Documentation Verification Report

Algebra

📁 Source: Mathlib/CategoryTheory/Endofunctor/Algebra.lean

Statistics

MetricCount
DefinitionscounitIso, unitIso, toCoalgebraOf, toAlgebraOf, algebraCoalgebraEquiv, Algebra, comp, f, id, instInhabited, strInv, a, equivOfNatIso, forget, functorOfNatTrans, functorOfNatTransComp, functorOfNatTransEq, functorOfNatTransId, instCategory, instCategoryStruct, isoMk, str, comp, f, id, instInhabited, strInv, V, equivOfNatIso, forget, functorOfNatTrans, functorOfNatTransComp, functorOfNatTransEq, functorOfNatTransId, instCategory, instCategoryStruct, isoMk, str, instInhabitedAlgebraId, instInhabitedCoalgebraId
40
TheoremscounitIso_hom_app_f, counitIso_inv_app_f, unitIso_hom_app_f, unitIso_inv_app_f, homEquiv_naturality_str, toCoalgebraOf_map_f, toCoalgebraOf_obj_V, toCoalgebraOf_obj_str, homEquiv_naturality_str_symm, toAlgebraOf_map_f, toAlgebraOf_obj_a, toAlgebraOf_obj_str, algebraCoalgebraEquiv_counitIso_hom_app_f, algebraCoalgebraEquiv_counitIso_inv_app_f, algebraCoalgebraEquiv_functor_map_f, algebraCoalgebraEquiv_functor_obj_V, algebraCoalgebraEquiv_functor_obj_str, algebraCoalgebraEquiv_inverse_map_f, algebraCoalgebraEquiv_inverse_obj_a, algebraCoalgebraEquiv_inverse_obj_str, algebraCoalgebraEquiv_unitIso_hom_app_f, algebraCoalgebraEquiv_unitIso_inv_app_f, ext, ext_iff, h, h_assoc, left_inv, left_inv', right_inv, str_isIso, comp_eq_comp, comp_f, epi_of_epi, equivOfNatIso_counitIso, equivOfNatIso_functor, equivOfNatIso_inverse, equivOfNatIso_unitIso, ext, ext_iff, forget_faithful, forget_map, forget_obj, forget_reflects_iso, functorOfNatTransComp_hom_app_f, functorOfNatTransComp_inv_app_f, functorOfNatTransEq_hom_app_f, functorOfNatTransEq_inv_app_f, functorOfNatTransId_hom_app_f, functorOfNatTransId_inv_app_f, functorOfNatTrans_map_f, functorOfNatTrans_obj_a, functorOfNatTrans_obj_str, id_eq_id, id_f, isoMk_hom_f, isoMk_inv_f, iso_of_iso, mono_of_mono, ext, ext_iff, h, h_assoc, left_inv, right_inv, right_inv', str_isIso, comp_eq_comp, comp_f, epi_of_epi, equivOfNatIso_counitIso, equivOfNatIso_functor, equivOfNatIso_inverse, equivOfNatIso_unitIso, ext, ext_iff, forget_faithful, forget_map, forget_obj, forget_reflects_iso, functorOfNatTransComp_hom_app_f, functorOfNatTransComp_inv_app_f, functorOfNatTransEq_hom_app_f, functorOfNatTransEq_inv_app_f, functorOfNatTransId_hom_app_f, functorOfNatTransId_inv_app_f, functorOfNatTrans_map_f, functorOfNatTrans_obj_V, functorOfNatTrans_obj_str, id_eq_id, id_f, isoMk_hom_f, isoMk_inv_f, iso_of_iso, mono_of_mono
94
Total134

CategoryTheory.Endofunctor

Definitions

NameCategoryTheorems
Algebra 📖CompData
54 mathmath: Algebra.equivOfNatIso_functor, Algebra.forget_map, Adjunction.algebraCoalgebraEquiv_unitIso_hom_app_f, algebraPreadditive_homGroup_neg_f, Adjunction.algebraCoalgebraEquiv_inverse_obj_str, Algebra.mono_of_mono, Algebra.functorOfNatTransId_inv_app_f, Algebra.comp_eq_comp, Algebra.functorOfNatTransComp_hom_app_f, Algebra.forget_reflects_iso, Adjunction.algebraCoalgebraEquiv_inverse_obj_a, Adjunction.AlgCoalgEquiv.counitIso_inv_app_f, Algebra.epi_of_epi, algebraPreadditive_homGroup_zsmul_f, Adjunction.algebraCoalgebraEquiv_functor_map_f, Adjunction.AlgCoalgEquiv.unitIso_inv_app_f, Algebra.id_eq_id, Adjunction.algebraCoalgebraEquiv_counitIso_inv_app_f, Algebra.id_f, Algebra.equivOfNatIso_inverse, Algebra.isoMk_inv_f, Algebra.forget_faithful, Algebra.functorOfNatTransEq_inv_app_f, Adjunction.algebraCoalgebraEquiv_unitIso_inv_app_f, Algebra.functorOfNatTrans_map_f, Algebra.functorOfNatTransId_hom_app_f, Algebra.equivOfNatIso_counitIso, algebraPreadditive_homGroup_sub_f, Algebra.comp_f, Adjunction.AlgCoalgEquiv.counitIso_hom_app_f, CategoryTheory.Algebra.forget_additive, Adjunction.algebraCoalgebraEquiv_functor_obj_V, Algebra.equivOfNatIso_unitIso, Algebra.functorOfNatTransEq_hom_app_f, Adjunction.Coalgebra.toAlgebraOf_obj_a, Adjunction.algebraCoalgebraEquiv_counitIso_hom_app_f, Algebra.iso_of_iso, Algebra.functorOfNatTransComp_inv_app_f, Algebra.functorOfNatTrans_obj_str, algebraPreadditive_homGroup_zero_f, Adjunction.Algebra.toCoalgebraOf_obj_V, Adjunction.Algebra.toCoalgebraOf_map_f, Adjunction.algebraCoalgebraEquiv_functor_obj_str, Adjunction.Algebra.toCoalgebraOf_obj_str, algebraPreadditive_homGroup_add_f, Adjunction.Coalgebra.toAlgebraOf_obj_str, algebraPreadditive_homGroup_nsmul_f, Adjunction.AlgCoalgEquiv.unitIso_hom_app_f, Adjunction.algebraCoalgebraEquiv_inverse_map_f, Algebra.Initial.left_inv', Algebra.isoMk_hom_f, Adjunction.Coalgebra.toAlgebraOf_map_f, Algebra.forget_obj, Algebra.functorOfNatTrans_obj_a
instInhabitedAlgebraId 📖CompOp
instInhabitedCoalgebraId 📖CompOp

CategoryTheory.Endofunctor.Adjunction

Definitions

NameCategoryTheorems
algebraCoalgebraEquiv 📖CompOp
10 mathmath: algebraCoalgebraEquiv_unitIso_hom_app_f, algebraCoalgebraEquiv_inverse_obj_str, algebraCoalgebraEquiv_inverse_obj_a, algebraCoalgebraEquiv_functor_map_f, algebraCoalgebraEquiv_counitIso_inv_app_f, algebraCoalgebraEquiv_unitIso_inv_app_f, algebraCoalgebraEquiv_functor_obj_V, algebraCoalgebraEquiv_counitIso_hom_app_f, algebraCoalgebraEquiv_functor_obj_str, algebraCoalgebraEquiv_inverse_map_f

