Documentation Verification Report

Elements

📁 Source: Mathlib/CategoryTheory/Elements.lean

Statistics

MetricCount
DefinitionscostructuredArrowULiftYonedaEquivalence, costructuredArrowULiftYonedaEquivalenceFunctorCompProjIso, costructuredArrowYonedaEquivalence, costructuredArrowYonedaEquivalenceFunctorProj, costructuredArrowYonedaEquivalenceInverseπ, fromCostructuredArrow, fromStructuredArrow, homMk, isoMk, map, structuredArrowEquivalence, toCostructuredArrow, toStructuredArrow, π, initial, initialOfCorepresentableBy, initialOfRepresentableBy, isInitial, isInitialOfCorepresentableBy, isInitialOfRepresentableBy, elementsFunctor, elementsMk, mapElements, categoryOfElements, groupoidOfElements
25
Theoremscomp_val, costructuredArrowULiftYonedaEquivalence_counitIso, costructuredArrowULiftYonedaEquivalence_functor_map, costructuredArrowULiftYonedaEquivalence_functor_obj, costructuredArrowULiftYonedaEquivalence_inverse_map, costructuredArrowULiftYonedaEquivalence_inverse_obj, costructuredArrowULiftYonedaEquivalence_unitIso, costructuredArrowYonedaEquivalenceFunctorProj_hom_app, costructuredArrowYonedaEquivalenceFunctorProj_inv_app, costructuredArrowYonedaEquivalenceInverseπ_hom_app, costructuredArrowYonedaEquivalenceInverseπ_inv_app, costructuredArrowYonedaEquivalence_counitIso, costructuredArrowYonedaEquivalence_functor, costructuredArrowYonedaEquivalence_inverse, costructuredArrowYonedaEquivalence_unitIso, costructuredArrow_yoneda_equivalence_naturality, ext, ext_iff, fromCostructuredArrow_map_coe, fromCostructuredArrow_obj_fst, fromCostructuredArrow_obj_mk, fromCostructuredArrow_obj_snd, fromStructuredArrow_map, fromStructuredArrow_obj, homMk_coe, id_val, instFaithfulElementsπ, instLocallySmallElements, instReflectsIsomorphismsElementsπ, isoMk_hom, isoMk_inv, map_map_coe, map_obj_fst, map_obj_snd, map_snd, map_π, structuredArrowEquivalence_counitIso, structuredArrowEquivalence_functor, structuredArrowEquivalence_inverse, structuredArrowEquivalence_unitIso, toCostructuredArrow_map, toCostructuredArrow_obj, toStructuredArrow_obj, to_comma_map_right, π_map, π_obj, ext, initialOfCorepresentableBy_fst, initialOfCorepresentableBy_snd, initialOfRepresentableBy_fst, initialOfRepresentableBy_snd, elementsFunctor_map, elementsFunctor_obj, mapElements_map_coe, mapElements_obj
55
Total80

