Documentation Verification Report

DifferentialObject

πŸ“ Source: Mathlib/CategoryTheory/DifferentialObject.lean

Statistics

MetricCount
DefinitionsDifferentialObject, comp, f, id, HomSubtype, categoryOfDifferentialObjects, concreteCategoryOfDifferentialObjects, d, forget, hasZeroMorphisms, instFunLikeHomSubtypeObj, instHasForgetβ‚‚HomSubtypeObj, instHasShift, instZeroHom, isoApp, mkIso, obj, shiftFunctor, shiftFunctorAdd, shiftZero, mapDifferentialObject
21
Theoremscomm, comm_assoc, comp_f, ext, ext_iff, id_f, comp_f, d_squared, d_squared_assoc, eqToHom_f, ext, ext_iff, forget_faithful, hasZeroObject, id_f, isoApp_hom, isoApp_inv, isoApp_refl, isoApp_symm, isoApp_trans, mkIso_hom_f, mkIso_inv_f, shiftFunctorAdd_hom_app_f, shiftFunctorAdd_inv_app_f, shiftFunctor_map_f, shiftFunctor_obj_d, shiftFunctor_obj_obj, shiftZero_hom_app_f, shiftZero_inv_app_f, zero_f, mapDifferentialObject_map_f, mapDifferentialObject_obj_d, mapDifferentialObject_obj_obj
33
Total54

CategoryTheory

Definitions

NameCategoryTheorems
DifferentialObject πŸ“–CompData
37 mathmath: DifferentialObject.shiftFunctor_obj_d, DifferentialObject.shiftFunctor_obj_obj, DifferentialObject.shiftZero_hom_app_f, HomologicalComplex.dgoToHomologicalComplex_obj_d, DifferentialObject.eqToHom_f, HomologicalComplex.dgoEquivHomologicalComplex_unitIso, DifferentialObject.hasZeroObject, HomologicalComplex.dgoEquivHomologicalComplexUnitIso_hom_app_f, DifferentialObject.mkIso_hom_f, DifferentialObject.forget_faithful, HomologicalComplex.dgoEquivHomologicalComplex_functor, DifferentialObject.comp_f, DifferentialObject.isoApp_refl, HomologicalComplex.dgoToHomologicalComplex_obj_X, DifferentialObject.shiftZero_inv_app_f, HomologicalComplex.dgoEquivHomologicalComplex_counitIso, DifferentialObject.shiftFunctorAdd_hom_app_f, DifferentialObject.id_f, HomologicalComplex.homologicalComplexToDGO_map_f, DifferentialObject.shiftFunctor_map_f, HomologicalComplex.dgoToHomologicalComplex_map_f, DifferentialObject.shiftFunctorAdd_inv_app_f, Functor.mapDifferentialObject_obj_d, DifferentialObject.isoApp_trans, DifferentialObject.isoApp_hom, HomologicalComplex.dgoEquivHomologicalComplexCounitIso_hom_app_f, DifferentialObject.isoApp_symm, DifferentialObject.isoApp_inv, DifferentialObject.mkIso_inv_f, Functor.mapDifferentialObject_obj_obj, HomologicalComplex.homologicalComplexToDGO_obj_d, HomologicalComplex.homologicalComplexToDGO_obj_obj, HomologicalComplex.dgoEquivHomologicalComplex_inverse, HomologicalComplex.dgoEquivHomologicalComplexUnitIso_inv_app_f, Functor.mapDifferentialObject_map_f, HomologicalComplex.dgoEquivHomologicalComplexCounitIso_inv_app_f, DifferentialObject.zero_f

