Documentation Verification Report

Bundled

📁 Source: Mathlib/CategoryTheory/ConcreteCategory/Bundled.lean

Statistics

MetricCount
DefinitionsBundled, coeSort, map, of, str, α
6
Theoremscoe_mk
1
Total7

CategoryTheory

Definitions

NameCategoryTheorems
Bundled 📖CompData
17 mathmath: FirstOrder.Language.IsFraisse.is_essentially_countable, FirstOrder.Language.empty.isFraisse_finite, FirstOrder.Language.IsFraisse.is_nonempty, FirstOrder.Language.Hereditary.is_equiv_invariant_of_fg, FirstOrder.Language.dlo_age, FirstOrder.Language.age.nonempty, FirstOrder.Language.empty.isFraisseLimit_of_countable_infinite, FirstOrder.Language.isFraisse_finite_linear_order, FirstOrder.Language.Embedding.age_subset_age, FirstOrder.Language.isFraisseLimit_of_countable_nonempty_dlo, FirstOrder.Language.exists_countable_is_age_of_iff, FirstOrder.Language.age.fg_substructure, FirstOrder.Language.IsFraisse.is_equiv_invariant, FirstOrder.Language.age.countable_quotient, FirstOrder.Language.age.is_equiv_invariant, FirstOrder.Language.age_directLimit, FirstOrder.Language.Structure.FG.mem_age_of_equiv

CategoryTheory.Bundled

Definitions

NameCategoryTheorems
coeSort 📖CompOp—
map 📖CompOp—
of 📖CompOp—
str 📖CompOp
16 mathmath: CategoryTheory.Join.pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_id, CategoryTheory.Cat.opEquivalence_counitIso, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_comp_val_app, CategoryTheory.Cat.HasLimits.limitCone_π_app, CategoryTheory.Cat.opEquivalence_unitIso, CategoryTheory.Join.pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_id, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_id_val_app, CategoryTheory.Cat.HasLimits.limitConeX_str, Equiv.bundledInduced_str, CategoryTheory.Join.pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_comp, CategoryTheory.Cat.HasLimits.limitConeLift_toFunctor, CategoryTheory.Monoidal.rightUnitor_inv, CategoryTheory.Join.pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_comp, CategoryTheory.Cat.Hom.equivFunctor_apply, CategoryTheory.Monoidal.leftUnitor_inv, CategoryTheory.Cat.Hom.equivFunctor_symm_apply
α 📖CompOp
485 mathmath: CategoryTheory.Join.pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_id, CategoryTheory.Pseudofunctor.mapComp'_naturality_1_assoc, CategoryTheory.Join.pseudofunctorLeft_mapId_inv_toNatTrans_app, CategoryTheory.Pseudofunctor.DescentData.isEquivalence_toDescentData_of_sieve_le, CategoryTheory.Quiv.equivOfIso_symm_apply, CategoryTheory.Join.pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_map₂_toNatTrans_app, CategoryTheory.Pseudofunctor.DescentData.ofObj_hom, CategoryTheory.Pseudofunctor.DescentData.subtypeCompatibleHomEquiv_toCompatible_presheafHomObjHomEquiv, CategoryTheory.Join.pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_map, CategoryTheory.Cat.Hom₂.comp_app, CategoryTheory.Cat.whiskerRight_toNatTrans, CategoryTheory.Cat.asSmallFunctor_obj, CategoryTheory.Quiv.comp_eq_comp, SSet.OneTruncation₂.ofNerve₂.natIso_hom_app_map, CategoryTheory.Grothendieck.ιCompMap_hom_app_fiber, CategoryTheory.ReflQuiv.adj_homEquiv, CategoryTheory.Join.pseudofunctorRight_mapComp_inv_toNatTrans_app, CategoryTheory.Cat.freeRefl_map, CategoryTheory.Pseudofunctor.mapComp_assoc_right_hom_app_assoc, CategoryTheory.Pseudofunctor.map₂_associator_app_assoc, CategoryTheory.Pseudofunctor.DescentData.pullFunctorCompIso_inv_app_hom, CategoryTheory.Pseudofunctor.isEquivalence_toDescentData, FundamentalGroupoidFunctor.piIso_hom, CategoryTheory.Cat.Hom.id_map, CategoryTheory.Pseudofunctor.mapComp'_inv_whiskerRight_mapComp'₀₂₃_inv_app, CategoryTheory.Cat.Hom.toNatIso_associator, CategoryTheory.Cat.associator_hom_app, CategoryTheory.Quiv.homEquivOfIso_symm_apply, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_hom_comp_whiskerLeft_mapComp'_hom_app_assoc, CategoryTheory.Cat.Hom.inv_hom_id_toNatTrans_assoc, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_id_app, CategoryTheory.OplaxFunctor.map₂_associator_app, CategoryTheory.Pseudofunctor.CoGrothendieck.categoryStruct_id_fiber, CategoryTheory.curryingIso_hom_toFunctor_obj_map, CategoryTheory.Pseudofunctor.ObjectProperty.fullsubcategory_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj, FirstOrder.Language.empty.isFraisse_finite, CategoryTheory.nerve.functorOfNerveMap_map, ContinuousMap.Homotopy.apply_zero_path, CategoryTheory.Adjunction.ofCat_counit, CategoryTheory.Pseudofunctor.mapComp'_comp_id_hom_app, CategoryTheory.CostructuredArrow.grothendieckPrecompFunctorToComma_map_left, CategoryTheory.Grpd.piIsoPi_hom_π, CategoryTheory.Pseudofunctor.mapComp'_comp_id_inv_app, CategoryTheory.Grpd.free_obj, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_comp_app, CategoryTheory.Cat.of_α, CategoryTheory.Cat.Hom₂.eqToHom_toNatTrans, CategoryTheory.Cat.Hom₂.id_app, CategoryTheory.Grothendieck.ιNatTrans_app_fiber, CategoryTheory.Pseudofunctor.mapComp_assoc_left_inv_app_assoc, CategoryTheory.Pseudofunctor.DescentData.pullFunctor_map_hom, Equiv.bundledInduced_α, CategoryTheory.Grpd.free_map, ContinuousMap.Homotopy.evalAt_eq, CategoryTheory.Pseudofunctor.mapId'_inv_naturality_assoc, CategoryTheory.Cat.Hom.toNatIso_hom, CategoryTheory.Pseudofunctor.mapComp_id_left_inv_app, CategoryTheory.Pseudofunctor.whiskerLeft_mapId_inv_app_assoc, CategoryTheory.OplaxFunctor.mapComp_assoc_left_app_assoc, CategoryTheory.Pseudofunctor.CoGrothendieck.instIsEquivalenceαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, CategoryTheory.Monoidal.whiskerRight_fst, CategoryTheory.Grothendieck.compAsSmallFunctorEquivalenceFunctor_map_fiber, CategoryTheory.Pseudofunctor.DescentData.isoMk_inv_hom, CategoryTheory.Cat.Hom₂.comp_app_assoc, CategoryTheory.Pseudofunctor.CoGrothendieck.map_map_base, CategoryTheory.Grpd.id_to_functor, CategoryTheory.Pseudofunctor.CoGrothendieck.map_map_fiber, FirstOrder.Language.exists_elementarilyEquivalent_card_eq, CategoryTheory.Cat.Hom.isoMk_toNatIso, CategoryTheory.Pseudofunctor.ObjectProperty.ι_app_toFunctor, CategoryTheory.LaxFunctor.mapComp_naturality_left_app_assoc, CategoryTheory.Pseudofunctor.DescentData.comp_hom, CategoryTheory.ReflQuiv.id_map, CategoryTheory.Cat.leftUnitor_hom_app, CategoryTheory.Grothendieck.isoMk_inv_fiber, ContinuousMap.Homotopy.heq_path_of_eq_image, CategoryTheory.OplaxFunctor.map₂_leftUnitor_app, CategoryTheory.Cat.Hom.inv_hom_id_toNatTrans, CategoryTheory.flippingIso_inv_toFunctor_obj_obj_obj, CategoryTheory.ReflQuiv.comp_map, ContinuousMap.Homotopy.eq_path_of_eq_image, CategoryTheory.Pseudofunctor.Grothendieck.ext_iff, CategoryTheory.Pseudofunctor.mapComp'_inv_naturality, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_naturality_app, CategoryTheory.Pseudofunctor.whiskerLeft_mapComp'_inv_comp_mapComp'₀₁₃_inv_app, CategoryTheory.CostructuredArrow.commaToGrothendieckPrecompFunctor_map_fiber, CategoryTheory.Pseudofunctor.ObjectProperty.fullsubcategory_mapComp, SSet.OneTruncation₂.ofNerve₂.natIso_inv_app_obj_obj, CategoryTheory.Cat.exp_obj, CategoryTheory.LaxFunctor.mapComp_assoc_right_app, CategoryTheory.Cat.opEquivalence_counitIso, FirstOrder.Language.dlo_age, CategoryTheory.Pseudofunctor.mapComp'_naturality_1, CategoryTheory.Pseudofunctor.isStackFor_ofArrows_iff, CategoryTheory.LaxFunctor.map₂_leftUnitor_hom_app, CategoryTheory.CostructuredArrow.