CategoryTheory

Definitions

NameCategoryTheorems
categoryOfElements 📖CompOp
87 mathmath: CategoryOfElements.instHasLimitsOfShapeElements, CategoryOfElements.costructuredArrowYonedaEquivalenceInverseπ_hom_app, CategoryOfElements.fromStructuredArrow_map, CategoryOfElements.costructuredArrowYonedaEquivalence_functor, CategoryOfElements.costructuredArrowULiftYonedaEquivalence_unitIso, CategoryOfElements.structuredArrowEquivalence_functor, Presheaf.coconeOfRepresentable_pt, CategoryOfElements.map_map_coe, Presheaf.functorToRepresentables_map, Grothendieck.grothendieckTypeToCat_inverse_map_base, Grothendieck.grothendieckTypeToCat_counitIso_inv_app_coe, Grothendieck.grothendieckTypeToCatFunctor_obj_snd, Grothendieck.grothendieckTypeToCat_unitIso_hom_app_fiber, CategoryOfElements.to_comma_map_right, Grothendieck.grothendieckTypeToCat_unitIso_inv_app_fiber, CategoryOfElements.structuredArrowEquivalence_counitIso, CategoryOfElements.instHasInitialElementsOppositeOfIsRepresentable, CategoryOfElements.CreatesLimitsAux.liftedCone_π_app_coe, Grothendieck.grothendieckTypeToCat_unitIso_inv_app_base, CategoryOfElements.toStructuredArrow_obj, CategoryOfElements.map_π, Grothendieck.grothendieckTypeToCat_functor_obj_fst, CategoryOfElements.isoMk_inv, Grothendieck.grothendieckTypeToCat_unitIso_hom_app_base, Presheaf.functorToRepresentables_obj, CategoryOfElements.costructuredArrowYonedaEquivalence_counitIso, CategoryOfElements.comp_val, Grothendieck.grothendieckTypeToCat_inverse_obj_base, CategoryOfElements.costructuredArrowYonedaEquivalence_inverse, Grothendieck.grothendieckTypeToCatFunctor_map_coe, CategoryOfElements.fromStructuredArrow_obj, CategoryOfElements.costructuredArrowULiftYonedaEquivalence_functor_obj, CategoryOfElements.instFaithfulElementsπ, NatTrans.mapElements_map_coe, CategoryOfElements.map_obj_fst, CategoryOfElements.fromCostructuredArrow_obj_snd, instIsCofilteredElementsCompOfRepresentablyFlat, Grothendieck.grothendieckTypeToCat_counitIso_hom_app_coe, CategoryOfElements.costructuredArrowULiftYonedaEquivalence_functor_map, CategoryOfElements.structuredArrowEquivalence_inverse, CategoryOfElements.map_obj_snd, CategoryOfElements.instReflectsIsomorphismsElementsπ, Functor.elementsFunctor_map, Grothendieck.grothendieckTypeToCatFunctor_obj_fst, CategoryOfElements.π_map, Functor.isCofiltered_elements, CategoryOfElements.costructuredArrowULiftYonedaEquivalence_counitIso, CategoryOfElements.fromCostructuredArrow_map_coe, CategoryOfElements.instLocallySmallElements, CategoryOfElements.instHasInitialElementsOfIsCorepresentable, CategoryOfElements.π_obj, NatTrans.mapElements_obj, CategoryOfElements.costructuredArrow_yoneda_equivalence_naturality, CategoryOfElements.costructuredArrowYonedaEquivalence_unitIso, CategoryOfElements.toCostructuredArrow_obj, Presheaf.coconeOfRepresentable_naturality, GrothendieckTopology.Point.instHasExactColimitsOfShapeOppositeElementsFiberOfLocallySmallOfAB5OfSizeOfHasFiniteLimits, CategoryOfElements.costructuredArrowYonedaEquivalenceFunctorProj_hom_app, GrothendieckTopology.Point.instHasColimitsOfShapeOppositeElementsFiber, CategoryOfElements.costructuredArrowULiftYonedaEquivalence_inverse_obj, Functor.elementsFunctor_obj, Grothendieck.grothendieckTypeToCat_inverse_obj_fiber_as, SSet.S.le_iff_nonempty_hom, CategoryOfElements.structuredArrowEquivalence_unitIso, Presheaf.coconeOfRepresentable_ι_app, CategoryOfElements.costructuredArrowYonedaEquivalenceInverseπ_inv_app, CategoryOfElements.id_val, GrothendieckTopology.Point.instPreservesColimitsOfShapeOppositeElementsFiberForget, CategoryOfElements.fromCostructuredArrow_obj_mk, CategoryOfElements.CreatesLimitsAux.liftedCone_pt_snd, Grothendieck.grothendieckTypeToCatInverse_obj_base, CategoryOfElements.CreatesLimitsAux.map_lift_mapCone, Grothendieck.grothendieckTypeToCatInverse_map_base, FunctorToTypes.instIsCofilteredElementsOverFromOverFunctor, Grothendieck.grothendieckTypeToCat_functor_map_coe, CategoryOfElements.CreatesLimitsAux.map_π_liftedConeElement, GrothendieckTopology.Point.isCofiltered, Grothendieck.grothendieckTypeToCat_functor_obj_snd, CategoryOfElements.costructuredArrowULiftYonedaEquivalence_inverse_map, Grothendieck.grothendieckTypeToCatInverse_obj_fiber_as, CategoryOfElements.isoMk_hom, CategoryOfElements.CreatesLimitsAux.liftedCone_pt_fst, CategoryOfElements.fromCostructuredArrow_obj_fst, CategoryOfElements.toCostructuredArrow_map, CategoryOfElements.costructuredArrowYonedaEquivalenceFunctorProj_inv_app, CategoryOfElements.CreatesLimitsAux.π_liftedConeElement', GrothendieckTopology.Point.initiallySmall
groupoidOfElements 📖CompOp

