Documentation Verification Report

Basic

📁 Source: Mathlib/CategoryTheory/Dialectica/Basic.lean

Statistics

MetricCount
DefinitionsDial, F, f, instCategory, isoMk, rel, src, tgt
8
Theoremsext, ext_iff, le, comp_F, comp_f, comp_le_lemma, hom_ext, hom_ext_iff, id_F, id_f, isoMk_hom_F, isoMk_hom_f, isoMk_inv_F, isoMk_inv_f
14
Total22

CategoryTheory

Definitions

NameCategoryTheorems
Dial 📖CompData
60 mathmath: Dial.braiding_inv_f, Dial.leftUnitor_naturality, Dial.tensorUnit_src, Dial.rightUnitor_hom_f, Dial.rightUnitor_naturality, Dial.rightUnitorImpl_inv_f, Dial.tensorHom_F, Dial.triangle, Dial.braiding_naturality_right, Dial.associator_hom_F, Dial.associatorImpl_inv_F, Dial.leftUnitor_hom_f, Dial.rightUnitor_hom_F, Dial.rightUnitorImpl_inv_F, Dial.whiskerRight_f, Dial.tensorObj_src, Dial.rightUnitorImpl_hom_F, Dial.leftUnitor_inv_f, Dial.hexagon_reverse, Dial.braiding_inv_F, Dial.associator_inv_f, Dial.braiding_hom_f, Dial.rightUnitor_inv_f, Dial.associatorImpl_hom_F, Dial.leftUnitor_hom_F, Dial.whiskerRight_F, Dial.hexagon_forward, Dial.tensorObj_tgt, Dial.associator_naturality, Dial.tensorUnit_rel, Dial.comp_F, Dial.isoMk_inv_F, Dial.associator_inv_F, Dial.isoMk_hom_f, Dial.tensorUnit_tgt, Dial.leftUnitorImpl_hom_F, Dial.pentagon, Dial.comp_f, Dial.id_f, Dial.isoMk_hom_F, Dial.symmetry, Dial.whiskerLeft_f, Dial.braiding_hom_F, Dial.leftUnitor_inv_F, Dial.associatorImpl_inv_f, Dial.tensorHom_f, Dial.whiskerLeft_F, Dial.associator_hom_f, Dial.leftUnitorImpl_inv_f, Dial.braiding_naturality_left, Dial.associatorImpl_hom_f, Dial.rightUnitor_inv_F, Dial.id_F, Dial.id_tensorHom_id, Dial.tensorHom_comp_tensorHom, Dial.isoMk_inv_f, Dial.leftUnitorImpl_hom_f, Dial.rightUnitorImpl_hom_f, Dial.leftUnitorImpl_inv_F, Dial.tensorObj_rel

CategoryTheory.Dial

Definitions

NameCategoryTheorems
instCategory 📖CompOp
60 mathmath: braiding_inv_f, leftUnitor_naturality, tensorUnit_src, rightUnitor_hom_f, rightUnitor_naturality, rightUnitorImpl_inv_f, tensorHom_F, triangle, braiding_naturality_right, associator_hom_F, associatorImpl_inv_F, leftUnitor_hom_f, rightUnitor_hom_F, rightUnitorImpl_inv_F, whiskerRight_f, tensorObj_src, rightUnitorImpl_hom_F, leftUnitor_inv_f, hexagon_reverse, braiding_inv_F, associator_inv_f, braiding_hom_f, rightUnitor_inv_f, associatorImpl_hom_F, leftUnitor_hom_F, whiskerRight_F, hexagon_forward, tensorObj_tgt, associator_naturality, tensorUnit_rel, comp_F, isoMk_inv_F, associator_inv_F, isoMk_hom_f, tensorUnit_tgt, leftUnitorImpl_hom_F, pentagon, comp_f, id_f, isoMk_hom_F, symmetry, whiskerLeft_f, braiding_hom_F, leftUnitor_inv_F, associatorImpl_inv_f, tensorHom_f, whiskerLeft_F, associator_hom_f, leftUnitorImpl_inv_f, braiding_naturality_left, associatorImpl_hom_f, rightUnitor_inv_F, id_F, id_tensorHom_id, tensorHom_comp_tensorHom, isoMk_inv_f, leftUnitorImpl_hom_f, rightUnitorImpl_hom_f, leftUnitorImpl_inv_F, tensorObj_rel
isoMk 📖CompOp
4 mathmath: isoMk_inv_F, isoMk_hom_f, isoMk_hom_F, isoMk_inv_f
rel 📖CompOp
6 mathmath: tensorObjImpl_rel, comp_le_lemma, Hom.le, tensorUnit_rel, tensorUnitImpl_rel, tensorObj_rel
src 📖CompOp
48 mathmath: braiding_inv_f, tensorObjImpl_rel, tensorUnit_src, rightUnitor_hom_f, rightUnitorImpl_inv_f, tensorHom_F, associator_hom_F, associatorImpl_inv_F, leftUnitor_hom_f, rightUnitor_hom_F, rightUnitorImpl_inv_F, comp_le_lemma, whiskerRight_f, tensorObj_src, rightUnitorImpl_hom_F, leftUnitor_inv_f, braiding_inv_F, associator_inv_f, braiding_hom_f, rightUnitor_inv_f, tensorUnitImpl_src, associatorImpl_hom_F, Hom.le, leftUnitor_hom_F, whiskerRight_F, tensorHomImpl_F, comp_F, associator_inv_F, leftUnitorImpl_hom_F, tensorObjImpl_src, comp_f, id_f, tensorHomImpl_f, whiskerLeft_f, braiding_hom_F, leftUnitor_inv_F, associatorImpl_inv_f, tensorHom_f, whiskerLeft_F, associator_hom_f, leftUnitorImpl_inv_f, associatorImpl_hom_f, rightUnitor_inv_F, id_F, leftUnitorImpl_hom_f, rightUnitorImpl_hom_f, leftUnitorImpl_inv_F, tensorObj_rel
tgt 📖CompOp
28 mathmath: tensorObjImpl_rel, tensorHom_F, tensorObjImpl_tgt, associator_hom_F, associatorImpl_inv_F, rightUnitor_hom_F, rightUnitorImpl_inv_F, comp_le_lemma, rightUnitorImpl_hom_F, braiding_inv_F, associatorImpl_hom_F, Hom.le, leftUnitor_hom_F, whiskerRight_F, tensorObj_tgt, tensorHomImpl_F, comp_F, associator_inv_F, tensorUnit_tgt, leftUnitorImpl_hom_F, braiding_hom_F, leftUnitor_inv_F, whiskerLeft_F, rightUnitor_inv_F, id_F, leftUnitorImpl_inv_F, tensorObj_rel, tensorUnitImpl_tgt