CategoryTheory.DifferentialObject

Definitions

NameCategoryTheorems
HomSubtype πŸ“–CompOpβ€”
categoryOfDifferentialObjects πŸ“–CompOp
37 mathmath: shiftFunctor_obj_d, shiftFunctor_obj_obj, shiftZero_hom_app_f, HomologicalComplex.dgoToHomologicalComplex_obj_d, eqToHom_f, HomologicalComplex.dgoEquivHomologicalComplex_unitIso, hasZeroObject, HomologicalComplex.dgoEquivHomologicalComplexUnitIso_hom_app_f, mkIso_hom_f, forget_faithful, HomologicalComplex.dgoEquivHomologicalComplex_functor, comp_f, isoApp_refl, HomologicalComplex.dgoToHomologicalComplex_obj_X, shiftZero_inv_app_f, HomologicalComplex.dgoEquivHomologicalComplex_counitIso, shiftFunctorAdd_hom_app_f, id_f, HomologicalComplex.homologicalComplexToDGO_map_f, shiftFunctor_map_f, HomologicalComplex.dgoToHomologicalComplex_map_f, shiftFunctorAdd_inv_app_f, CategoryTheory.Functor.mapDifferentialObject_obj_d, isoApp_trans, isoApp_hom, HomologicalComplex.dgoEquivHomologicalComplexCounitIso_hom_app_f, isoApp_symm, isoApp_inv, mkIso_inv_f, CategoryTheory.Functor.mapDifferentialObject_obj_obj, HomologicalComplex.homologicalComplexToDGO_obj_d, HomologicalComplex.homologicalComplexToDGO_obj_obj, HomologicalComplex.dgoEquivHomologicalComplex_inverse, HomologicalComplex.dgoEquivHomologicalComplexUnitIso_inv_app_f, CategoryTheory.Functor.mapDifferentialObject_map_f, HomologicalComplex.dgoEquivHomologicalComplexCounitIso_inv_app_f, zero_f
concreteCategoryOfDifferentialObjects πŸ“–CompOpβ€”
d πŸ“–CompOp
15 mathmath: shiftFunctor_obj_d, d_squared_apply, HomologicalComplex.dgoToHomologicalComplex_obj_d, d_squared, Hom.comm_assoc, objEqToHom_d, shiftFunctor_map_f, HomologicalComplex.dgoToHomologicalComplex_map_f, CategoryTheory.Functor.mapDifferentialObject_obj_d, Hom.comm, HomologicalComplex.homologicalComplexToDGO_obj_d, d_squared_assoc, objEqToHom_d_assoc, d_squared_apply_assoc, CategoryTheory.Functor.mapDifferentialObject_map_f
forget πŸ“–CompOp
1 mathmath: forget_faithful
hasZeroMorphisms πŸ“–CompOpβ€”
instFunLikeHomSubtypeObj πŸ“–CompOpβ€”
instHasForgetβ‚‚HomSubtypeObj πŸ“–CompOpβ€”
instHasShift πŸ“–CompOpβ€”
instZeroHom πŸ“–CompOp
1 mathmath: zero_f
isoApp πŸ“–CompOp
5 mathmath: isoApp_refl, isoApp_trans, isoApp_hom, isoApp_symm, isoApp_inv
mkIso πŸ“–CompOp
2 mathmath: mkIso_hom_f, mkIso_inv_f
obj πŸ“–CompOp
39 mathmath: shiftFunctor_obj_d, d_squared_apply, shiftFunctor_obj_obj, shiftZero_hom_app_f, HomologicalComplex.dgoToHomologicalComplex_obj_d, eqToHom_f, HomologicalComplex.dgoEquivHomologicalComplexUnitIso_hom_app_f, ext_iff, comp_f, d_squared, isoApp_refl, HomologicalComplex.dgoToHomologicalComplex_obj_X, Hom.comm_assoc, shiftZero_inv_app_f, shiftFunctorAdd_hom_app_f, id_f, Hom.id_f, objEqToHom_d, eqToHom_f', Hom.comp_f, shiftFunctor_map_f, objEqToHom_refl, HomologicalComplex.dgoToHomologicalComplex_map_f, shiftFunctorAdd_inv_app_f, CategoryTheory.Functor.mapDifferentialObject_obj_d, isoApp_trans, isoApp_hom, isoApp_symm, Hom.comm, isoApp_inv, eqToHom_f'_assoc, CategoryTheory.Functor.mapDifferentialObject_obj_obj, HomologicalComplex.homologicalComplexToDGO_obj_obj, d_squared_assoc, objEqToHom_d_assoc, d_squared_apply_assoc, HomologicalComplex.dgoEquivHomologicalComplexUnitIso_inv_app_f, CategoryTheory.Functor.mapDifferentialObject_map_f, zero_f
shiftFunctor πŸ“–CompOp
7 mathmath: shiftFunctor_obj_d, shiftFunctor_obj_obj, shiftZero_hom_app_f, shiftZero_inv_app_f, shiftFunctorAdd_hom_app_f, shiftFunctor_map_f, shiftFunctorAdd_inv_app_f
shiftFunctorAdd πŸ“–CompOp
2 mathmath: shiftFunctorAdd_hom_app_f, shiftFunctorAdd_inv_app_f
shiftZero πŸ“–CompOp
2 mathmath: shiftZero_hom_app_f, shiftZero_inv_app_f