CategoryTheory.CategoryOfElements

Definitions

NameCategoryTheorems
costructuredArrowULiftYonedaEquivalence 📖CompOp
6 mathmath: costructuredArrowULiftYonedaEquivalence_unitIso, costructuredArrowULiftYonedaEquivalence_functor_obj, costructuredArrowULiftYonedaEquivalence_functor_map, costructuredArrowULiftYonedaEquivalence_counitIso, costructuredArrowULiftYonedaEquivalence_inverse_obj, costructuredArrowULiftYonedaEquivalence_inverse_map
costructuredArrowULiftYonedaEquivalenceFunctorCompProjIso 📖CompOp
costructuredArrowYonedaEquivalence 📖CompOp
8 mathmath: costructuredArrowYonedaEquivalenceInverseπ_hom_app, costructuredArrowYonedaEquivalence_functor, costructuredArrowYonedaEquivalence_counitIso, costructuredArrowYonedaEquivalence_inverse, costructuredArrowYonedaEquivalence_unitIso, costructuredArrowYonedaEquivalenceFunctorProj_hom_app, costructuredArrowYonedaEquivalenceInverseπ_inv_app, costructuredArrowYonedaEquivalenceFunctorProj_inv_app
costructuredArrowYonedaEquivalenceFunctorProj 📖CompOp
2 mathmath: costructuredArrowYonedaEquivalenceFunctorProj_hom_app, costructuredArrowYonedaEquivalenceFunctorProj_inv_app
costructuredArrowYonedaEquivalenceInverseπ 📖CompOp
2 mathmath: costructuredArrowYonedaEquivalenceInverseπ_hom_app, costructuredArrowYonedaEquivalenceInverseπ_inv_app
fromCostructuredArrow 📖CompOp
7 mathmath: costructuredArrowYonedaEquivalence_counitIso, costructuredArrowYonedaEquivalence_inverse, fromCostructuredArrow_obj_snd, fromCostructuredArrow_map_coe, costructuredArrowYonedaEquivalence_unitIso, fromCostructuredArrow_obj_mk, fromCostructuredArrow_obj_fst
fromStructuredArrow 📖CompOp
4 mathmath: fromStructuredArrow_map, structuredArrowEquivalence_counitIso, fromStructuredArrow_obj, structuredArrowEquivalence_inverse
homMk 📖CompOp
6 mathmath: costructuredArrowULiftYonedaEquivalence_unitIso, homMk_coe, isoMk_inv, costructuredArrowULiftYonedaEquivalence_counitIso, costructuredArrowULiftYonedaEquivalence_inverse_map, isoMk_hom
isoMk 📖CompOp
4 mathmath: costructuredArrowULiftYonedaEquivalence_unitIso, isoMk_inv, costructuredArrowYonedaEquivalence_unitIso, isoMk_hom
map 📖CompOp
6 mathmath: map_map_coe, map_π, map_obj_fst, map_obj_snd, costructuredArrow_yoneda_equivalence_naturality, CategoryTheory.Presheaf.coconeOfRepresentable_naturality
structuredArrowEquivalence 📖CompOp
4 mathmath: structuredArrowEquivalence_functor, structuredArrowEquivalence_counitIso, structuredArrowEquivalence_inverse, structuredArrowEquivalence_unitIso
toCostructuredArrow 📖CompOp
6 mathmath: costructuredArrowYonedaEquivalence_functor, costructuredArrowYonedaEquivalence_counitIso, costructuredArrow_yoneda_equivalence_naturality, costructuredArrowYonedaEquivalence_unitIso, toCostructuredArrow_obj, toCostructuredArrow_map
toStructuredArrow 📖CompOp
4 mathmath: structuredArrowEquivalence_functor, to_comma_map_right, structuredArrowEquivalence_counitIso, toStructuredArrow_obj
π 📖CompOp
15 mathmath: costructuredArrowYonedaEquivalenceInverseπ_hom_app, CreatesLimitsAux.liftedCone_π_app_coe, map_π, instFaithfulElementsπ, instReflectsIsomorphismsElementsπ, π_map, π_obj, costructuredArrowYonedaEquivalenceFunctorProj_hom_app, CategoryTheory.Presheaf.coconeOfRepresentable_ι_app, costructuredArrowYonedaEquivalenceInverseπ_inv_app, CreatesLimitsAux.map_lift_mapCone, CreatesLimitsAux.map_π_liftedConeElement, CreatesLimitsAux.liftedCone_pt_fst, costructuredArrowYonedaEquivalenceFunctorProj_inv_app, CreatesLimitsAux.π_liftedConeElement'

