ“–mathematical—obj
CategoryTheory.ComposableArrows.obj'
——
obj_succ šŸ“–mathematical—obj
CategoryTheory.ComposableArrows.obj'
——
obj_zero šŸ“–mathematical—obj——

CategoryTheory.Functor

Definitions

NameCategoryTheorems
mapComposableArrows šŸ“–CompOp
10 mathmath: mapComposableArrowsObjMkā‚‚Iso_inv_app, mapComposableArrowsObjMk₁Iso_inv_app, CategoryTheory.Localization.essSurj_mapComposableArrows_of_hasRightCalculusOfFractions, mapComposableArrowsObjMkā‚‚Iso_hom_app, mapComposableArrowsObjMk₁Iso_hom_app, mapComposableArrows_obj_map, mapComposableArrows_obj_obj, CategoryTheory.nerveMap_app, CategoryTheory.Localization.essSurj_mapComposableArrows, mapComposableArrows_map_app
mapComposableArrowsObjMk₁Iso šŸ“–CompOp
2 mathmath: mapComposableArrowsObjMk₁Iso_inv_app, mapComposableArrowsObjMk₁Iso_hom_app
mapComposableArrowsObjMkā‚‚Iso šŸ“–CompOp
2 mathmath: mapComposableArrowsObjMkā‚‚Iso_inv_app, mapComposableArrowsObjMkā‚‚Iso_hom_app
mapComposableArrowsOpIso šŸ“–CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
mapComposableArrowsObjMk₁Iso_hom_app šŸ“–mathematical—CategoryTheory.NatTrans.app
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
obj
CategoryTheory.ComposableArrows
category
mapComposableArrows
CategoryTheory.ComposableArrows.mk₁
map
CategoryTheory.Iso.hom
mapComposableArrowsObjMk₁Iso
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.id
——
mapComposableArrowsObjMk₁Iso_inv_app šŸ“–mathematical—CategoryTheory.NatTrans.app
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.ComposableArrows.mk₁
obj
map
CategoryTheory.ComposableArrows
category
mapComposableArrows
CategoryTheory.Iso.inv
mapComposableArrowsObjMk₁Iso
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.id
——
mapComposableArrowsObjMkā‚‚Iso_hom_app šŸ“–mathematical—CategoryTheory.NatTrans.app
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
obj
CategoryTheory.ComposableArrows
category
mapComposableArrows
CategoryTheory.ComposableArrows.mkā‚‚
map
CategoryTheory.Iso.hom
mapComposableArrowsObjMkā‚‚Iso
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ComposableArrows.Precomp.obj
CategoryTheory.ComposableArrows.mk₁
CategoryTheory.CategoryStruct.id
——
mapComposableArrowsObjMkā‚‚Iso_inv_app šŸ“–mathematical—CategoryTheory.NatTrans.app
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.ComposableArrows.mkā‚‚
obj
map
CategoryTheory.ComposableArrows
category
mapComposableArrows
CategoryTheory.Iso.inv
mapComposableArrowsObjMkā‚‚Iso
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ComposableArrows.Precomp.obj
CategoryTheory.ComposableArrows.mk₁
CategoryTheory.CategoryStruct.id
——
mapComposableArrows_map_app šŸ“–mathematical—CategoryTheory.NatTrans.app
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
comp
map
CategoryTheory.ComposableArrows
category
mapComposableArrows
obj
——
mapComposableArrows_obj_map šŸ“–mathematical—map
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
obj
CategoryTheory.ComposableArrows
category
mapComposableArrows
——
mapComposableArrows_obj_obj šŸ“–mathematical—obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.ComposableArrows
category
mapComposableArrows
——

Fin

Definitions

NameCategoryTheorems
castSuccFunctor šŸ“–CompOp
3 mathmath: CategoryTheory.ComposableArrows.ΓlastFunctor_map_app, castSuccFunctor_obj, castSuccFunctor_map
succFunctor šŸ“–CompOp
3 mathmath: CategoryTheory.ComposableArrows.Γ₀Functor_map_app, succFunctor_obj, succFunctor_map

Theorems

NameKindAssumesProvesValidatesDepends On
castSuccFunctor_map šŸ“–mathematical—CategoryTheory.Functor.map
Preorder.smallCategory
PartialOrder.toPreorder
instPartialOrder
castSuccFunctor
——
castSuccFunctor_obj šŸ“–mathematical—CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
instPartialOrder
castSuccFunctor
——
succFunctor_map šŸ“–mathematical—CategoryTheory.Functor.map
Preorder.smallCategory
PartialOrder.toPreorder
instPartialOrder
succFunctor
CategoryTheory.homOfLE
——
succFunctor_obj šŸ“–mathematical—CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
instPartialOrder
succFunctor
——

---

← Back to Index