ιCompGrothendieckProj_inv_app, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_hom_app, CategoryTheory.Grothendieck.id_fiber, CategoryTheory.Join.pseudofunctorLeft_mapId_hom_toNatTrans_app, CategoryTheory.Pseudofunctor.mapComp_id_right_inv_app_assoc, FirstOrder.Language.empty.isFraisseLimit_of_countable_infinite, CategoryTheory.Functor.hasColimit_map_comp_ι_comp_grothendieckProj, CategoryTheory.Pseudofunctor.map₂_associator_app, CategoryTheory.Cat.rightUnitor_hom_toNatTrans, CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapComp_inv_toNatTrans_app_val_app, CategoryTheory.flippingIso_inv_toFunctor_obj_map_app, CategoryTheory.Pseudofunctor.DescentData.iso_hom, CategoryTheory.Pseudofunctor.mapComp'_comp_id_inv_app_assoc, FundamentalGroupoidFunctor.prodToProdTop_obj, CategoryTheory.Pseudofunctor.mapComp'_inv_naturality_assoc, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_id_app, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_comp_app, CategoryTheory.Pseudofunctor.presheafHom_obj, FundamentalGroupoidFunctor.prodIso_hom, CategoryTheory.Pseudofunctor.mapComp_assoc_right_inv_app, CategoryTheory.Cat.HasLimits.limitCone_π_app, CategoryTheory.Join.pseudofunctorLeft_mapComp_hom_toNatTrans_app, CategoryTheory.Cat.free_map, CategoryTheory.Pseudofunctor.DescentData.iso_inv, CategoryTheory.ReflQuiv.comp_eq_comp, CategoryTheory.OplaxFunctor.mapComp_assoc_left_app, CategoryTheory.Cat.HasLimits.homDiagram_map, CategoryTheory.Pseudofunctor.CoGrothendieck.instFullαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_naturality_app, CategoryTheory.Quiv.homEquivOfIso_apply, CategoryTheory.Pseudofunctor.DescentData.nonempty_fullyFaithful_toDescentData_iff_of_sieve_eq, CategoryTheory.Cat.associator_inv_app, CategoryTheory.Cat.Hom.comp_toFunctor, CategoryTheory.Grothendieck.ιNatTrans_app_base, FundamentalGroupoidFunctor.piToPiTop_map, CategoryTheory.Cat.rightUnitor_hom_app, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_hom_app_assoc, CategoryTheory.Quiv.inv_map_hom_map_of_iso, CategoryTheory.Pseudofunctor.ObjectProperty.ι_naturality, CategoryTheory.Cat.opFunctor_obj, CategoryTheory.LaxFunctor.mapComp_naturality_right_app_assoc, CategoryTheory.Grothendieck.comp_fiber, CategoryTheory.Grothendieck.map_map, CategoryTheory.Grothendieck.ιCompMap_inv_app_fiber, ContinuousMap.Homotopy.apply_one_path, CategoryTheory.Pseudofunctor.ObjectProperty.mapId_inv_app, CategoryTheory.Monoidal.whiskerRight, CategoryTheory.OplaxFunctor.map₂_associator_app_assoc, CategoryTheory.Pseudofunctor.mapComp_id_left_hom_app_assoc, CategoryTheory.LaxFunctor.map₂_associator_app_assoc, CategoryTheory.Pseudofunctor.ObjectProperty.fullsubcategory_toPrelaxFunctor_toPrelaxFunctorStruct_map₂_toNatTrans, SSet.hoFunctor.unitHomEquiv_eq, CategoryTheory.Cat.HasLimits.limitConeX_α, CategoryTheory.ReflQuiv.forget_map, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_hom_comp_mapComp'_hom_whiskerRight_app, CategoryTheory.Pseudofunctor.DescentData.instIsIsoαCategoryObjLocallyDiscreteOppositeCatMkOpHom, CategoryTheory.Pseudofunctor.whiskerLeft_mapId_inv_app, CategoryTheory.LaxFunctor.map₂_leftUnitor_hom_app_assoc, CategoryTheory.Monoidal.tensorHom, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_hom_app, CategoryTheory.OplaxFunctor.mapComp_assoc_right_app, CategoryTheory.Pseudofunctor.CoGrothendieck.