Theorems

NameKindAssumesProvesValidatesDepends On
comp_val 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.types
CategoryTheory.Functor.map
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.Elements
CategoryTheory.categoryOfElements
costructuredArrowULiftYonedaEquivalence_counitIso 📖mathematicalCategoryTheory.Equivalence.counitIso
Opposite
CategoryTheory.Functor.Elements
CategoryTheory.Category.opposite
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.uliftYoneda
CategoryTheory.categoryOfElements
CategoryTheory.instCategoryCostructuredArrow
costructuredArrowULiftYonedaEquivalence
CategoryTheory.NatIso.ofComponents
CategoryTheory.Functor.comp
Opposite.op
CategoryTheory.Functor.elementsMk
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.uliftYonedaEquiv
CategoryTheory.Comma.hom
Quiver.Hom.op
homMk
CategoryTheory.CommaMorphism.left
Opposite.unop
Equiv.symm
CategoryTheory.CostructuredArrow.homMk
Quiver.Hom.unop
CategoryTheory.Functor.map
CategoryTheory.Functor.id
CategoryTheory.CostructuredArrow.isoMk
CategoryTheory.Iso.refl
costructuredArrowULiftYonedaEquivalence_functor_map 📖mathematicalCategoryTheory.Functor.map
Opposite
CategoryTheory.Functor.Elements
CategoryTheory.Category.opposite
CategoryTheory.categoryOfElements
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.uliftYoneda
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Equivalence.functor
costructuredArrowULiftYonedaEquivalence
CategoryTheory.CostructuredArrow.homMk
Opposite.unop
DFunLike.coe
Equiv
CategoryTheory.Functor.obj
Opposite.op
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.uliftYonedaEquiv
Quiver.Hom.unop
costructuredArrowULiftYonedaEquivalence_functor_obj 📖mathematicalCategoryTheory.Functor.obj
Opposite
CategoryTheory.Functor.Elements
CategoryTheory.Category.opposite
CategoryTheory.categoryOfElements
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.uliftYoneda
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Equivalence.functor
costructuredArrowULiftYonedaEquivalence
Opposite.unop
DFunLike.coe
Equiv
Opposite.op
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.uliftYonedaEquiv
costructuredArrowULiftYonedaEquivalence_inverse_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.uliftYoneda
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.Elements
CategoryTheory.categoryOfElements
CategoryTheory.Equivalence.inverse
costructuredArrowULiftYonedaEquivalence
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.elementsMk
Opposite.op
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Functor.obj
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.uliftYonedaEquiv
CategoryTheory.Comma.hom
homMk
CategoryTheory.CommaMorphism.left
costructuredArrowULiftYonedaEquivalence_inverse_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.uliftYoneda
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.Elements
CategoryTheory.categoryOfElements
CategoryTheory.Equivalence.inverse
costructuredArrowULiftYonedaEquivalence
Opposite.op
CategoryTheory.Functor.elementsMk
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.uliftYonedaEquiv
CategoryTheory.Comma.hom
costructuredArrowULiftYonedaEquivalence_unitIso 📖mathematicalCategoryTheory.Equivalence.unitIso
Opposite
CategoryTheory.Functor.Elements
CategoryTheory.Category.opposite
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.uliftYoneda
CategoryTheory.categoryOfElements
CategoryTheory.instCategoryCostructuredArrow
costructuredArrowULiftYonedaEquivalence
CategoryTheory.NatIso.ofComponents
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
Opposite.unop
DFunLike.coe
Equiv
CategoryTheory.Functor.obj
Opposite.op
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.uliftYonedaEquiv
CategoryTheory.CostructuredArrow.homMk
Quiver.Hom.unop
CategoryTheory.Functor.map
CategoryTheory.Functor.elementsMk
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.hom
Quiver.Hom.op
homMk
CategoryTheory.CommaMorphism.left
CategoryTheory.Iso.op
isoMk
CategoryTheory.Iso.refl
