Documentation Verification Report

Monoidal

πŸ“ Source: Mathlib/CategoryTheory/Distributive/Monoidal.lean

Statistics

MetricCount
DefinitionsΒ«termβˆ‚LΒ», Β«termβˆ‚RΒ», IsMonoidalDistrib, IsMonoidalLeftDistrib, IsMonoidalRightDistrib, leftDistrib, rightDistrib
7
Theoremsof_MonoidalPreadditive_with_binary_coproducts, toIsMonoidalLeftDistrib, toIsMonoidalRightDistrib, of_isIso_coprodComparisonTensorLeft, preservesBinaryCoproducts_tensorLeft, of_isIso_coprodComparisonTensorRight, preservesBinaryCoproducts_tensorRight, isMonoidalLeftDistrib, leftDistrib_inv, isMonoidalDistrib_of_isMonoidalLeftDistrib, rightDistrib_of_leftDistrib, coprodComparison_tensorLeft_braiding_hom, coprodComparison_tensorRight_braiding_hom, coprod_inl_leftDistrib_hom, coprod_inl_leftDistrib_hom_assoc, coprod_inl_rightDistrib_hom, coprod_inl_rightDistrib_hom_assoc, coprod_inr_leftDistrib_hom, coprod_inr_leftDistrib_hom_assoc, coprod_inr_rightDistrib_hom, coprod_inr_rightDistrib_hom_assoc, of_symmetric_monoidal_closed, of_endofunctors, leftDistrib_hom, rightDistrib_hom, whiskerLeft_coprod_inl_leftDistrib_inv, whiskerLeft_coprod_inl_leftDistrib_inv_assoc, whiskerLeft_coprod_inr_leftDistrib_inv, whiskerLeft_coprod_inr_leftDistrib_inv_assoc, whiskerRight_coprod_inl_rightDistrib_inv, whiskerRight_coprod_inl_rightDistrib_inv_assoc, whiskerRight_coprod_inr_rightDistrib_inv, whiskerRight_coprod_inr_rightDistrib_inv_assoc
33
Total40

