| Name | Category | Theorems |
HomSubtype π | CompOp | β |
categoryOfDifferentialObjects π | CompOp | 37 mathmath: shiftFunctor_obj_d, shiftFunctor_obj_obj, shiftZero_hom_app_f, HomologicalComplex.dgoToHomologicalComplex_obj_d, eqToHom_f, HomologicalComplex.dgoEquivHomologicalComplex_unitIso, hasZeroObject, HomologicalComplex.dgoEquivHomologicalComplexUnitIso_hom_app_f, mkIso_hom_f, forget_faithful, HomologicalComplex.dgoEquivHomologicalComplex_functor, comp_f, isoApp_refl, HomologicalComplex.dgoToHomologicalComplex_obj_X, shiftZero_inv_app_f, HomologicalComplex.dgoEquivHomologicalComplex_counitIso, shiftFunctorAdd_hom_app_f, id_f, HomologicalComplex.homologicalComplexToDGO_map_f, shiftFunctor_map_f, HomologicalComplex.dgoToHomologicalComplex_map_f, shiftFunctorAdd_inv_app_f, CategoryTheory.Functor.mapDifferentialObject_obj_d, isoApp_trans, isoApp_hom, HomologicalComplex.dgoEquivHomologicalComplexCounitIso_hom_app_f, isoApp_symm, isoApp_inv, mkIso_inv_f, CategoryTheory.Functor.mapDifferentialObject_obj_obj, HomologicalComplex.homologicalComplexToDGO_obj_d, HomologicalComplex.homologicalComplexToDGO_obj_obj, HomologicalComplex.dgoEquivHomologicalComplex_inverse, HomologicalComplex.dgoEquivHomologicalComplexUnitIso_inv_app_f, CategoryTheory.Functor.mapDifferentialObject_map_f, HomologicalComplex.dgoEquivHomologicalComplexCounitIso_inv_app_f, zero_f
|
concreteCategoryOfDifferentialObjects π | CompOp | β |
d π | CompOp | 15 mathmath: shiftFunctor_obj_d, d_squared_apply, HomologicalComplex.dgoToHomologicalComplex_obj_d, d_squared, Hom.comm_assoc, objEqToHom_d, shiftFunctor_map_f, HomologicalComplex.dgoToHomologicalComplex_map_f, CategoryTheory.Functor.mapDifferentialObject_obj_d, Hom.comm, HomologicalComplex.homologicalComplexToDGO_obj_d, d_squared_assoc, objEqToHom_d_assoc, d_squared_apply_assoc, CategoryTheory.Functor.mapDifferentialObject_map_f
|
forget π | CompOp | 1 mathmath: forget_faithful
|
hasZeroMorphisms π | CompOp | β |
instFunLikeHomSubtypeObj π | CompOp | β |
instHasForgetβHomSubtypeObj π | CompOp | β |
instHasShift π | CompOp | β |
instZeroHom π | CompOp | 1 mathmath: zero_f
|
isoApp π | CompOp | 5 mathmath: isoApp_refl, isoApp_trans, isoApp_hom, isoApp_symm, isoApp_inv
|
mkIso π | CompOp | 2 mathmath: mkIso_hom_f, mkIso_inv_f
|
obj π | CompOp | 39 mathmath: shiftFunctor_obj_d, d_squared_apply, shiftFunctor_obj_obj, shiftZero_hom_app_f, HomologicalComplex.dgoToHomologicalComplex_obj_d, eqToHom_f, HomologicalComplex.dgoEquivHomologicalComplexUnitIso_hom_app_f, ext_iff, comp_f, d_squared, isoApp_refl, HomologicalComplex.dgoToHomologicalComplex_obj_X, Hom.comm_assoc, shiftZero_inv_app_f, shiftFunctorAdd_hom_app_f, id_f, Hom.id_f, objEqToHom_d, eqToHom_f', Hom.comp_f, shiftFunctor_map_f, objEqToHom_refl, HomologicalComplex.dgoToHomologicalComplex_map_f, shiftFunctorAdd_inv_app_f, CategoryTheory.Functor.mapDifferentialObject_obj_d, isoApp_trans, isoApp_hom, isoApp_symm, Hom.comm, isoApp_inv, eqToHom_f'_assoc, CategoryTheory.Functor.mapDifferentialObject_obj_obj, HomologicalComplex.homologicalComplexToDGO_obj_obj, d_squared_assoc, objEqToHom_d_assoc, d_squared_apply_assoc, HomologicalComplex.dgoEquivHomologicalComplexUnitIso_inv_app_f, CategoryTheory.Functor.mapDifferentialObject_map_f, zero_f
|
shiftFunctor π | CompOp | 7 mathmath: shiftFunctor_obj_d, shiftFunctor_obj_obj, shiftZero_hom_app_f, shiftZero_inv_app_f, shiftFunctorAdd_hom_app_f, shiftFunctor_map_f, shiftFunctorAdd_inv_app_f
|
shiftFunctorAdd π | CompOp | 2 mathmath: shiftFunctorAdd_hom_app_f, shiftFunctorAdd_inv_app_f
|
shiftZero π | CompOp | 2 mathmath: shiftZero_hom_app_f, shiftZero_inv_app_f
|