costructuredArrowYonedaEquivalenceFunctorProj_hom_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
CategoryTheory.Functor.Elements
CategoryTheory.Category.opposite
CategoryTheory.categoryOfElements
CategoryTheory.Functor.comp
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Equivalence.functor
costructuredArrowYonedaEquivalence
CategoryTheory.CostructuredArrow.proj
CategoryTheory.Iso.hom
CategoryTheory.Functor.leftOp
π
costructuredArrowYonedaEquivalenceFunctorProj
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
Opposite.unop
costructuredArrowYonedaEquivalenceFunctorProj_inv_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
CategoryTheory.Functor.Elements
CategoryTheory.Category.opposite
CategoryTheory.categoryOfElements
CategoryTheory.Functor.comp
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Equivalence.functor
costructuredArrowYonedaEquivalence
CategoryTheory.CostructuredArrow.proj
CategoryTheory.Iso.inv
CategoryTheory.Functor.leftOp
π
costructuredArrowYonedaEquivalenceFunctorProj
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
Opposite.unop
costructuredArrowYonedaEquivalenceInverseπ_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.Functor.Elements
CategoryTheory.categoryOfElements
CategoryTheory.Equivalence.inverse
costructuredArrowYonedaEquivalence
CategoryTheory.Functor.leftOp
π
CategoryTheory.Iso.hom
CategoryTheory.CostructuredArrow.proj
costructuredArrowYonedaEquivalenceInverseπ
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
costructuredArrowYonedaEquivalenceInverseπ_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.Functor.Elements
CategoryTheory.categoryOfElements
CategoryTheory.Equivalence.inverse
costructuredArrowYonedaEquivalence
CategoryTheory.Functor.leftOp
π
CategoryTheory.Iso.inv
CategoryTheory.CostructuredArrow.proj
costructuredArrowYonedaEquivalenceInverseπ
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
costructuredArrowYonedaEquivalence_counitIso 📖mathematicalCategoryTheory.Equivalence.counitIso
Opposite
CategoryTheory.Functor.Elements
CategoryTheory.Category.opposite
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.categoryOfElements
CategoryTheory.instCategoryCostructuredArrow
costructuredArrowYonedaEquivalence
CategoryTheory.NatIso.ofComponents
CategoryTheory.Functor.comp
CategoryTheory.Functor.rightOp
fromCostructuredArrow
toCostructuredArrow
CategoryTheory.Functor.id
CategoryTheory.CostructuredArrow.isoMk
CategoryTheory.Functor.obj
CategoryTheory.Iso.refl
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
costructuredArrowYonedaEquivalence_functor 📖mathematicalCategoryTheory.Equivalence.functor
Opposite
CategoryTheory.Functor.Elements
CategoryTheory.Category.opposite
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.categoryOfElements
CategoryTheory.instCategoryCostructuredArrow
costructuredArrowYonedaEquivalence
toCostructuredArrow
costructuredArrowYonedaEquivalence_inverse 📖mathematicalCategoryTheory.Equivalence.inverse
Opposite
CategoryTheory.Functor.Elements
CategoryTheory.Category.opposite
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.categoryOfElements
CategoryTheory.instCategoryCostructuredArrow
costructuredArrowYonedaEquivalence
CategoryTheory.Functor.rightOp
fromCostructuredArrow
costructuredArrowYonedaEquivalence_unitIso 📖mathematicalCategoryTheory.Equivalence.unitIso
Opposite
CategoryTheory.Functor.Elements
CategoryTheory.Category.opposite
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.categoryOfElements
CategoryTheory.instCategoryCostructuredArrow
costructuredArrowYonedaEquivalence
CategoryTheory.NatIso.ofComponents
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
toCostructuredArrow
CategoryTheory.Functor.rightOp
fromCostructuredArrow
CategoryTheory.Iso.op
CategoryTheory.Functor.obj
Opposite.op
Opposite.unop
isoMk
CategoryTheory.Iso.refl
costructuredArrow_yoneda_equivalence_naturality 📖mathematicalCategoryTheory.Functor.comp
Opposite
CategoryTheory.Functor.Elements
CategoryTheory.Category.opposite
CategoryTheory.categoryOfElements