CategoryTheory

Definitions

NameCategoryTheorems
IsMonoidalDistrib πŸ“–CompData
3 mathmath: SymmetricCategory.isMonoidalDistrib_of_isMonoidalLeftDistrib, isMonoidalDistrib.of_symmetric_monoidal_closed, IsMonoidalDistrib.of_MonoidalPreadditive_with_binary_coproducts
IsMonoidalLeftDistrib πŸ“–CompData
4 mathmath: IsMonoidalDistrib.toIsMonoidalLeftDistrib, IsMonoidalLeftDistrib.of_isIso_coprodComparisonTensorLeft, MonoidalClosed.isMonoidalLeftDistrib, isMonoidalLeftDistrib.of_endofunctors
IsMonoidalRightDistrib πŸ“–CompData
2 mathmath: IsMonoidalRightDistrib.of_isIso_coprodComparisonTensorRight, IsMonoidalDistrib.toIsMonoidalRightDistrib
leftDistrib πŸ“–CompOp
11 mathmath: whiskerLeft_coprod_inr_leftDistrib_inv, coprod_inl_leftDistrib_hom, whiskerLeft_coprod_inl_leftDistrib_inv, whiskerLeft_coprod_inl_leftDistrib_inv_assoc, coprod_inl_leftDistrib_hom_assoc, coprod_inr_leftDistrib_hom, SymmetricCategory.rightDistrib_of_leftDistrib, coprod_inr_leftDistrib_hom_assoc, leftDistrib_hom, MonoidalClosed.leftDistrib_inv, whiskerLeft_coprod_inr_leftDistrib_inv_assoc
rightDistrib πŸ“–CompOp
10 mathmath: coprod_inr_rightDistrib_hom_assoc, whiskerRight_coprod_inr_rightDistrib_inv_assoc, whiskerRight_coprod_inl_rightDistrib_inv, coprod_inl_rightDistrib_hom, coprod_inr_rightDistrib_hom, SymmetricCategory.rightDistrib_of_leftDistrib, whiskerRight_coprod_inl_rightDistrib_inv_assoc, whiskerRight_coprod_inr_rightDistrib_inv, rightDistrib_hom, coprod_inl_rightDistrib_hom_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
coprodComparison_tensorLeft_braiding_hom πŸ“–mathematicalβ€”CategoryStruct.comp
Category.toCategoryStruct
Limits.coprod
Functor.obj
MonoidalCategory.tensorLeft
Limits.hasColimitOfHasColimitsOfShape
Discrete
Limits.WalkingPair
discreteCategory
Limits.pair
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
Limits.coprodComparison
Iso.hom
BraidedCategory.braiding
MonoidalCategory.tensorRight
Limits.coprod.map
β€”Limits.hasColimitOfHasColimitsOfShape
Limits.coprod.desc_comp
BraidedCategory.braiding_naturality_right
Limits.coprod.map_desc
coprodComparison_tensorRight_braiding_hom πŸ“–mathematicalβ€”CategoryStruct.comp
Category.toCategoryStruct
Limits.coprod
Functor.obj
MonoidalCategory.tensorRight
Limits.hasColimitOfHasColimitsOfShape
Discrete
Limits.WalkingPair
discreteCategory
Limits.pair
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
Limits.coprodComparison
Iso.hom
BraidedCategory.braiding
SymmetricCategory.toBraidedCategory
MonoidalCategory.tensorLeft
Limits.coprod.map
β€”Limits.hasColimitOfHasColimitsOfShape
Limits.coprod.desc_comp
BraidedCategory.braiding_naturality_left
Limits.coprod.map_desc
coprod_inl_leftDistrib_hom πŸ“–mathematicalβ€”CategoryStruct.comp
Category.toCategoryStruct
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
Limits.coprod
Limits.hasColimitOfHasColimitsOfShape
Discrete
Limits.WalkingPair
discreteCategory
Limits.pair
Limits.coprod.inl
Iso.hom
leftDistrib
MonoidalCategoryStruct.whiskerLeft
β€”Limits.hasColimitOfHasColimitsOfShape
leftDistrib_hom
Limits.coprod.inl_desc
coprod_inl_leftDistrib_hom_assoc πŸ“–mathematicalβ€”CategoryStruct.comp
Category.toCategoryStruct
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
Limits.coprod
Limits.hasColimitOfHasColimitsOfShape
Discrete
Limits.WalkingPair
discreteCategory
Limits.pair
Limits.coprod.inl
Iso.hom
leftDistrib
MonoidalCategoryStruct.whiskerLeft
β€”Limits.hasColimitOfHasColimitsOfShape
Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
coprod_inl_leftDistrib_hom
coprod_inl_rightDistrib_hom πŸ“–mathematicalβ€”CategoryStruct.comp
Category.toCategoryStruct
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
Limits.coprod
Limits.hasColimitOfHasColimitsOfShape
Discrete
Limits.WalkingPair
discreteCategory
Limits.pair
Limits.coprod.inl
Iso.hom
rightDistrib
MonoidalCategoryStruct.whiskerRight
β€”Limits.hasColimitOfHasColimitsOfShape
rightDistrib_hom
Limits.coprod.inl_desc
coprod_inl_rightDistrib_hom_assoc πŸ“–mathematicalβ€”CategoryStruct.comp
Category.toCategoryStruct
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
Limits.coprod
Limits.hasColimitOfHasColimitsOfShape
Discrete
Limits.WalkingPair
discreteCategory
Limits.pair
Limits.coprod.inl
Iso.hom
rightDistrib
MonoidalCategoryStruct.whiskerRight
β€”Limits.hasColimitOfHasColimitsOfShape
Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
coprod_inl_rightDistrib_hom
coprod_inr_leftDistrib_hom πŸ“–mathematicalβ€”CategoryStruct.comp
Category.toCategoryStruct
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
Limits.coprod
Limits.hasColimitOfHasColimitsOfShape
Discrete
Limits.WalkingPair
discreteCategory
Limits.pair
Limits.coprod.inr
Iso.hom
leftDistrib
MonoidalCategoryStruct.whiskerLeft
β€”Limits.hasColimitOfHasColimitsOfShape
leftDistrib_hom
Limits.coprod.inr_desc
coprod_inr_leftDistrib_hom_assoc πŸ“–mathematicalβ€”CategoryStruct.comp
Category.toCategoryStruct
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
Limits.coprod
Limits.hasColimitOfHasColimitsOfShape
Discrete
Limits.WalkingPair
discreteCategory
Limits.pair
Limits.coprod.inr
Iso.hom
leftDistrib
MonoidalCategoryStruct.whiskerLeft
β€”Limits.hasColimitOfHasColimitsOfShape
Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
coprod_inr_leftDistrib_hom
coprod_inr_rightDistrib_hom πŸ“–mathematicalβ€”CategoryStruct.comp
Category.toCategoryStruct