Theorems

NameKindAssumesProvesValidatesDepends On
comp_F 📖mathematicalHom.F
CategoryTheory.CategoryStruct.comp
CategoryTheory.Dial
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.Limits.prod
src
tgt
CategoryTheory.Limits.prod.lift
CategoryTheory.Limits.prod.fst
CategoryTheory.Limits.prod.map
Hom.f
CategoryTheory.CategoryStruct.id
comp_f 📖mathematicalHom.f
CategoryTheory.CategoryStruct.comp
CategoryTheory.Dial
CategoryTheory.Category.toCategoryStruct
instCategory
src
comp_le_lemma 📖mathematicalCategoryTheory.Subobject
CategoryTheory.Limits.prod
src
tgt
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasLimitsOfShape_discrete
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.pair
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.Functor.obj
Preorder.smallCategory
CategoryTheory.Subobject.pullback
CategoryTheory.Limits.prod.lift
CategoryTheory.Limits.prod.fst
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.prod.map
Hom.f
CategoryTheory.CategoryStruct.id
Hom.F
rel
le_trans
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_discrete
Finite.of_fintype
CategoryTheory.Subobject.pullback.congr_simp
CategoryTheory.Limits.prod.comp_lift
CategoryTheory.Limits.limit.lift_π
LE.le.trans
CategoryTheory.Functor.monotone
Hom.le
CategoryTheory.Limits.prod.lift_map
CategoryTheory.Category.comp_id
CategoryTheory.Limits.prod.map_fst
CategoryTheory.Limits.prod.map_map
hom_ext 📖Hom.f
Hom.F
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_discrete
Finite.of_fintype
Hom.ext
hom_ext_iff 📖mathematicalHom.f
Hom.F
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_discrete
Finite.of_fintype
hom_ext
id_F 📖mathematicalHom.F
CategoryTheory.CategoryStruct.id
CategoryTheory.Dial
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.Limits.prod.snd
src
tgt
id_f 📖mathematicalHom.f
CategoryTheory.CategoryStruct.id
CategoryTheory.Dial
CategoryTheory.Category.toCategoryStruct
instCategory
src
isoMk_hom_F 📖mathematicalrel
CategoryTheory.Functor.obj
CategoryTheory.Subobject
CategoryTheory.Limits.prod
src
tgt
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasLimitsOfShape_discrete
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.pair
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.Subobject.pullback
CategoryTheory.Limits.prod.map
CategoryTheory.Iso.hom
Hom.F
CategoryTheory.Dial
instCategory
isoMk
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.prod.snd
CategoryTheory.Iso.inv
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_discrete
Finite.of_fintype
isoMk_hom_f 📖mathematicalrel
CategoryTheory.Functor.obj
CategoryTheory.Subobject
CategoryTheory.Limits.prod
src
tgt
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasLimitsOfShape_discrete
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.pair
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.Subobject.pullback
CategoryTheory.Limits.prod.map
CategoryTheory.Iso.hom
Hom.f
CategoryTheory.Dial
instCategory
isoMk
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_discrete
Finite.of_fintype
isoMk_inv_F 📖mathematicalrel
CategoryTheory.Functor.obj
CategoryTheory.Subobject
CategoryTheory.Limits.prod
src
tgt
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasLimitsOfShape_discrete
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.pair
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.Subobject.pullback
CategoryTheory.Limits.prod.map
CategoryTheory.Iso.hom
Hom.F
CategoryTheory.Iso.inv
CategoryTheory.Dial
instCategory
isoMk
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.prod.snd
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_discrete
Finite.of_fintype
isoMk_inv_f 📖mathematicalrel
CategoryTheory.Functor.obj
CategoryTheory.Subobject
CategoryTheory.Limits.prod
src
tgt
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasLimitsOfShape_discrete
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.pair
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.Subobject.pullback
CategoryTheory.Limits.prod.map
CategoryTheory.Iso.hom
Hom.f
CategoryTheory.Iso.inv
CategoryTheory.Dial
instCategory
isoMk
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_discrete
Finite.of_fintype