Theorems

NameKindAssumesProvesValidatesDepends On
comp_f πŸ“–mathematicalβ€”Hom.f
CategoryTheory.CategoryStruct.comp
CategoryTheory.DifferentialObject
CategoryTheory.Category.toCategoryStruct
categoryOfDifferentialObjects
obj
β€”β€”
d_squared πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.Functor.obj
CategoryTheory.shiftFunctor
AddMonoidWithOne.toAddMonoid
AddMonoidWithOne.toOne
d
CategoryTheory.Functor.map
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
β€”β€”
d_squared_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.Functor.obj
CategoryTheory.shiftFunctor
AddMonoidWithOne.toAddMonoid
AddMonoidWithOne.toOne
d
CategoryTheory.Functor.map
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
d_squared
eqToHom_f πŸ“–mathematicalβ€”Hom.f
CategoryTheory.eqToHom
CategoryTheory.DifferentialObject
CategoryTheory.Category.toCategoryStruct
categoryOfDifferentialObjects
obj
β€”CategoryTheory.eqToHom_refl
ext πŸ“–β€”Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
obj
Hom.f
β€”β€”Hom.ext
ext_iff πŸ“–mathematicalβ€”Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
obj
Hom.f
β€”ext
forget_faithful πŸ“–mathematicalβ€”CategoryTheory.Functor.Faithful
CategoryTheory.DifferentialObject
categoryOfDifferentialObjects
forget
β€”ext
hasZeroObject πŸ“–mathematicalβ€”CategoryTheory.Limits.HasZeroObject
CategoryTheory.DifferentialObject
categoryOfDifferentialObjects
β€”CategoryTheory.Functor.map_zero
CategoryTheory.Limits.comp_zero
CategoryTheory.Limits.zero_comp
ext
CategoryTheory.Limits.HasZeroObject.from_zero_ext
CategoryTheory.Limits.HasZeroObject.to_zero_ext
id_f πŸ“–mathematicalβ€”Hom.f
CategoryTheory.CategoryStruct.id
CategoryTheory.DifferentialObject
CategoryTheory.Category.toCategoryStruct
categoryOfDifferentialObjects
obj
β€”β€”
isoApp_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
obj
isoApp
Hom.f
CategoryTheory.DifferentialObject
categoryOfDifferentialObjects
β€”β€”
isoApp_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
obj
isoApp
Hom.f
CategoryTheory.DifferentialObject
categoryOfDifferentialObjects
β€”β€”
isoApp_refl πŸ“–mathematicalβ€”isoApp
CategoryTheory.Iso.refl
CategoryTheory.DifferentialObject
categoryOfDifferentialObjects
obj
β€”β€”
isoApp_symm πŸ“–mathematicalβ€”isoApp
CategoryTheory.Iso.symm
CategoryTheory.DifferentialObject
categoryOfDifferentialObjects
obj
β€”β€”
isoApp_trans πŸ“–mathematicalβ€”isoApp
CategoryTheory.Iso.trans
CategoryTheory.DifferentialObject
categoryOfDifferentialObjects
obj
β€”β€”
mkIso_hom_f πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.Functor.obj
CategoryTheory.shiftFunctor
AddMonoidWithOne.toAddMonoid
AddMonoidWithOne.toOne
d
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
Hom.f
CategoryTheory.DifferentialObject
categoryOfDifferentialObjects
mkIso
β€”β€”
mkIso_inv_f πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
CategoryTheory.Functor.obj
CategoryTheory.shiftFunctor
AddMonoidWithOne.toAddMonoid
AddMonoidWithOne.toOne
d
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
Hom.f
CategoryTheory.Iso.inv
CategoryTheory.DifferentialObject
categoryOfDifferentialObjects
mkIso
β€”β€”
shiftFunctorAdd_hom_app_f πŸ“–mathematicalβ€”Hom.f
AddGroupWithOne.toAddMonoidWithOne
AddCommGroupWithOne.toAddGroupWithOne
CategoryTheory.Functor.obj
CategoryTheory.DifferentialObject
categoryOfDifferentialObjects
shiftFunctor
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommMonoidWithOne.toAddCommMonoid
AddCommGroupWithOne.toAddCommMonoidWithOne