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
Limits.coprod
Limits.hasColimitOfHasColimitsOfShape
Discrete
Limits.WalkingPair
discreteCategory
Limits.pair
Limits.coprod.inr
Iso.hom
rightDistrib
MonoidalCategoryStruct.whiskerRight
β€”Limits.hasColimitOfHasColimitsOfShape
rightDistrib_hom
Limits.coprod.inr_desc
coprod_inr_rightDistrib_hom_assoc πŸ“–mathematicalβ€”CategoryStruct.comp
Category.toCategoryStruct
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
Limits.coprod
Limits.hasColimitOfHasColimitsOfShape
Discrete
Limits.WalkingPair
discreteCategory
Limits.pair
Limits.coprod.inr
Iso.hom
rightDistrib
MonoidalCategoryStruct.whiskerRight
β€”Limits.hasColimitOfHasColimitsOfShape
Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
coprod_inr_rightDistrib_hom
leftDistrib_hom πŸ“–mathematicalβ€”Iso.hom
Limits.coprod
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
Limits.hasColimitOfHasColimitsOfShape
Discrete
Limits.WalkingPair
discreteCategory
Limits.pair
leftDistrib
Limits.coprod.desc
MonoidalCategoryStruct.whiskerLeft
Limits.coprod.inl
Limits.coprod.inr
β€”Limits.hasColimitOfHasColimitsOfShape
rightDistrib_hom πŸ“–mathematicalβ€”Iso.hom
Limits.coprod
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
Limits.hasColimitOfHasColimitsOfShape
Discrete
Limits.WalkingPair
discreteCategory
Limits.pair
rightDistrib
Limits.coprod.desc
MonoidalCategoryStruct.whiskerRight
Limits.coprod.inl
Limits.coprod.inr
β€”Limits.hasColimitOfHasColimitsOfShape
whiskerLeft_coprod_inl_leftDistrib_inv πŸ“–mathematicalβ€”CategoryStruct.comp
Category.toCategoryStruct
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
Limits.coprod
Limits.hasColimitOfHasColimitsOfShape
Discrete
Limits.WalkingPair
discreteCategory
Limits.pair
MonoidalCategoryStruct.whiskerLeft
Limits.coprod.inl
Iso.inv
leftDistrib
β€”Limits.hasColimitOfHasColimitsOfShape
Iso.cancel_iso_hom_right
Category.assoc
Iso.inv_hom_id
Category.comp_id
coprod_inl_leftDistrib_hom
whiskerLeft_coprod_inl_leftDistrib_inv_assoc πŸ“–mathematicalβ€”CategoryStruct.comp
Category.toCategoryStruct
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
Limits.coprod
Limits.hasColimitOfHasColimitsOfShape
Discrete
Limits.WalkingPair
discreteCategory
Limits.pair
MonoidalCategoryStruct.whiskerLeft
Limits.coprod.inl
Iso.inv
leftDistrib
β€”Limits.hasColimitOfHasColimitsOfShape
Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
whiskerLeft_coprod_inl_leftDistrib_inv
whiskerLeft_coprod_inr_leftDistrib_inv πŸ“–mathematicalβ€”CategoryStruct.comp
Category.toCategoryStruct
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
Limits.coprod
Limits.hasColimitOfHasColimitsOfShape
Discrete
Limits.WalkingPair
discreteCategory
Limits.pair
MonoidalCategoryStruct.whiskerLeft
Limits.coprod.inr
Iso.inv
leftDistrib
β€”Limits.hasColimitOfHasColimitsOfShape
Iso.cancel_iso_hom_right
Category.assoc
Iso.inv_hom_id
Category.comp_id
coprod_inr_leftDistrib_hom
whiskerLeft_coprod_inr_leftDistrib_inv_assoc πŸ“–mathematicalβ€”CategoryStruct.comp
Category.toCategoryStruct
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
Limits.coprod
Limits.hasColimitOfHasColimitsOfShape
Discrete
Limits.WalkingPair
discreteCategory
Limits.pair
MonoidalCategoryStruct.whiskerLeft
Limits.coprod.inr
Iso.inv
leftDistrib
β€”Limits.hasColimitOfHasColimitsOfShape
Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
whiskerLeft_coprod_inr_leftDistrib_inv
whiskerRight_coprod_inl_rightDistrib_inv πŸ“–mathematicalβ€”CategoryStruct.comp
Category.toCategoryStruct
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
Limits.coprod
Limits.hasColimitOfHasColimitsOfShape
Discrete
Limits.WalkingPair
discreteCategory
Limits.pair
MonoidalCategoryStruct.whiskerRight
Limits.coprod.inl
Iso.inv
rightDistrib
β€”Limits.hasColimitOfHasColimitsOfShape
Iso.cancel_iso_hom_right
Category.assoc
Iso.inv_hom_id
Category.comp_id
coprod_inl_rightDistrib_hom
whiskerRight_coprod_inl_rightDistrib_inv_assoc πŸ“–mathematicalβ€”CategoryStruct.comp
Category.toCategoryStruct
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
Limits.coprod
Limits.hasColimitOfHasColimitsOfShape
Discrete
Limits.WalkingPair
discreteCategory
Limits.pair
MonoidalCategoryStruct.whiskerRight
Limits.coprod.inl
Iso.inv
rightDistrib
β€”Limits.hasColimitOfHasColimitsOfShape
Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
whiskerRight_coprod_inl_rightDistrib_inv
whiskerRight_coprod_inr_rightDistrib_inv πŸ“–mathematicalβ€”CategoryStruct.comp
Category.toCategoryStruct
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
Limits.coprod
Limits.hasColimitOfHasColimitsOfShape
Discrete
Limits.WalkingPair
discreteCategory
Limits.pair
MonoidalCategoryStruct.whiskerRight
Limits.coprod.inr
Iso.inv
rightDistrib
β€”Limits.hasColimitOfHasColimitsOfShape
Iso.cancel_iso_hom_right
Category.assoc
Iso.inv_hom_id
Category.comp_id
coprod_inr_rightDistrib_hom
whiskerRight_coprod_inr_rightDistrib_inv_assoc πŸ“–mathematicalβ€”CategoryStruct.comp
Category.toCategoryStruct
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
Limits.coprod
Limits.hasColimitOfHasColimitsOfShape
Discrete
Limits.WalkingPair
discreteCategory
Limits.pair
MonoidalCategoryStruct.whiskerRight
Limits.coprod.inr
Iso.inv
rightDistrib
β€”Limits.hasColimitOfHasColimitsOfShape
Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
whiskerRight_coprod_inr_rightDistrib_inv