ι_map_base, CategoryTheory.ReflQuiv.adj.unit.map_app_eq, CategoryTheory.Pseudofunctor.StrongTrans.whiskerRight_naturality_comp_app, CategoryTheory.Pseudofunctor.isPrestackFor_ofArrows_iff, CategoryTheory.Prefunctor.to_ofQuivHom, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_inv_app_assoc, CategoryTheory.Bicategory.Adjunction.ofCat_id, CategoryTheory.Join.pseudofunctorLeft_mapComp_inv_toNatTrans_app, SSet.OneTruncation₂.ofNerve₂.natIso_hom_app_obj, CategoryTheory.Pseudofunctor.CoGrothendieck.map_obj_fiber, CategoryTheory.Bicategory.Adjunction.ofCat_comp, FundamentalGroupoidFunctor.projLeft_map, CategoryTheory.Pseudofunctor.ObjectProperty.mapComp_hom_app, CategoryTheory.CostructuredArrow.ιCompGrothendieckPrecompFunctorToCommaCompFst_inv_app, CategoryTheory.curryingIso_inv_toFunctor_obj_map_app, CategoryTheory.LaxFunctor.map₂_rightUnitor_hom_app, FirstOrder.Language.isFraisse_finite_linear_order, CategoryTheory.Pseudofunctor.DescentData.Hom.comm_assoc, CategoryTheory.Grothendieck.fiber_eqToHom, CategoryTheory.WithInitial.prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_obj, SSet.Truncated.HomotopyCategory.BinaryProduct.left_unitality, CategoryTheory.Monoidal.rightUnitor_hom, CategoryTheory.Grothendieck.eqToHom_eq, CategoryTheory.curryingIso_hom_toFunctor_obj_obj, CategoryTheory.Cat.opEquivalence_unitIso, CategoryTheory.Pseudofunctor.mapComp_id_left_inv_app_assoc, CategoryTheory.WithInitial.prelaxfunctor_toPrelaxFunctorStruct_map₂, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_id_app, CategoryTheory.Pseudofunctor.mapComp'_hom_naturality_assoc, CategoryTheory.Pseudofunctor.mapComp'_naturality_2_assoc, CategoryTheory.Pseudofunctor.Grothendieck.categoryStruct_id_fiber, CategoryTheory.Quiv.forget_map, CategoryTheory.Pseudofunctor.ObjectProperty.map_map_hom, SimplexCategory.toCat.obj_eq_Fin, CategoryTheory.Oplax.StrongTrans.whiskerLeft_naturality_naturality_app, CategoryTheory.Grothendieck.compAsSmallFunctorEquivalenceFunctor_obj_fiber, CategoryTheory.Cat.Hom.hom_inv_id_toNatTrans, CategoryTheory.Cat.exp_map, CategoryTheory.Pseudofunctor.CoGrothendieck.Hom.congr, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_inv_comp_mapComp'₀₂₃_hom_app, CategoryTheory.ReflQuiv.forget_obj, CategoryTheory.Pseudofunctor.mapComp'_id_comp_inv_app_assoc, FirstOrder.Language.isFraisseLimit_of_countable_nonempty_dlo, CategoryTheory.Functor.toReflPrefunctor_toPrefunctor, CategoryTheory.Quiv.adj_homEquiv, FirstOrder.Language.exists_countable_is_age_of_iff, CategoryTheory.Grothendieck.compAsSmallFunctorEquivalenceInverse_obj_fiber, CategoryTheory.Join.pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_id, CategoryTheory.OplaxFunctor.mapComp_naturality_left_app, CategoryTheory.ReflQuiv.forgetToQuiv_obj, CategoryTheory.CostructuredArrow.mapCompιCompGrothendieckProj_inv_app, CategoryTheory.ReflQuiv.comp_obj, CategoryTheory.Cat.opFunctor_map, CategoryTheory.flippingIso_inv_toFunctor_map_app_app, CategoryTheory.Cat.Hom.comp_map, CategoryTheory.Cat.opFunctorInvolutive_hom_app_toFunctor_map, CategoryTheory.Pseudofunctor.DescentData.ofObj_obj, CategoryTheory.Cat.opFunctorInvolutive_hom_app_toFunctor_obj, CategoryTheory.LaxFunctor.map₂_rightUnitor_hom_app_assoc, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_hom_app, CategoryTheory.Pseudofunctor.CoGrothendieck.ext_iff, CategoryTheory.Pseudofunctor.DescentData.hom_comp_assoc, CategoryTheory.Pseudofunctor.Grothendieck.map_obj_fiber, CategoryTheory.Monoidal.associator_hom, CategoryTheory.Pseudofunctor.mapComp_assoc_left_hom_app_assoc, CategoryTheory.Pseudofunctor.CoGrothendieck.ι_obj_fiber, CategoryTheory.Pseudofunctor.isStackFor_iff, CategoryTheory.Quiv.hom_map_inv_map_of_iso, CategoryTheory.Pseudofunctor.bijective_toDescentData_map_iff, CategoryTheory.Join.pseudofunctorRight_mapId_hom_toNatTrans_app, CategoryTheory.Pseudofunctor.CoGrothendieck.