CategoryTheory.Dial.Hom

Definitions

NameCategoryTheorems
F 📖CompOp
26 mathmath: CategoryTheory.Dial.tensorHom_F, CategoryTheory.Dial.associator_hom_F, CategoryTheory.Dial.associatorImpl_inv_F, CategoryTheory.Dial.rightUnitor_hom_F, CategoryTheory.Dial.rightUnitorImpl_inv_F, CategoryTheory.Dial.comp_le_lemma, CategoryTheory.Dial.rightUnitorImpl_hom_F, CategoryTheory.Dial.braiding_inv_F, CategoryTheory.Dial.associatorImpl_hom_F, le, CategoryTheory.Dial.leftUnitor_hom_F, CategoryTheory.Dial.whiskerRight_F, ext_iff, CategoryTheory.Dial.tensorHomImpl_F, CategoryTheory.Dial.comp_F, CategoryTheory.Dial.isoMk_inv_F, CategoryTheory.Dial.associator_inv_F, CategoryTheory.Dial.leftUnitorImpl_hom_F, CategoryTheory.Dial.isoMk_hom_F, CategoryTheory.Dial.braiding_hom_F, CategoryTheory.Dial.leftUnitor_inv_F, CategoryTheory.Dial.whiskerLeft_F, CategoryTheory.Dial.rightUnitor_inv_F, CategoryTheory.Dial.id_F, CategoryTheory.Dial.hom_ext_iff, CategoryTheory.Dial.leftUnitorImpl_inv_F
f 📖CompOp
27 mathmath: CategoryTheory.Dial.braiding_inv_f, CategoryTheory.Dial.rightUnitor_hom_f, CategoryTheory.Dial.rightUnitorImpl_inv_f, CategoryTheory.Dial.leftUnitor_hom_f, CategoryTheory.Dial.comp_le_lemma, CategoryTheory.Dial.whiskerRight_f, CategoryTheory.Dial.leftUnitor_inv_f, CategoryTheory.Dial.associator_inv_f, CategoryTheory.Dial.braiding_hom_f, CategoryTheory.Dial.rightUnitor_inv_f, le, ext_iff, CategoryTheory.Dial.comp_F, CategoryTheory.Dial.isoMk_hom_f, CategoryTheory.Dial.comp_f, CategoryTheory.Dial.id_f, CategoryTheory.Dial.tensorHomImpl_f, CategoryTheory.Dial.whiskerLeft_f, CategoryTheory.Dial.associatorImpl_inv_f, CategoryTheory.Dial.tensorHom_f, CategoryTheory.Dial.associator_hom_f, CategoryTheory.Dial.leftUnitorImpl_inv_f, CategoryTheory.Dial.associatorImpl_hom_f, CategoryTheory.Dial.isoMk_inv_f, CategoryTheory.Dial.leftUnitorImpl_hom_f, CategoryTheory.Dial.rightUnitorImpl_hom_f, CategoryTheory.Dial.hom_ext_iff

Theorems

NameKindAssumesProvesValidatesDepends On
ext 📖f
F
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_discrete
Finite.of_fintype
ext_iff 📖mathematicalf
F
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_discrete
Finite.of_fintype
ext
le 📖mathematicalCategoryTheory.Subobject
CategoryTheory.Limits.prod
CategoryTheory.Dial.src
CategoryTheory.Dial.tgt
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasLimitsOfShape_discrete
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.pair
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.Functor.obj
Preorder.smallCategory
CategoryTheory.Subobject.pullback
CategoryTheory.Limits.prod.lift
CategoryTheory.Limits.prod.fst
F
CategoryTheory.Dial.rel
CategoryTheory.Limits.prod.map
f
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct

---

← Back to Index