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
shiftFunctorAdd
CategoryTheory.shiftFunctor
AddMonoidWithOne.toAddMonoid
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
CategoryTheory.shiftFunctorAdd
obj
β€”β€”
shiftFunctorAdd_inv_app_f πŸ“–mathematicalβ€”Hom.f
AddGroupWithOne.toAddMonoidWithOne
AddCommGroupWithOne.toAddGroupWithOne
CategoryTheory.Functor.obj
CategoryTheory.DifferentialObject
categoryOfDifferentialObjects
CategoryTheory.Functor.comp
shiftFunctor
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommMonoidWithOne.toAddCommMonoid
AddCommGroupWithOne.toAddCommMonoidWithOne
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
shiftFunctorAdd
CategoryTheory.shiftFunctor
AddMonoidWithOne.toAddMonoid
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
CategoryTheory.shiftFunctorAdd
obj
β€”β€”
shiftFunctor_map_f πŸ“–mathematicalβ€”Hom.f
AddGroupWithOne.toAddMonoidWithOne
AddCommGroupWithOne.toAddGroupWithOne
CategoryTheory.Functor.obj
CategoryTheory.shiftFunctor
AddMonoidWithOne.toAddMonoid
obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
AddMonoidWithOne.toOne
CategoryTheory.Functor.map
d
CategoryTheory.Iso.hom
AddCommMonoid.toAddMonoid
AddCommMonoidWithOne.toAddCommMonoid
AddCommGroupWithOne.toAddCommMonoidWithOne
CategoryTheory.shiftComm
CategoryTheory.DifferentialObject
categoryOfDifferentialObjects
shiftFunctor
β€”β€”
shiftFunctor_obj_d πŸ“–mathematicalβ€”d
AddGroupWithOne.toAddMonoidWithOne
AddCommGroupWithOne.toAddGroupWithOne
CategoryTheory.Functor.obj
CategoryTheory.DifferentialObject
categoryOfDifferentialObjects
shiftFunctor
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.shiftFunctor
AddMonoidWithOne.toAddMonoid
obj
AddMonoidWithOne.toOne
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
AddCommMonoid.toAddMonoid
AddCommMonoidWithOne.toAddCommMonoid
AddCommGroupWithOne.toAddCommMonoidWithOne
CategoryTheory.shiftComm
β€”β€”
shiftFunctor_obj_obj πŸ“–mathematicalβ€”obj
AddGroupWithOne.toAddMonoidWithOne
AddCommGroupWithOne.toAddGroupWithOne
CategoryTheory.Functor.obj
CategoryTheory.DifferentialObject
categoryOfDifferentialObjects
shiftFunctor
CategoryTheory.shiftFunctor
AddMonoidWithOne.toAddMonoid
β€”β€”
shiftZero_hom_app_f πŸ“–mathematicalβ€”Hom.f
AddGroupWithOne.toAddMonoidWithOne
AddCommGroupWithOne.toAddGroupWithOne
CategoryTheory.Functor.obj
CategoryTheory.DifferentialObject
categoryOfDifferentialObjects
shiftFunctor
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
AddCommGroupWithOne.toAddCommGroup
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
shiftZero
CategoryTheory.shiftFunctor
AddMonoidWithOne.toAddMonoid
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
CategoryTheory.shiftFunctorZero
obj
β€”β€”
shiftZero_inv_app_f πŸ“–mathematicalβ€”Hom.f
AddGroupWithOne.toAddMonoidWithOne
AddCommGroupWithOne.toAddGroupWithOne
CategoryTheory.Functor.obj
CategoryTheory.DifferentialObject
categoryOfDifferentialObjects
CategoryTheory.Functor.id
shiftFunctor
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
AddCommGroupWithOne.toAddCommGroup
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
shiftZero
CategoryTheory.shiftFunctor
AddMonoidWithOne.toAddMonoid
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
CategoryTheory.shiftFunctorZero
obj
β€”β€”
zero_f πŸ“–mathematicalβ€”Hom.f
Quiver.Hom
CategoryTheory.DifferentialObject
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
categoryOfDifferentialObjects
instZeroHom
obj
CategoryTheory.Limits.HasZeroMorphisms.zero
β€”β€”