CategoryTheory.Distributive

Definitions

NameCategoryTheorems
Β«termβˆ‚LΒ» πŸ“–CompOpβ€”
Β«termβˆ‚RΒ» πŸ“–CompOpβ€”

CategoryTheory.IsMonoidalDistrib

Theorems

NameKindAssumesProvesValidatesDepends On
of_MonoidalPreadditive_with_binary_coproducts πŸ“–mathematicalβ€”CategoryTheory.IsMonoidalDistribβ€”CategoryTheory.Limits.preservesBinaryCoproducts_of_preservesBinaryBiproducts
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.tensoringLeft_additive
CategoryTheory.Limits.preservesBinaryBiproducts_of_preservesBiproducts
CategoryTheory.Limits.PreservesFiniteBiproducts.preserves
CategoryTheory.instPreservesFiniteBiproductsTensorLeft
Finite.of_fintype
CategoryTheory.tensoringRight_additive
CategoryTheory.instPreservesFiniteBiproductsTensorRight
toIsMonoidalLeftDistrib πŸ“–mathematicalβ€”CategoryTheory.IsMonoidalLeftDistribβ€”β€”
toIsMonoidalRightDistrib πŸ“–mathematicalβ€”CategoryTheory.IsMonoidalRightDistribβ€”β€”

CategoryTheory.IsMonoidalLeftDistrib

Theorems

NameKindAssumesProvesValidatesDepends On
of_isIso_coprodComparisonTensorLeft πŸ“–mathematicalCategoryTheory.IsIso
CategoryTheory.Limits.coprod
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
CategoryTheory.Limits.coprodComparison
CategoryTheory.IsMonoidalLeftDistribβ€”CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.preservesBinaryCoproducts_of_isIso_coprodComparison
preservesBinaryCoproducts_tensorLeft πŸ“–mathematicalβ€”CategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.MonoidalCategory.tensorLeft
β€”β€”