ι_map_fiber, CategoryTheory.nerveFunctor_map, CategoryTheory.Grothendieck.toTransport_fiber, CategoryTheory.OplaxFunctor.mapComp_assoc_right_app_assoc, CategoryTheory.Monoidal.whiskerLeft_snd, CategoryTheory.Cat.free_obj, CategoryTheory.Pseudofunctor.DescentData.pullFunctorObj_obj, CategoryTheory.Cat.opFunctorInvolutive_inv_app_toFunctor_map, CategoryTheory.flippingIso_hom_toFunctor_obj_obj_map, SSet.Truncated.hoFunctor₂_naturality, FirstOrder.Language.IsFraisse.FG, CategoryTheory.Cat.coe_of, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_inv_app, CategoryTheory.WithInitial.pseudofunctor_mapId, FirstOrder.Language.exists_elementaryEmbedding_card_eq, CategoryTheory.Join.pseudofunctorRight_mapId_inv_toNatTrans_app, CategoryTheory.Pseudofunctor.ObjectProperty.IsClosedUnderMapObj.map_obj, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_inv_comp_mapComp'₀₂₃_hom_app_assoc, CategoryTheory.Pseudofunctor.mapComp'_hom_naturality, CategoryTheory.Grothendieck.map_obj_fiber, CategoryTheory.Cat.comp_eq_comp, CategoryTheory.Cat.leftUnitor_hom_toNatTrans, CategoryTheory.Pseudofunctor.mapComp'_comp_id_hom_app_assoc, CategoryTheory.Adjunction.toCat_ofCat, CategoryTheory.Pseudofunctor.IsStack.essSurj_of_sieve, CategoryTheory.Bicategory.toNatTrans_mateEquiv, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_inv_app_assoc, FundamentalGroupoid.map_eq, CategoryTheory.Cat.Hom.hom_inv_id_toNatTrans_assoc, CategoryTheory.ReflQuiv.of_val, CategoryTheory.Pseudofunctor.mapComp_assoc_right_hom_app, FirstOrder.Language.exists_elementaryEmbedding_card_eq_of_le, CategoryTheory.Cat.associator_inv_toNatTrans, CategoryTheory.WithTerminal.prelaxfunctor_toPrelaxFunctorStruct_map₂, CategoryTheory.Join.pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_comp, CategoryTheory.Grpd.id_eq_id, CategoryTheory.Cat.leftUnitor_inv_toNatTrans, CategoryTheory.Pseudofunctor.map₂_left_unitor_app, CategoryTheory.Cat.Hom.inv_hom_id_toNatTrans_app_assoc, CategoryTheory.Grothendieck.compAsSmallFunctorEquivalenceFunctor_map_base, CategoryTheory.Pseudofunctor.ObjectProperty.mapId_hom_app, CategoryTheory.Grothendieck.ιCompMap_inv_app_base, CategoryTheory.Grpd.coe_of, CategoryTheory.Pseudofunctor.whiskerLeft_mapId_hom_app, CategoryTheory.ReflQuiv.forgetToQuiv_map, CategoryTheory.CatEnriched.comp_eq, CategoryTheory.Cat.Hom.instIsIsoFunctorαCategoryToNatTransInvHom, CategoryTheory.Pseudofunctor.toDescentData_obj, CategoryTheory.Cat.Hom.toNatIso_leftUnitor, CategoryTheory.Pseudofunctor.map₂_whisker_right_app_assoc, CategoryTheory.Join.pseudofunctorRight_mapComp_hom_toNatTrans_app, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_inv_comp_mapComp'₀₁₃_hom_app, CategoryTheory.Pseudofunctor.presheafHomObjHomEquiv_apply, CategoryTheory.Cat.Hom.toNatIso_rightUnitor, CategoryTheory.Cat.Hom.id_obj, CategoryTheory.curryingIso_inv_toFunctor_obj_obj_obj, CategoryTheory.Pseudofunctor.mapComp_assoc_right_inv_app_assoc, CategoryTheory.Quiv.inv_obj_hom_obj_of_iso, CategoryTheory.LaxFunctor.mapComp_assoc_left_app, CategoryTheory.Grothendieck.transportIso_inv_fiber, CategoryTheory.Cat.rightUnitor_inv_app, CategoryTheory.Pseudofunctor.mapComp'_id_comp_hom_app_assoc, CategoryTheory.Pseudofunctor.Grothendieck.Hom.ext_iff, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_inv_app_assoc, CategoryTheory.Grothendieck.map_obj, CategoryTheory.ReflQuiv.id_eq_id, CategoryTheory.Cat.Hom.toNatTrans_id, CategoryTheory.Cat.opFunctorInvolutive_inv_app_toFunctor_obj, CategoryTheory.Cat.rightUnitor_inv_toNatTrans, CategoryTheory.Pseudofunctor.isPrestackFor_iff, CategoryTheory.Pseudofunctor.IsStackFor.isEquivalence, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_inv_app, CategoryTheory.Pseudofunctor.CoGrothendieck.instEssSurjαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_hom_app_assoc, CategoryTheory.Pseudofunctor.whiskerRight_mapId_hom_app_assoc, CategoryTheory.Cat.Hom.comp_obj, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_comp_app, CategoryTheory.Pseudofunctor.Grothendieck.Hom.congr, CategoryTheory.Pseudofunctor.Grothendieck.map_map_fiber, CategoryTheory.ReflQuiv.id_obj, CategoryTheory.Pseudofunctor.map₂_whisker_left_app_assoc, CategoryTheory.Join.pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_α, CategoryTheory.Pseudofunctor.mapComp'_naturality_2, FirstOrder.Language.exists_elementaryEmbedding_card_eq_of_ge, CategoryTheory.Pseudofunctor.CoGrothendieck.ι_obj_base, CategoryTheory.flippingIso_hom_toFunctor_obj_map_app, CategoryTheory.Pseudofunctor.mapComp_id_right_inv_app, CategoryTheory.Pseudofunctor.mapComp'_inv_whiskerRight_mapComp'₀₂₃_inv_app_assoc, CategoryTheory.Pseudofunctor.mapComp_id_left_hom_app, FundamentalGroupoidFunctor.piToPiTop_obj_as, CategoryTheory.Pseudofunctor.StrongTrans.naturality_naturality_hom_app_assoc, CategoryTheory.Pseudofunctor.toDescentData_map_hom, CategoryTheory.Pseudofunctor.ObjectProperty.IsClosedUnderIsomorphisms.isClosedUnderIsomorphisms, CategoryTheory.Cat.freeRefl_obj, CategoryTheory.Pseudofunctor.whiskerLeft_mapId_hom_app_assoc, CategoryTheory.Pseudofunctor.DescentData.pullFunctorObjHom_eq_assoc, CategoryTheory.LaxFunctor.map₂_rightUnitor_app_assoc, FundamentalGroupoidFunctor.piIso_inv, CategoryTheory.Join.pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_map₂_toNatTrans_app, CategoryTheory.Codiscrete.adj_unit_app, CategoryTheory.curryingIso_inv_toFunctor_map_app_app, CategoryTheory.ReflQuiv.adj.counit.comp_app_eq, FundamentalGroupoidFunctor.prodIso_inv, CategoryTheory.WithTerminal.pseudofunctor_mapId, CategoryTheory.Grothendieck.compAsSmallFunctorEquivalenceInverse_map_fiber, CategoryTheory.Pseudofunctor.IsStackFor.essSurj, SSet.OneTruncation₂.ofNerve₂.natIso_inv_app_map, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_α, CategoryTheory.WithInitial.prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_map, CategoryTheory.LaxFunctor.map₂_rightUnitor_app, CategoryTheory.Pseudofunctor.mapComp'_id_comp_inv_app, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_inv_app_assoc, CategoryTheory.CatEnriched.id_eq, FundamentalGroupoidFunctor.projRight_map, CategoryTheory.WithTerminal.pseudofunctor_mapComp, CategoryTheory.Join.pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_α, CategoryTheory.WithTerminal.prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_obj, CategoryTheory.Cat.Hom.hom_inv_id_toNatTrans_app, CategoryTheory.Monoidal.whiskerRight_snd, CategoryTheory.CostructuredArrow.mapCompιCompGrothendieckProj_hom_app, CategoryTheory.Pseudofunctor.whiskerLeft_mapComp'_inv_comp_mapComp'₀₁₃_inv_app_assoc, CategoryTheory.Grpd.comp_eq_comp, CategoryTheory.Pseudofunctor.DescentData.exists_equivalence_of_sieve_eq, CategoryTheory.Oplax.StrongTrans.whiskerRight_naturality_id_app, CategoryTheory.flippingIso_inv_toFunctor_obj_obj_map, CategoryTheory.Pseudofunctor.mapComp_id_right_hom_app_assoc, CategoryTheory.Pseudofunctor.DescentData.pullFunctorIdIso_inv_app_hom, CategoryTheory.CostructuredArrow.