CategoryTheory.DifferentialObject.Hom

Definitions

NameCategoryTheorems
comp πŸ“–CompOp
1 mathmath: comp_f
f πŸ“–CompOp
26 mathmath: CategoryTheory.DifferentialObject.shiftZero_hom_app_f, CategoryTheory.DifferentialObject.eqToHom_f, HomologicalComplex.dgoEquivHomologicalComplexUnitIso_hom_app_f, CategoryTheory.DifferentialObject.ext_iff, CategoryTheory.DifferentialObject.mkIso_hom_f, CategoryTheory.DifferentialObject.comp_f, comm_assoc, CategoryTheory.DifferentialObject.shiftZero_inv_app_f, ext_iff, CategoryTheory.DifferentialObject.shiftFunctorAdd_hom_app_f, CategoryTheory.DifferentialObject.id_f, HomologicalComplex.homologicalComplexToDGO_map_f, id_f, CategoryTheory.DifferentialObject.eqToHom_f', comp_f, CategoryTheory.DifferentialObject.shiftFunctor_map_f, HomologicalComplex.dgoToHomologicalComplex_map_f, CategoryTheory.DifferentialObject.shiftFunctorAdd_inv_app_f, CategoryTheory.DifferentialObject.isoApp_hom, comm, CategoryTheory.DifferentialObject.isoApp_inv, CategoryTheory.DifferentialObject.mkIso_inv_f, CategoryTheory.DifferentialObject.eqToHom_f'_assoc, HomologicalComplex.dgoEquivHomologicalComplexUnitIso_inv_app_f, CategoryTheory.Functor.mapDifferentialObject_map_f, CategoryTheory.DifferentialObject.zero_f
id πŸ“–CompOp
1 mathmath: id_f

Theorems

NameKindAssumesProvesValidatesDepends On
comm πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.DifferentialObject.obj
CategoryTheory.Functor.obj
CategoryTheory.shiftFunctor
AddMonoidWithOne.toAddMonoid
AddMonoidWithOne.toOne
CategoryTheory.DifferentialObject.d
CategoryTheory.Functor.map
f
β€”β€”
comm_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.DifferentialObject.obj
CategoryTheory.Functor.obj
CategoryTheory.shiftFunctor
AddMonoidWithOne.toAddMonoid
AddMonoidWithOne.toOne
CategoryTheory.DifferentialObject.d
CategoryTheory.Functor.map
f
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comm
comp_f πŸ“–mathematicalβ€”f
comp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.DifferentialObject.obj
β€”β€”
ext πŸ“–β€”fβ€”β€”β€”
ext_iff πŸ“–mathematicalβ€”fβ€”ext
id_f πŸ“–mathematicalβ€”f
id
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.DifferentialObject.obj
β€”β€”

CategoryTheory.Functor

Definitions

NameCategoryTheorems
mapDifferentialObject πŸ“–CompOp
3 mathmath: mapDifferentialObject_obj_d, mapDifferentialObject_obj_obj, mapDifferentialObject_map_f

Theorems

NameKindAssumesProvesValidatesDepends On
mapDifferentialObject_map_f πŸ“–mathematicalmap
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
obj
CategoryTheory.DifferentialObject.Hom.f
CategoryTheory.DifferentialObject.obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.shiftFunctor
AddMonoidWithOne.toAddMonoid
AddMonoidWithOne.toOne
CategoryTheory.DifferentialObject.d
CategoryTheory.NatTrans.app
comp
CategoryTheory.DifferentialObject
CategoryTheory.DifferentialObject.categoryOfDifferentialObjects
mapDifferentialObject
β€”β€”
mapDifferentialObject_obj_d πŸ“–mathematicalmap
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
obj
CategoryTheory.DifferentialObject.d
CategoryTheory.DifferentialObject
CategoryTheory.DifferentialObject.categoryOfDifferentialObjects
mapDifferentialObject
CategoryTheory.CategoryStruct.comp
CategoryTheory.DifferentialObject.obj
CategoryTheory.shiftFunctor
AddMonoidWithOne.toAddMonoid
AddMonoidWithOne.toOne
CategoryTheory.NatTrans.app
comp
β€”β€”
mapDifferentialObject_obj_obj πŸ“–mathematicalmap
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
obj
CategoryTheory.DifferentialObject.obj
CategoryTheory.DifferentialObject
CategoryTheory.DifferentialObject.categoryOfDifferentialObjects
mapDifferentialObject
β€”β€”

---

← Back to Index