Documentation Verification Report

Three

📁 Source: Mathlib/CategoryTheory/ComposableArrows/Three.lean

Statistics

MetricCount
Definitionsthreeδ₁Toδ₀, threeδ₁Toδ₀', threeδ₂Toδ₁, threeδ₂Toδ₁', threeδ₃Toδ₂, threeδ₃Toδ₂'
6
Theoremsthreeδ₁Toδ₀_app_one, threeδ₁Toδ₀_app_two, threeδ₁Toδ₀_app_zero, threeδ₂Toδ₁_app_one, threeδ₂Toδ₁_app_two, threeδ₂Toδ₁_app_zero, threeδ₃Toδ₂_app_one, threeδ₃Toδ₂_app_two, threeδ₃Toδ₂_app_zero
9
Total15

CategoryTheory.ComposableArrows

Definitions

NameCategoryTheorems
threeδ₁Toδ₀ 📖CompOp
3 mathmath: threeδ₁Toδ₀_app_zero, threeδ₁Toδ₀_app_two, threeδ₁Toδ₀_app_one
threeδ₁Toδ₀' 📖CompOp—
threeδ₂Toδ₁ 📖CompOp
3 mathmath: threeδ₂Toδ₁_app_zero, threeδ₂Toδ₁_app_one, threeδ₂Toδ₁_app_two
threeδ₂Toδ₁' 📖CompOp—
threeδ₃Toδ₂ 📖CompOp
3 mathmath: threeδ₃Toδ₂_app_one, threeδ₃Toδ₂_app_two, threeδ₃Toδ₂_app_zero
threeδ₃Toδ₂' 📖CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
threeδ₁Toδ₀_app_one 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
mk₂
threeδ₁Toδ₀
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor.obj
——
threeδ₁Toδ₀_app_two 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
mk₂
threeδ₁Toδ₀
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor.obj
——
threeδ₁Toδ₀_app_zero 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
mk₂
threeδ₁Toδ₀
——
threeδ₂Toδ₁_app_one 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
mk₂
threeδ₂Toδ₁
——
threeδ₂Toδ₁_app_two 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
mk₂
threeδ₂Toδ₁
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor.obj
——
threeδ₂Toδ₁_app_zero 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
mk₂
threeδ₂Toδ₁
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor.obj
——
threeδ₃Toδ₂_app_one 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
mk₂
threeδ₃Toδ₂
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor.obj
——
threeδ₃Toδ₂_app_two 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
mk₂
threeδ₃Toδ₂
——
threeδ₃Toδ₂_app_zero 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
mk₂
threeδ₃Toδ₂
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor.obj
——

---

← Back to Index