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.op
map
toCostructuredArrow
CategoryTheory.CostructuredArrow.map
CategoryTheory.Functor.ext
CategoryTheory.NatTrans.ext'
CategoryTheory.types_ext
CategoryTheory.NatTrans.naturality
CategoryTheory.CostructuredArrow.eqToHom_left
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
ext 📖Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.types
CategoryTheory.Functor.map
ext_iff 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.types
CategoryTheory.Functor.map
ext
fromCostructuredArrow_map_coe 📖mathematicalQuiver.Hom
Opposite
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Category.opposite
CategoryTheory.Functor.obj
CategoryTheory.types
Opposite.op
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.Functor.fromPUnit
Opposite.unop
CategoryTheory.CostructuredArrow
Equiv.toFun
CategoryTheory.yonedaEquiv
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.Elements
CategoryTheory.categoryOfElements
fromCostructuredArrow
Quiver.Hom.op
CategoryTheory.CommaMorphism.left
Quiver.Hom.unop
fromCostructuredArrow_obj_fst 📖mathematicalOpposite
CategoryTheory.Functor.obj
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.Elements
CategoryTheory.categoryOfElements
fromCostructuredArrow
Opposite.op
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
Opposite.unop
fromCostructuredArrow_obj_mk 📖mathematicalCategoryTheory.Functor.obj
Opposite
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.Elements
CategoryTheory.categoryOfElements
fromCostructuredArrow
Opposite.op
Equiv.toFun
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.yonedaEquiv
fromCostructuredArrow_obj_snd 📖mathematicalOpposite
CategoryTheory.Functor.obj
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.Elements
CategoryTheory.categoryOfElements
fromCostructuredArrow
Equiv.toFun
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
Opposite.unop
Opposite.op
CategoryTheory.yonedaEquiv
CategoryTheory.Comma.hom
fromStructuredArrow_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.StructuredArrow
CategoryTheory.types
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Functor.Elements
CategoryTheory.categoryOfElements
fromStructuredArrow
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.CategoryStruct.comp
CategoryTheory.Comma.hom
CategoryTheory.CommaMorphism.left
CategoryTheory.CommaMorphism.w
fromStructuredArrow_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.StructuredArrow
CategoryTheory.types
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Functor.Elements
CategoryTheory.categoryOfElements
fromStructuredArrow
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.hom
homMk_coe 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.types
CategoryTheory.Functor.obj
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
homMk
id_val 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.types
CategoryTheory.Functor.map
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor.Elements
CategoryTheory.categoryOfElements
instFaithfulElementsπ 📖mathematicalCategoryTheory.Functor.Faithful
CategoryTheory.Functor.Elements
CategoryTheory.categoryOfElements
π
ext
instLocallySmallElements 📖mathematicalCategoryTheory.LocallySmall
CategoryTheory.Functor.Elements
CategoryTheory.categoryOfElements
small_of_injective
CategoryTheory.instSmallHomOfLocallySmall
ext
instReflectsIsomorphismsElementsπ 📖mathematicalCategoryTheory.Functor.ReflectsIsomorphisms
CategoryTheory.Functor.Elements
CategoryTheory.categoryOfElements
π
map_snd
CategoryTheory.FunctorToTypes.map_comp_apply
CategoryTheory.IsIso.hom_inv_id
CategoryTheory.FunctorToTypes.map_id_apply
ext
CategoryTheory.IsIso.inv_hom_id
isoMk_hom 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.types
CategoryTheory.Functor.obj
CategoryTheory.Iso.hom
CategoryTheory.Functor.Elements
CategoryTheory.categoryOfElements
isoMk
homMk
isoMk_inv 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.types
CategoryTheory.Functor.obj
CategoryTheory.Iso.hom
CategoryTheory.Iso.inv