ιCompGrothendieckPrecompFunctorToCommaCompFst_hom_app, SSet.OneTruncation₂.ofNerve₂.natIso_inv_app_obj_map, CategoryTheory.Pseudofunctor.LocallyDiscreteOpToCat.map_eq_pullHom_assoc, SSet.Truncated.HomotopyCategory.BinaryProduct.right_unitality, CategoryTheory.Pseudofunctor.map₂_whisker_left_app, CategoryTheory.Pseudofunctor.DescentData.isEquivalence_toDescentData_iff_of_sieve_eq, CategoryTheory.Pseudofunctor.CoGrothendieck.comp_const, CategoryTheory.WithTerminal.prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_map, CategoryTheory.nerve.functorOfNerveMap_nerveFunctor₂_map, CategoryTheory.Grothendieck.transport_fiber, CategoryTheory.Pseudofunctor.whiskerRight_mapId_inv_app, CategoryTheory.Pseudofunctor.CoGrothendieck.compIso_inv_app, CategoryTheory.OplaxFunctor.map₂_leftUnitor_app_assoc, CategoryTheory.Cat.HasLimits.limitConeLift_toFunctor, CategoryTheory.nerveFunctor_obj, CategoryTheory.Pseudofunctor.DescentData.pullFunctorIdIso_hom_app_hom, CategoryTheory.Pseudofunctor.mapComp'_id_comp_hom_app, CategoryTheory.Grothendieck.map_map_fiber, CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapComp_hom_toNatTrans_app_val_app, CategoryTheory.Cat.asSmallFunctor_map, coe_mk, CategoryTheory.Monoidal.associator_inv, CategoryTheory.Grothendieck.map_map_base, CategoryTheory.Monoidal.rightUnitor_inv, CategoryTheory.Monoidal.whiskerLeft, CategoryTheory.Grothendieck.ι_obj, CategoryTheory.Adjunction.ofCat_unit, CategoryTheory.OplaxFunctor.map₂_rightUnitor_app, CategoryTheory.Pseudofunctor.mapComp_assoc_left_hom_app, CategoryTheory.Cat.Hom.toNatTrans_comp, CategoryTheory.LaxFunctor.mapComp_naturality_right_app, CategoryTheory.Cat.id_eq_id, CategoryTheory.Pseudofunctor.LocallyDiscreteOpToCat.map_eq_pullHom, CategoryTheory.Pseudofunctor.mapComp_id_right_hom_app, CategoryTheory.flippingIso_hom_toFunctor_obj_obj_obj, CategoryTheory.Pseudofunctor.DescentData.id_hom, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_inv_comp_mapComp'₀₁₃_hom_app_assoc, CategoryTheory.LaxFunctor.mapComp_naturality_left_app, CategoryTheory.Pseudofunctor.DescentData.pullFunctorCompIso_hom_app_hom, CategoryTheory.Pseudofunctor.StrongTrans.naturality_naturality_hom_app, CategoryTheory.Pseudofunctor.DescentData.isoMk_hom_hom, CategoryTheory.flippingIso_hom_toFunctor_map_app_app, CategoryTheory.Pseudofunctor.DescentData.pullFunctorObjHom_eq, CategoryTheory.Grothendieck.ιCompMap_hom_app_base, CategoryTheory.Pseudofunctor.mapId'_hom_naturality, CategoryTheory.Pseudofunctor.DescentData.hom_self, CategoryTheory.Grothendieck.compAsSmallFunctorEquivalenceInverse_map_base, CategoryTheory.Pseudofunctor.DescentData.comp_hom_assoc, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_inv_app, CategoryTheory.Cat.Hom.inv_hom_id_toNatTrans_app, CategoryTheory.Pseudofunctor.ObjectProperty.fullsubcategory_mapId, CategoryTheory.Pseudofunctor.ObjectProperty.map_obj_obj, CategoryTheory.Monoidal.tensorObj, CategoryTheory.Cat.Hom.hom_inv_id_toNatTrans_app_assoc, CategoryTheory.Pseudofunctor.CoGrothendieck.categoryStruct_comp_fiber, CategoryTheory.Cat.whiskerLeft_toNatTrans, CategoryTheory.Pseudofunctor.mapId'_hom_naturality_assoc, CategoryTheory.OplaxFunctor.mapComp_naturality_right_app_assoc, CategoryTheory.Bicategory.toNatTrans_conjugateEquiv, CategoryTheory.Join.pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_comp, CategoryTheory.Pseudofunctor.map₂_whisker_right_app, CategoryTheory.curryingIso_inv_toFunctor_obj_obj_map, CategoryTheory.Quiv.hom_obj_inv_obj_of_iso, CategoryTheory.Pseudofunctor.CoGrothendieck.instFaithfulαCategoryObjLocallyDiscreteOppositeCatMkOpFiberForgetInducedFunctor, CategoryTheory.nerve.functorOfNerveMap_obj, CategoryTheory.CostructuredArrow.