Documentation Verification Report

Two

📁 Source: Mathlib/CategoryTheory/ComposableArrows/Two.lean

Statistics

MetricCount
Definitionstwoδ₁Toδ₀, twoδ₁Toδ₀', twoδ₂Toδ₁, twoδ₂Toδ₁'
4
TheoremsinstIsIsoOfNatNatTwoδ₁Toδ₀, instIsIsoOfNatNatTwoδ₂Toδ₁, twoδ₁Toδ₀_app_one, twoδ₁Toδ₀_app_zero, twoδ₂Toδ₁_app_one, twoδ₂Toδ₁_app_zero
6
Total10

CategoryTheory.ComposableArrows

Definitions

NameCategoryTheorems
twoδ₁Toδ₀ 📖CompOp
4 mathmath: twoδ₁Toδ₀_app_zero, CategoryTheory.Triangulated.SpectralObject.triangle_mor₂, twoδ₁Toδ₀_app_one, instIsIsoOfNatNatTwoδ₁Toδ₀
twoδ₁Toδ₀' 📖CompOp
twoδ₂Toδ₁ 📖CompOp
4 mathmath: twoδ₂Toδ₁_app_zero, CategoryTheory.Triangulated.SpectralObject.triangle_mor₁, twoδ₂Toδ₁_app_one, instIsIsoOfNatNatTwoδ₂Toδ₁
twoδ₂Toδ₁' 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
instIsIsoOfNatNatTwoδ₁Toδ₀ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.IsIso
CategoryTheory.ComposableArrows
CategoryTheory.Functor.category
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
mk₁
twoδ₁Toδ₀
isIso_iff₁
CategoryTheory.IsIso.id
instIsIsoOfNatNatTwoδ₂Toδ₁ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.IsIso
CategoryTheory.ComposableArrows
CategoryTheory.Functor.category
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
mk₁
twoδ₂Toδ₁
isIso_iff₁
CategoryTheory.IsIso.id
twoδ₁Toδ₀_app_one 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
mk₁
twoδ₁Toδ₀
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor.obj
twoδ₁Toδ₀_app_zero 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
mk₁
twoδ₁Toδ₀
twoδ₂Toδ₁_app_one 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
mk₁
twoδ₂Toδ₁
twoδ₂Toδ₁_app_zero 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
mk₁
twoδ₂Toδ₁
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor.obj

---

← Back to Index