Theorems

NameKindAssumesProvesValidatesDepends On
algebraCoalgebraEquiv_counitIso_hom_app_f 📖mathematicalCategoryTheory.Endofunctor.Coalgebra.Hom.f
CategoryTheory.Functor.obj
CategoryTheory.Endofunctor.Coalgebra
CategoryTheory.Endofunctor.Coalgebra.instCategory
CategoryTheory.Functor.comp
CategoryTheory.Endofunctor.Algebra
CategoryTheory.Endofunctor.Algebra.instCategory
Coalgebra.toAlgebraOf
Algebra.toCoalgebraOf
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.counitIso
algebraCoalgebraEquiv
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Endofunctor.Coalgebra.V
algebraCoalgebraEquiv_counitIso_inv_app_f 📖mathematicalCategoryTheory.Endofunctor.Coalgebra.Hom.f
CategoryTheory.Functor.obj
CategoryTheory.Endofunctor.Coalgebra
CategoryTheory.Endofunctor.Coalgebra.instCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Endofunctor.Algebra
CategoryTheory.Endofunctor.Algebra.instCategory
Coalgebra.toAlgebraOf
Algebra.toCoalgebraOf
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.counitIso
algebraCoalgebraEquiv
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Endofunctor.Coalgebra.V
algebraCoalgebraEquiv_functor_map_f 📖mathematicalCategoryTheory.Endofunctor.Coalgebra.Hom.f
CategoryTheory.Endofunctor.Algebra.a
Equiv.toFun
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Adjunction.homEquiv
CategoryTheory.Endofunctor.Algebra.str
CategoryTheory.Functor.map
CategoryTheory.Endofunctor.Algebra
CategoryTheory.Endofunctor.Algebra.instCategory
CategoryTheory.Endofunctor.Coalgebra
CategoryTheory.Endofunctor.Coalgebra.instCategory
CategoryTheory.Equivalence.functor
algebraCoalgebraEquiv
CategoryTheory.Endofunctor.Algebra.Hom.f
algebraCoalgebraEquiv_functor_obj_V 📖mathematicalCategoryTheory.Endofunctor.Coalgebra.V
CategoryTheory.Functor.obj
CategoryTheory.Endofunctor.Algebra
CategoryTheory.Endofunctor.Algebra.instCategory
CategoryTheory.Endofunctor.Coalgebra
CategoryTheory.Endofunctor.Coalgebra.instCategory
CategoryTheory.Equivalence.functor
algebraCoalgebraEquiv
CategoryTheory.Endofunctor.Algebra.a
algebraCoalgebraEquiv_functor_obj_str 📖mathematicalCategoryTheory.Endofunctor.Coalgebra.str
CategoryTheory.Functor.obj
CategoryTheory.Endofunctor.Algebra
CategoryTheory.Endofunctor.Algebra.instCategory
CategoryTheory.Endofunctor.Coalgebra
CategoryTheory.Endofunctor.Coalgebra.instCategory
CategoryTheory.Equivalence.functor
algebraCoalgebraEquiv
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Endofunctor.Algebra.a
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.Adjunction.homEquiv
CategoryTheory.Endofunctor.Algebra.str
algebraCoalgebraEquiv_inverse_map_f 📖mathematicalCategoryTheory.Endofunctor.Algebra.Hom.f
CategoryTheory.Endofunctor.Coalgebra.V
Equiv.invFun
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Adjunction.homEquiv
CategoryTheory.Endofunctor.Coalgebra.str
CategoryTheory.Functor.map
CategoryTheory.Endofunctor.Coalgebra
CategoryTheory.Endofunctor.Coalgebra.instCategory
CategoryTheory.Endofunctor.Algebra
CategoryTheory.Endofunctor.Algebra.instCategory
CategoryTheory.Equivalence.inverse
algebraCoalgebraEquiv
CategoryTheory.Endofunctor.Coalgebra.Hom.f
algebraCoalgebraEquiv_inverse_obj_a 📖mathematicalCategoryTheory.Endofunctor.Algebra.a
CategoryTheory.Functor.obj
CategoryTheory.Endofunctor.Coalgebra
CategoryTheory.Endofunctor.Coalgebra.instCategory
CategoryTheory.Endofunctor.Algebra
CategoryTheory.Endofunctor.Algebra.instCategory
CategoryTheory.Equivalence.inverse
algebraCoalgebraEquiv
CategoryTheory.Endofunctor.Coalgebra.V
algebraCoalgebraEquiv_inverse_obj_str 📖mathematicalCategoryTheory.Endofunctor.Algebra.str
CategoryTheory.Functor.obj
CategoryTheory.Endofunctor.Coalgebra
CategoryTheory.Endofunctor.Coalgebra.instCategory
CategoryTheory.Endofunctor.Algebra
CategoryTheory.Endofunctor.Algebra.instCategory
CategoryTheory.Equivalence.inverse
algebraCoalgebraEquiv
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Endofunctor.Coalgebra.V
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.Adjunction.homEquiv
CategoryTheory.Endofunctor.Coalgebra.str
algebraCoalgebraEquiv_unitIso_hom_app_f 📖mathematicalCategoryTheory.Endofunctor.Algebra.Hom.f
CategoryTheory.Functor.obj
CategoryTheory.Endofunctor.Algebra
CategoryTheory.Endofunctor.Algebra.instCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Endofunctor.Coalgebra
CategoryTheory.Endofunctor.Coalgebra.instCategory
Algebra.toCoalgebraOf
Coalgebra.toAlgebraOf
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.unitIso
algebraCoalgebraEquiv
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Endofunctor.Algebra.a
algebraCoalgebraEquiv_unitIso_inv_app_f 📖mathematicalCategoryTheory.Endofunctor.Algebra.Hom.f
CategoryTheory.Functor.obj
CategoryTheory.Endofunctor.Algebra
CategoryTheory.Endofunctor.Algebra.instCategory
CategoryTheory.Functor.comp
CategoryTheory.Endofunctor.Coalgebra
CategoryTheory.Endofunctor.Coalgebra.instCategory
Algebra.toCoalgebraOf
Coalgebra.toAlgebraOf
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.unitIso
algebraCoalgebraEquiv
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Endofunctor.Algebra.a