CategoryTheory.IsMonoidalRightDistrib

Theorems

NameKindAssumesProvesValidatesDepends On
of_isIso_coprodComparisonTensorRight πŸ“–mathematicalCategoryTheory.IsIso
CategoryTheory.Limits.coprod
CategoryTheory.Functor.obj
CategoryTheory.MonoidalCategory.tensorRight
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
CategoryTheory.Limits.coprodComparison
CategoryTheory.IsMonoidalRightDistribβ€”CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Limits.preservesBinaryCoproducts_of_isIso_coprodComparison
preservesBinaryCoproducts_tensorRight πŸ“–mathematicalβ€”CategoryTheory.Limits.PreservesColimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.MonoidalCategory.tensorRight
β€”β€”

CategoryTheory.MonoidalClosed

Theorems

NameKindAssumesProvesValidatesDepends On
isMonoidalLeftDistrib πŸ“–mathematicalβ€”CategoryTheory.IsMonoidalLeftDistribβ€”CategoryTheory.Limits.PreservesFiniteColimits.preservesFiniteColimits
CategoryTheory.Limits.PreservesColimits.preservesFiniteColimits
CategoryTheory.instPreservesColimitsTensorLeft
leftDistrib_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
CategoryTheory.Limits.coprod
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
CategoryTheory.leftDistrib
isMonoidalLeftDistrib
uncurry
closed
CategoryTheory.Limits.coprod.desc
CategoryTheory.Functor.obj
CategoryTheory.ihom
curry
CategoryTheory.Limits.coprod.inl
CategoryTheory.Limits.coprod.inr
β€”CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
isMonoidalLeftDistrib
curry_eq_iff
CategoryTheory.Limits.coprod.hom_ext
CategoryTheory.whiskerLeft_coprod_inl_leftDistrib_inv
CategoryTheory.Limits.colimit.ΞΉ_desc
CategoryTheory.whiskerLeft_coprod_inr_leftDistrib_inv

CategoryTheory.SymmetricCategory

Theorems

NameKindAssumesProvesValidatesDepends On
isMonoidalDistrib_of_isMonoidalLeftDistrib πŸ“–mathematicalβ€”CategoryTheory.IsMonoidalDistribβ€”CategoryTheory.Limits.preservesColimitsOfShape_of_natIso
CategoryTheory.IsMonoidalLeftDistrib.preservesBinaryCoproducts_tensorLeft
rightDistrib_of_leftDistrib πŸ“–mathematicalβ€”CategoryTheory.rightDistrib
CategoryTheory.IsMonoidalDistrib.toIsMonoidalRightDistrib
CategoryTheory.Iso.trans
CategoryTheory.Limits.coprod
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
CategoryTheory.Limits.coprod.mapIso
CategoryTheory.BraidedCategory.braiding
toBraidedCategory
CategoryTheory.leftDistrib
CategoryTheory.IsMonoidalDistrib.toIsMonoidalLeftDistrib
β€”CategoryTheory.Iso.ext
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.IsMonoidalDistrib.toIsMonoidalRightDistrib
CategoryTheory.IsMonoidalDistrib.toIsMonoidalLeftDistrib
CategoryTheory.Limits.coprod.hom_ext
CategoryTheory.rightDistrib_hom
CategoryTheory.Limits.colimit.ΞΉ_desc
CategoryTheory.leftDistrib_hom
CategoryTheory.Limits.coprod.desc_comp
CategoryTheory.BraidedCategory.braiding_naturality_right
CategoryTheory.Limits.coprod.map_desc
symmetry_assoc

CategoryTheory.isMonoidalDistrib

Theorems

NameKindAssumesProvesValidatesDepends On
of_symmetric_monoidal_closed πŸ“–mathematicalβ€”CategoryTheory.IsMonoidalDistribβ€”CategoryTheory.SymmetricCategory.isMonoidalDistrib_of_isMonoidalLeftDistrib
CategoryTheory.MonoidalClosed.isMonoidalLeftDistrib

CategoryTheory.isMonoidalLeftDistrib

Theorems

NameKindAssumesProvesValidatesDepends On
of_endofunctors πŸ“–mathematicalβ€”CategoryTheory.IsMonoidalLeftDistrib
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.endofunctorMonoidalCategory
CategoryTheory.Limits.functorCategoryHasColimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
β€”CategoryTheory.Limits.functorCategoryHasColimitsOfShape
CategoryTheory.whiskeringLeft_preservesColimitsOfShape

---

← Back to Index