Documentation Verification Report

Four

šŸ“ Source: Mathlib/CategoryTheory/ComposableArrows/Four.lean

Statistics

MetricCount
DefinitionsfourΓ₁ToΓ₀, fourΓ₁ToΓ₀', fourΓ₂ToΓ₁, fourΓ₂ToΓ₁', fourĪ“ā‚ƒToΓ₂, fourĪ“ā‚ƒToΓ₂', fourΓ₄ToĪ“ā‚ƒ, fourΓ₄ToĪ“ā‚ƒ'
8
TheoremsfourΓ₁ToΓ₀_app_one, fourΓ₁ToΓ₀_app_three, fourΓ₁ToΓ₀_app_two, fourΓ₁ToΓ₀_app_zero, fourΓ₂ToΓ₁_app_one, fourΓ₂ToΓ₁_app_three, fourΓ₂ToΓ₁_app_two, fourΓ₂ToΓ₁_app_zero, fourĪ“ā‚ƒToΓ₂_app_one, fourĪ“ā‚ƒToΓ₂_app_three, fourĪ“ā‚ƒToΓ₂_app_two, fourĪ“ā‚ƒToΓ₂_app_zero, fourΓ₄ToĪ“ā‚ƒ_app_one, fourΓ₄ToĪ“ā‚ƒ_app_three, fourΓ₄ToĪ“ā‚ƒ_app_two, fourΓ₄ToĪ“ā‚ƒ_app_zero
16
Total24

CategoryTheory.ComposableArrows

Definitions

NameCategoryTheorems
fourΓ₁ToΓ₀ šŸ“–CompOp
4 mathmath: fourΓ₁ToΓ₀_app_zero, fourΓ₁ToΓ₀_app_two, fourΓ₁ToΓ₀_app_one, fourΓ₁ToΓ₀_app_three
fourΓ₁ToΓ₀' šŸ“–CompOp—
fourΓ₂ToΓ₁ šŸ“–CompOp
4 mathmath: fourΓ₂ToΓ₁_app_three, fourΓ₂ToΓ₁_app_zero, fourΓ₂ToΓ₁_app_one, fourΓ₂ToΓ₁_app_two
fourΓ₂ToΓ₁' šŸ“–CompOp—
fourĪ“ā‚ƒToΓ₂ šŸ“–CompOp
4 mathmath: fourĪ“ā‚ƒToΓ₂_app_one, fourĪ“ā‚ƒToΓ₂_app_two, fourĪ“ā‚ƒToΓ₂_app_three, fourĪ“ā‚ƒToΓ₂_app_zero
fourĪ“ā‚ƒToΓ₂' šŸ“–CompOp—
fourΓ₄ToĪ“ā‚ƒ šŸ“–CompOp
4 mathmath: fourΓ₄ToĪ“ā‚ƒ_app_two, fourΓ₄ToĪ“ā‚ƒ_app_one, fourΓ₄ToĪ“ā‚ƒ_app_zero, fourΓ₄ToĪ“ā‚ƒ_app_three
fourΓ₄ToĪ“ā‚ƒ' šŸ“–CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
fourΓ₁ToΓ₀_app_one šŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
mkā‚ƒ
fourΓ₁ToΓ₀
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor.obj
——
fourΓ₁ToΓ₀_app_three šŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
mkā‚ƒ
fourΓ₁ToΓ₀
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor.obj
——
fourΓ₁ToΓ₀_app_two šŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
mkā‚ƒ
fourΓ₁ToΓ₀
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor.obj
——
fourΓ₁ToΓ₀_app_zero šŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
mkā‚ƒ
fourΓ₁ToΓ₀
——
fourΓ₂ToΓ₁_app_one šŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
mkā‚ƒ
fourΓ₂ToΓ₁
——
fourΓ₂ToΓ₁_app_three šŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
mkā‚ƒ
fourΓ₂ToΓ₁
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor.obj
——
fourΓ₂ToΓ₁_app_two šŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
mkā‚ƒ
fourΓ₂ToΓ₁
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor.obj
——
fourΓ₂ToΓ₁_app_zero šŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
mkā‚ƒ
fourΓ₂ToΓ₁
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor.obj
——
fourĪ“ā‚ƒToΓ₂_app_one šŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
mkā‚ƒ
fourĪ“ā‚ƒToΓ₂
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor.obj
——
fourĪ“ā‚ƒToΓ₂_app_three šŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
mkā‚ƒ
fourĪ“ā‚ƒToΓ₂
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor.obj
——
fourĪ“ā‚ƒToΓ₂_app_two šŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
mkā‚ƒ
fourĪ“ā‚ƒToΓ₂
——
fourĪ“ā‚ƒToΓ₂_app_zero šŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
mkā‚ƒ
fourĪ“ā‚ƒToΓ₂
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor.obj
——
fourΓ₄ToĪ“ā‚ƒ_app_one šŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
mkā‚ƒ
fourΓ₄ToĪ“ā‚ƒ
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor.obj
——
fourΓ₄ToĪ“ā‚ƒ_app_three šŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
mkā‚ƒ
fourΓ₄ToĪ“ā‚ƒ
——
fourΓ₄ToĪ“ā‚ƒ_app_two šŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
mkā‚ƒ
fourΓ₄ToĪ“ā‚ƒ
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor.obj
——
fourΓ₄ToĪ“ā‚ƒ_app_zero šŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
mkā‚ƒ
fourΓ₄ToĪ“ā‚ƒ
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor.obj
——

---

← Back to Index