CategoryTheory.Functor.Elements
CategoryTheory.categoryOfElements
isoMk
homMk
map_map_coe 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.types
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
CategoryTheory.Functor.Elements
CategoryTheory.categoryOfElements
map
map_obj_fst 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.types
CategoryTheory.Functor.Elements
CategoryTheory.categoryOfElements
map
map_obj_snd 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.types
CategoryTheory.Functor.Elements
CategoryTheory.categoryOfElements
map
CategoryTheory.NatTrans.app
map_snd 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.types
CategoryTheory.Functor.obj
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
map_π 📖mathematicalCategoryTheory.Functor.comp
CategoryTheory.Functor.Elements
CategoryTheory.categoryOfElements
map
π
structuredArrowEquivalence_counitIso 📖mathematicalCategoryTheory.Equivalence.counitIso
CategoryTheory.Functor.Elements
CategoryTheory.StructuredArrow
CategoryTheory.types
CategoryTheory.categoryOfElements
CategoryTheory.instCategoryStructuredArrow
structuredArrowEquivalence
CategoryTheory.Iso.refl
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
fromStructuredArrow
toStructuredArrow
structuredArrowEquivalence_functor 📖mathematicalCategoryTheory.Equivalence.functor
CategoryTheory.Functor.Elements
CategoryTheory.StructuredArrow
CategoryTheory.types
CategoryTheory.categoryOfElements
CategoryTheory.instCategoryStructuredArrow
structuredArrowEquivalence
toStructuredArrow
structuredArrowEquivalence_inverse 📖mathematicalCategoryTheory.Equivalence.inverse
CategoryTheory.Functor.Elements
CategoryTheory.StructuredArrow
CategoryTheory.types
CategoryTheory.categoryOfElements
CategoryTheory.instCategoryStructuredArrow
structuredArrowEquivalence
fromStructuredArrow
structuredArrowEquivalence_unitIso 📖mathematicalCategoryTheory.Equivalence.unitIso
CategoryTheory.Functor.Elements
CategoryTheory.StructuredArrow
CategoryTheory.types
CategoryTheory.categoryOfElements
CategoryTheory.instCategoryStructuredArrow
structuredArrowEquivalence
CategoryTheory.Iso.refl
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
toCostructuredArrow_map 📖mathematicalCategoryTheory.Functor.map
Opposite
CategoryTheory.Functor.Elements
CategoryTheory.Category.opposite
CategoryTheory.categoryOfElements
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.instCategoryCostructuredArrow
toCostructuredArrow
CategoryTheory.CostructuredArrow.homMk
Opposite.unop
DFunLike.coe
Equiv
CategoryTheory.Functor.obj
Opposite.op
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.yonedaEquiv
Quiver.Hom.unop
toCostructuredArrow_obj 📖mathematicalCategoryTheory.Functor.obj
Opposite
CategoryTheory.Functor.Elements
CategoryTheory.Category.opposite
CategoryTheory.categoryOfElements
CategoryTheory.CostructuredArrow
CategoryTheory.Functor
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.instCategoryCostructuredArrow
toCostructuredArrow
Opposite.unop
DFunLike.coe
Equiv
Opposite.op
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.yonedaEquiv
toStructuredArrow_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Functor.Elements
CategoryTheory.categoryOfElements
CategoryTheory.StructuredArrow
CategoryTheory.types
CategoryTheory.instCategoryStructuredArrow
toStructuredArrow
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
to_comma_map_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.types
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Functor.Elements
CategoryTheory.categoryOfElements
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
toStructuredArrow
CategoryTheory.Functor.map
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
π_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Functor.Elements
CategoryTheory.categoryOfElements
π
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.types
π_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Functor.Elements
CategoryTheory.categoryOfElements
π
CategoryTheory.types