CategoryTheory.Endofunctor.Adjunction.AlgCoalgEquiv

Definitions

NameCategoryTheorems
counitIso 📖CompOp
2 mathmath: counitIso_inv_app_f, counitIso_hom_app_f
unitIso 📖CompOp
2 mathmath: unitIso_inv_app_f, unitIso_hom_app_f

Theorems

NameKindAssumesProvesValidatesDepends On
counitIso_hom_app_f 📖mathematicalCategoryTheory.Endofunctor.Coalgebra.Hom.f
CategoryTheory.Functor.obj
CategoryTheory.Endofunctor.Coalgebra
CategoryTheory.Endofunctor.Coalgebra.instCategory
CategoryTheory.Functor.comp
CategoryTheory.Endofunctor.Algebra
CategoryTheory.Endofunctor.Algebra.instCategory
CategoryTheory.Endofunctor.Adjunction.Coalgebra.toAlgebraOf
CategoryTheory.Endofunctor.Adjunction.Algebra.toCoalgebraOf
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
counitIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Endofunctor.Coalgebra.V
counitIso_inv_app_f 📖mathematicalCategoryTheory.Endofunctor.Coalgebra.Hom.f
CategoryTheory.Functor.obj
CategoryTheory.Endofunctor.Coalgebra
CategoryTheory.Endofunctor.Coalgebra.instCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Endofunctor.Algebra
CategoryTheory.Endofunctor.Algebra.instCategory
CategoryTheory.Endofunctor.Adjunction.Coalgebra.toAlgebraOf
CategoryTheory.Endofunctor.Adjunction.Algebra.toCoalgebraOf
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
counitIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Endofunctor.Coalgebra.V
unitIso_hom_app_f 📖mathematicalCategoryTheory.Endofunctor.Algebra.Hom.f
CategoryTheory.Functor.obj
CategoryTheory.Endofunctor.Algebra
CategoryTheory.Endofunctor.Algebra.instCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Endofunctor.Coalgebra
CategoryTheory.Endofunctor.Coalgebra.instCategory
CategoryTheory.Endofunctor.Adjunction.Algebra.toCoalgebraOf
CategoryTheory.Endofunctor.Adjunction.Coalgebra.toAlgebraOf
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
unitIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Endofunctor.Algebra.a
unitIso_inv_app_f 📖mathematicalCategoryTheory.Endofunctor.Algebra.Hom.f
CategoryTheory.Functor.obj
CategoryTheory.Endofunctor.Algebra
CategoryTheory.Endofunctor.Algebra.instCategory
CategoryTheory.Functor.comp
CategoryTheory.Endofunctor.Coalgebra
CategoryTheory.Endofunctor.Coalgebra.instCategory
CategoryTheory.Endofunctor.Adjunction.Algebra.toCoalgebraOf
CategoryTheory.Endofunctor.Adjunction.Coalgebra.toAlgebraOf
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
unitIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Endofunctor.Algebra.a

CategoryTheory.Endofunctor.Adjunction.Algebra

Definitions

NameCategoryTheorems
toCoalgebraOf 📖CompOp
11 mathmath: CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_unitIso_hom_app_f, CategoryTheory.Endofunctor.Adjunction.AlgCoalgEquiv.counitIso_inv_app_f, CategoryTheory.Endofunctor.Adjunction.AlgCoalgEquiv.unitIso_inv_app_f, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_counitIso_inv_app_f, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_unitIso_inv_app_f, CategoryTheory.Endofunctor.Adjunction.AlgCoalgEquiv.counitIso_hom_app_f, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_counitIso_hom_app_f, toCoalgebraOf_obj_V, toCoalgebraOf_map_f, toCoalgebraOf_obj_str, CategoryTheory.Endofunctor.Adjunction.AlgCoalgEquiv.unitIso_hom_app_f