ιCompGrothendieckProj_hom_app, CategoryTheory.WithInitial.pseudofunctor_mapComp, CategoryTheory.Monoidal.whiskerLeft_fst, CategoryTheory.Pseudofunctor.map₂_left_unitor_app_assoc, CategoryTheory.Pseudofunctor.map₂_right_unitor_app_assoc, CategoryTheory.Pseudofunctor.map₂_right_unitor_app, CategoryTheory.Pseudofunctor.StrongTrans.whiskerLeft_naturality_naturality_app, CategoryTheory.Quiv.id_eq_id, CategoryTheory.Join.pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_obj, CategoryTheory.Grpd.hom_to_functor, CategoryTheory.Cat.Hom.equivFunctor_apply, CategoryTheory.Cat.Hom.toNatIso_inv, CategoryTheory.OplaxFunctor.mapComp_naturality_left_app_assoc, CategoryTheory.Pseudofunctor.presheafHomObjHomEquiv_symm_apply, FundamentalGroupoidFunctor.prodToProdTop_map, CategoryTheory.Cat.whiskerRight_app, CategoryTheory.LaxFunctor.map₂_associator_app, CategoryTheory.Grothendieck.congr, CategoryTheory.Pseudofunctor.StrongTrans.naturality_id_hom_app_assoc, FundamentalGroupoidFunctor.proj_map, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_hom_comp_whiskerLeft_mapComp'_hom_app, CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapId_inv_toNatTrans_app_val_app, CategoryTheory.Cat.associator_hom_toNatTrans, CategoryTheory.Cat.Hom.instIsIsoFunctorαCategoryToNatTransHomHom, CategoryTheory.Cat.Hom.id_toFunctor, CategoryTheory.Grothendieck.isoMk_hom_fiber, CategoryTheory.Monoidal.leftUnitor_inv, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_hom_app_assoc, CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapId_hom_toNatTrans_app_val_app, CategoryTheory.Pseudofunctor.ObjectProperty.mapComp_inv_app, CategoryTheory.curryingIso_hom_toFunctor_map_app, CategoryTheory.LaxFunctor.mapComp_assoc_right_app_assoc, CategoryTheory.OplaxFunctor.mapComp_naturality_right_app, CategoryTheory.LaxFunctor.mapComp_assoc_left_app_assoc, FirstOrder.Language.Structure.FG.mem_age_of_equiv, CategoryTheory.Cat.leftUnitor_inv_app, CategoryTheory.Monoidal.leftUnitor_hom, CategoryTheory.LaxFunctor.map₂_leftUnitor_app, CategoryTheory.Join.pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_obj, CategoryTheory.Pseudofunctor.Grothendieck.categoryStruct_comp_fiber, CategoryTheory.Pseudofunctor.whiskerRight_mapId_hom_app, CategoryTheory.Quiv.forget_obj, CategoryTheory.Grothendieck.transportIso_hom_fiber, CategoryTheory.Pseudofunctor.CoGrothendieck.compIso_hom_app, CategoryTheory.Pseudofunctor.DescentData.hom_comp, CategoryTheory.Pseudofunctor.IsPrestackFor.nonempty_fullyFaithful, CategoryTheory.Cat.Hom.equivFunctor_symm_apply, CategoryTheory.Cat.whiskerLeft_app, CategoryTheory.Pseudofunctor.ObjectProperty.map₂_app_hom, CategoryTheory.Pseudofunctor.CoGrothendieck.Hom.ext_iff, CategoryTheory.OplaxFunctor.map₂_rightUnitor_app_assoc, CategoryTheory.Pseudofunctor.Grothendieck.map_map_base, CategoryTheory.LaxFunctor.map₂_leftUnitor_app_assoc, CategoryTheory.Cat.eqToHom_app, CategoryTheory.Pseudofunctor.ObjectProperty.fullsubcategory_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor, CategoryTheory.Grothendieck.ι_map, CategoryTheory.Pseudofunctor.whiskerRight_mapId_inv_app_assoc, CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp_hom_app, CategoryTheory.Grothendieck.faithful_ι, ContinuousMap.Homotopy.eq_diag_path, CategoryTheory.Quiv.equivOfIso_apply, CategoryTheory.Pseudofunctor.mapId'_inv_naturality, CategoryTheory.Pseudofunctor.mapComp'₀₂₃_hom_comp_mapComp'_hom_whiskerRight_app_assoc, CategoryTheory.Pseudofunctor.mapComp'₀₁₃_inv_app, CategoryTheory.Pseudofunctor.mapComp_assoc_left_inv_app, CategoryTheory.Pseudofunctor.DescentData.Hom.comm, CategoryTheory.Join.pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_map

Theorems

NameKindAssumesProvesValidatesDepends On
coe_mk 📖mathematical—α——

---

← Back to Index