CategoryTheory.Functor

Definitions

NameCategoryTheorems
elementsFunctor 📖CompOp
2 mathmath: elementsFunctor_map, elementsFunctor_obj
elementsMk 📖CompOp
4 mathmath: CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_unitIso, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_counitIso, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_inverse_obj, CategoryTheory.CategoryOfElements.costructuredArrowULiftYonedaEquivalence_inverse_map

Theorems

NameKindAssumesProvesValidatesDepends On
elementsFunctor_map 📖mathematicalmap
CategoryTheory.Functor
CategoryTheory.types
category
CategoryTheory.Cat
CategoryTheory.Cat.category
elementsFunctor
toCatHom
Elements
CategoryTheory.categoryOfElements
CategoryTheory.NatTrans.mapElements
elementsFunctor_obj 📖mathematicalobj
CategoryTheory.Functor
CategoryTheory.types
category
CategoryTheory.Cat
CategoryTheory.Cat.category
elementsFunctor
CategoryTheory.Cat.of
Elements
CategoryTheory.categoryOfElements

CategoryTheory.Functor.Elements

Definitions

NameCategoryTheorems
initial 📖CompOp
initialOfCorepresentableBy 📖CompOp
2 mathmath: initialOfCorepresentableBy_snd, initialOfCorepresentableBy_fst
initialOfRepresentableBy 📖CompOp
2 mathmath: initialOfRepresentableBy_snd, initialOfRepresentableBy_fst
isInitial 📖CompOp
isInitialOfCorepresentableBy 📖CompOp
isInitialOfRepresentableBy 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
ext 📖CategoryTheory.Functor.obj
CategoryTheory.types
CategoryTheory.Functor.map
CategoryTheory.eqToHom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.FunctorToTypes.map_id_apply
initialOfCorepresentableBy_fst 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.types
initialOfCorepresentableBy
initialOfCorepresentableBy_snd 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.types
initialOfCorepresentableBy
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.Functor.CorepresentableBy.homEquiv
CategoryTheory.CategoryStruct.id
initialOfRepresentableBy_fst 📖mathematicalOpposite
CategoryTheory.Functor.obj
CategoryTheory.Category.opposite
CategoryTheory.types
initialOfRepresentableBy
Opposite.op
initialOfRepresentableBy_snd 📖mathematicalOpposite
CategoryTheory.Functor.obj
CategoryTheory.Category.opposite
CategoryTheory.types
initialOfRepresentableBy
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.Functor.RepresentableBy.homEquiv
CategoryTheory.CategoryStruct.id

CategoryTheory.NatTrans

Definitions

NameCategoryTheorems
mapElements 📖CompOp
3 mathmath: mapElements_map_coe, CategoryTheory.Functor.elementsFunctor_map, mapElements_obj

Theorems

NameKindAssumesProvesValidatesDepends On
mapElements_map_coe 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.types
CategoryTheory.Functor.Elements
app
CategoryTheory.Functor.map
CategoryTheory.categoryOfElements
mapElements
mapElements_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Functor.Elements
CategoryTheory.categoryOfElements
mapElements
CategoryTheory.types
app

---

← Back to Index