Theorems

NameKindAssumesProvesValidatesDepends On
homEquiv_naturality_str 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Endofunctor.Algebra.a
CategoryTheory.Functor.obj
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.Adjunction.homEquiv
CategoryTheory.Endofunctor.Algebra.str
CategoryTheory.Functor.map
CategoryTheory.Endofunctor.Algebra.Hom.f
CategoryTheory.Adjunction.homEquiv_naturality_right
CategoryTheory.Adjunction.homEquiv_naturality_left
CategoryTheory.Endofunctor.Algebra.Hom.h
toCoalgebraOf_map_f 📖mathematicalCategoryTheory.Endofunctor.Coalgebra.Hom.f
CategoryTheory.Endofunctor.Algebra.a
Equiv.toFun
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Adjunction.homEquiv
CategoryTheory.Endofunctor.Algebra.str
CategoryTheory.Functor.map
CategoryTheory.Endofunctor.Algebra
CategoryTheory.Endofunctor.Algebra.instCategory
CategoryTheory.Endofunctor.Coalgebra
CategoryTheory.Endofunctor.Coalgebra.instCategory
toCoalgebraOf
CategoryTheory.Endofunctor.Algebra.Hom.f
toCoalgebraOf_obj_V 📖mathematicalCategoryTheory.Endofunctor.Coalgebra.V
CategoryTheory.Functor.obj
CategoryTheory.Endofunctor.Algebra
CategoryTheory.Endofunctor.Algebra.instCategory
CategoryTheory.Endofunctor.Coalgebra
CategoryTheory.Endofunctor.Coalgebra.instCategory
toCoalgebraOf
CategoryTheory.Endofunctor.Algebra.a
toCoalgebraOf_obj_str 📖mathematicalCategoryTheory.Endofunctor.Coalgebra.str
CategoryTheory.Functor.obj
CategoryTheory.Endofunctor.Algebra
CategoryTheory.Endofunctor.Algebra.instCategory
CategoryTheory.Endofunctor.Coalgebra
CategoryTheory.Endofunctor.Coalgebra.instCategory
toCoalgebraOf
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Endofunctor.Algebra.a
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.Adjunction.homEquiv
CategoryTheory.Endofunctor.Algebra.str

CategoryTheory.Endofunctor.Adjunction.Coalgebra

Definitions

NameCategoryTheorems
toAlgebraOf 📖CompOp
11 mathmath: CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_unitIso_hom_app_f, CategoryTheory.Endofunctor.Adjunction.AlgCoalgEquiv.counitIso_inv_app_f, CategoryTheory.Endofunctor.Adjunction.AlgCoalgEquiv.unitIso_inv_app_f, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_counitIso_inv_app_f, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_unitIso_inv_app_f, CategoryTheory.Endofunctor.Adjunction.AlgCoalgEquiv.counitIso_hom_app_f, toAlgebraOf_obj_a, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_counitIso_hom_app_f, toAlgebraOf_obj_str, CategoryTheory.Endofunctor.Adjunction.AlgCoalgEquiv.unitIso_hom_app_f, toAlgebraOf_map_f

Theorems

NameKindAssumesProvesValidatesDepends On
homEquiv_naturality_str_symm 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Endofunctor.Coalgebra.V
CategoryTheory.Functor.map
CategoryTheory.Endofunctor.Coalgebra.Hom.f
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.Adjunction.homEquiv
CategoryTheory.Endofunctor.Coalgebra.str
CategoryTheory.Adjunction.homEquiv_naturality_left_symm
CategoryTheory.Adjunction.homEquiv_naturality_right_symm
CategoryTheory.Endofunctor.Coalgebra.Hom.h
toAlgebraOf_map_f 📖mathematicalCategoryTheory.Endofunctor.Algebra.Hom.f
CategoryTheory.Endofunctor.Coalgebra.V
Equiv.invFun
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Adjunction.homEquiv
CategoryTheory.Endofunctor.Coalgebra.str
CategoryTheory.Functor.map
CategoryTheory.Endofunctor.Coalgebra
CategoryTheory.Endofunctor.Coalgebra.instCategory
CategoryTheory.Endofunctor.Algebra
CategoryTheory.Endofunctor.Algebra.instCategory
toAlgebraOf
CategoryTheory.Endofunctor.Coalgebra.Hom.f
toAlgebraOf_obj_a 📖mathematicalCategoryTheory.Endofunctor.Algebra.a
CategoryTheory.Functor.obj
CategoryTheory.Endofunctor.Coalgebra
CategoryTheory.Endofunctor.Coalgebra.instCategory
CategoryTheory.Endofunctor.Algebra
CategoryTheory.Endofunctor.Algebra.instCategory
toAlgebraOf
CategoryTheory.Endofunctor.Coalgebra.V
toAlgebraOf_obj_str 📖mathematicalCategoryTheory.Endofunctor.Algebra.str
CategoryTheory.Functor.obj
CategoryTheory.Endofunctor.Coalgebra
CategoryTheory.Endofunctor.Coalgebra.instCategory
CategoryTheory.Endofunctor.Algebra
CategoryTheory.Endofunctor.Algebra.instCategory
toAlgebraOf
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Endofunctor.Coalgebra.V
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.Adjunction.homEquiv
CategoryTheory.Endofunctor.Coalgebra.str

CategoryTheory.Endofunctor.Algebra

Definitions

NameCategoryTheorems
a 📖CompOp
38 mathmath: Hom.h_assoc, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_unitIso_hom_app_f, CategoryTheory.Endofunctor.algebraPreadditive_homGroup_neg_f, CategoryTheory.Endofunctor.Adjunction.Algebra.homEquiv_naturality_str, functorOfNatTransId_inv_app_f, ext_iff, functorOfNatTransComp_hom_app_f, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_inverse_obj_a, Initial.right_inv, Initial.str_isIso, CategoryTheory.Endofunctor.algebraPreadditive_homGroup_zsmul_f, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_functor_map_f, CategoryTheory.Endofunctor.Adjunction.AlgCoalgEquiv.unitIso_inv_app_f, id_f, functorOfNatTransEq_inv_app_f, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_unitIso_inv_app_f, functorOfNatTrans_map_f, functorOfNatTransId_hom_app_f, CategoryTheory.Endofunctor.algebraPreadditive_homGroup_sub_f, comp_f, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_functor_obj_V, Hom.h, functorOfNatTransEq_hom_app_f, CategoryTheory.Endofunctor.Adjunction.Coalgebra.toAlgebraOf_obj_a, functorOfNatTransComp_inv_app_f, functorOfNatTrans_obj_str, CategoryTheory.Endofunctor.algebraPreadditive_homGroup_zero_f, CategoryTheory.Endofunctor.Adjunction.Algebra.toCoalgebraOf_obj_V, CategoryTheory.Endofunctor.Adjunction.Algebra.toCoalgebraOf_map_f, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_functor_obj_str, CategoryTheory.Endofunctor.Adjunction.Algebra.toCoalgebraOf_obj_str, CategoryTheory.Endofunctor.algebraPreadditive_homGroup_add_f, CategoryTheory.Endofunctor.algebraPreadditive_homGroup_nsmul_f, CategoryTheory.Endofunctor.Adjunction.AlgCoalgEquiv.unitIso_hom_app_f, Initial.left_inv', forget_obj, functorOfNatTrans_obj_a, Initial.left_inv
equivOfNatIso 📖CompOp
4 mathmath: equivOfNatIso_functor, equivOfNatIso_inverse, equivOfNatIso_counitIso, equivOfNatIso_unitIso
forget 📖CompOp
5 mathmath: forget_map, forget_reflects_iso, forget_faithful, CategoryTheory.Algebra.forget_additive, forget_obj
functorOfNatTrans 📖CompOp
13 mathmath: equivOfNatIso_functor, functorOfNatTransId_inv_app_f, functorOfNatTransComp_hom_app_f, equivOfNatIso_inverse, functorOfNatTransEq_inv_app_f, functorOfNatTrans_map_f, functorOfNatTransId_hom_app_f, equivOfNatIso_counitIso, equivOfNatIso_unitIso, functorOfNatTransEq_hom_app_f, functorOfNatTransComp_inv_app_f, functorOfNatTrans_obj_str, functorOfNatTrans_obj_a
functorOfNatTransComp 📖CompOp
4 mathmath: functorOfNatTransComp_hom_app_f, equivOfNatIso_counitIso, equivOfNatIso_unitIso, functorOfNatTransComp_inv_app_f
functorOfNatTransEq 📖CompOp
4 mathmath: functorOfNatTransEq_inv_app_f, equivOfNatIso_counitIso, equivOfNatIso_unitIso, functorOfNatTransEq_hom_app_f
functorOfNatTransId 📖CompOp
4 mathmath: functorOfNatTransId_inv_app_f, functorOfNatTransId_hom_app_f, equivOfNatIso_counitIso, equivOfNatIso_unitIso
instCategory 📖CompOp
49 mathmath: equivOfNatIso_functor, forget_map, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_unitIso_hom_app_f, CategoryTheory.Endofunctor.algebraPreadditive_homGroup_neg_f, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_inverse_obj_str, mono_of_mono, functorOfNatTransId_inv_app_f, functorOfNatTransComp_hom_app_f, forget_reflects_iso, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_inverse_obj_a, CategoryTheory.Endofunctor.Adjunction.AlgCoalgEquiv.counitIso_inv_app_f, epi_of_epi, CategoryTheory.Endofunctor.algebraPreadditive_homGroup_zsmul_f, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_functor_map_f, CategoryTheory.Endofunctor.Adjunction.AlgCoalgEquiv.unitIso_inv_app_f, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_counitIso_inv_app_f, equivOfNatIso_inverse, isoMk_inv_f, forget_faithful, functorOfNatTransEq_inv_app_f, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_unitIso_inv_app_f, functorOfNatTrans_map_f, functorOfNatTransId_hom_app_f, equivOfNatIso_counitIso, CategoryTheory.Endofunctor.algebraPreadditive_homGroup_sub_f, CategoryTheory.Endofunctor.Adjunction.AlgCoalgEquiv.counitIso_hom_app_f, CategoryTheory.Algebra.forget_additive, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_functor_obj_V, equivOfNatIso_unitIso, functorOfNatTransEq_hom_app_f, CategoryTheory.Endofunctor.Adjunction.Coalgebra.toAlgebraOf_obj_a, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_counitIso_hom_app_f, iso_of_iso, functorOfNatTransComp_inv_app_f, functorOfNatTrans_obj_str, CategoryTheory.Endofunctor.algebraPreadditive_homGroup_zero_f, CategoryTheory.Endofunctor.Adjunction.Algebra.toCoalgebraOf_obj_V, CategoryTheory.Endofunctor.Adjunction.Algebra.toCoalgebraOf_map_f, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_functor_obj_str, CategoryTheory.Endofunctor.Adjunction.Algebra.toCoalgebraOf_obj_str, CategoryTheory.Endofunctor.algebraPreadditive_homGroup_add_f, CategoryTheory.Endofunctor.Adjunction.Coalgebra.toAlgebraOf_obj_str, CategoryTheory.Endofunctor.algebraPreadditive_homGroup_nsmul_f, CategoryTheory.Endofunctor.Adjunction.AlgCoalgEquiv.unitIso_hom_app_f, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_inverse_map_f, isoMk_hom_f, CategoryTheory.Endofunctor.Adjunction.Coalgebra.toAlgebraOf_map_f, forget_obj, functorOfNatTrans_obj_a
instCategoryStruct 📖CompOp
5 mathmath: comp_eq_comp, id_eq_id, id_f, comp_f, Initial.left_inv'
isoMk 📖CompOp
2 mathmath: isoMk_inv_f, isoMk_hom_f
str 📖CompOp
15 mathmath: Hom.h_assoc, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_inverse_obj_str, CategoryTheory.Endofunctor.Adjunction.Algebra.homEquiv_naturality_str, Initial.right_inv, Initial.str_isIso, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_functor_map_f, functorOfNatTrans_map_f, Hom.h, functorOfNatTrans_obj_str, CategoryTheory.Endofunctor.Adjunction.Algebra.toCoalgebraOf_map_f, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_functor_obj_str, CategoryTheory.Endofunctor.Adjunction.Algebra.toCoalgebraOf_obj_str, CategoryTheory.Endofunctor.Adjunction.Coalgebra.toAlgebraOf_obj_str, Initial.left_inv', Initial.left_inv

Theorems

NameKindAssumesProvesValidatesDepends On
comp_eq_comp 📖mathematicalHom.comp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Endofunctor.Algebra
instCategoryStruct
comp_f 📖mathematicalHom.f
CategoryTheory.CategoryStruct.comp
CategoryTheory.Endofunctor.Algebra
instCategoryStruct
CategoryTheory.Category.toCategoryStruct
a
epi_of_epi 📖mathematicalCategoryTheory.Epi
CategoryTheory.Endofunctor.Algebra
instCategory
CategoryTheory.Functor.epi_of_epi_map
CategoryTheory.Functor.reflectsEpimorphisms_of_faithful
forget_faithful
equivOfNatIso_counitIso 📖mathematicalCategoryTheory.Equivalence.counitIso
CategoryTheory.Endofunctor.Algebra
instCategory
equivOfNatIso
CategoryTheory.Iso.trans
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
functorOfNatTrans
CategoryTheory.Iso.hom
CategoryTheory.Iso.inv
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.id
CategoryTheory.Iso.symm
functorOfNatTransComp
CategoryTheory.CategoryStruct.id
functorOfNatTransEq
functorOfNatTransId
equivOfNatIso_functor 📖mathematicalCategoryTheory.Equivalence.functor
CategoryTheory.Endofunctor.Algebra
instCategory
equivOfNatIso
functorOfNatTrans
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
equivOfNatIso_inverse 📖mathematicalCategoryTheory.Equivalence.inverse
CategoryTheory.Endofunctor.Algebra
instCategory
equivOfNatIso
functorOfNatTrans
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
equivOfNatIso_unitIso 📖mathematicalCategoryTheory.Equivalence.unitIso
CategoryTheory.Endofunctor.Algebra
instCategory
equivOfNatIso
CategoryTheory.Iso.trans
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
functorOfNatTrans
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.comp
CategoryTheory.Iso.inv
CategoryTheory.Iso.hom
CategoryTheory.Iso.symm
functorOfNatTransId
CategoryTheory.CategoryStruct.comp
functorOfNatTransEq
functorOfNatTransComp
ext 📖Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
a
Hom.f
Hom.ext
ext_iff 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
a
Hom.f
ext
forget_faithful 📖mathematicalCategoryTheory.Functor.Faithful
CategoryTheory.Endofunctor.Algebra
instCategory
forget
ext
forget_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Endofunctor.Algebra
instCategory
forget
Hom.f
forget_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Endofunctor.Algebra
instCategory
forget
a
forget_reflects_iso 📖mathematicalCategoryTheory.Functor.ReflectsIsomorphisms
CategoryTheory.Endofunctor.Algebra
instCategory
forget
iso_of_iso
functorOfNatTransComp_hom_app_f 📖mathematicalHom.f
CategoryTheory.Functor.obj
CategoryTheory.Endofunctor.Algebra
instCategory
functorOfNatTrans
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
functorOfNatTransComp
CategoryTheory.CategoryStruct.id
a
functorOfNatTransComp_inv_app_f 📖mathematicalHom.f
CategoryTheory.Functor.obj
CategoryTheory.Endofunctor.Algebra
instCategory
CategoryTheory.Functor.comp
functorOfNatTrans
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
functorOfNatTransComp
CategoryTheory.CategoryStruct.id
a
functorOfNatTransEq_hom_app_f 📖mathematicalHom.f
CategoryTheory.Functor.obj
CategoryTheory.Endofunctor.Algebra
instCategory
functorOfNatTrans
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
functorOfNatTransEq
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
a
functorOfNatTransEq_inv_app_f 📖mathematicalHom.f
CategoryTheory.Functor.obj
CategoryTheory.Endofunctor.Algebra
instCategory
functorOfNatTrans
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
functorOfNatTransEq
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
a
functorOfNatTransId_hom_app_f 📖mathematicalHom.f
CategoryTheory.Functor.obj
CategoryTheory.Endofunctor.Algebra
instCategory
functorOfNatTrans
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
functorOfNatTransId
a
functorOfNatTransId_inv_app_f 📖mathematicalHom.f
CategoryTheory.Functor.obj
CategoryTheory.Endofunctor.Algebra
instCategory
CategoryTheory.Functor.id
functorOfNatTrans
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
functorOfNatTransId
a
functorOfNatTrans_map_f 📖mathematicalHom.f
a
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
str
CategoryTheory.Functor.map
CategoryTheory.Endofunctor.Algebra
instCategory
functorOfNatTrans
functorOfNatTrans_obj_a 📖mathematicala
CategoryTheory.Functor.obj
CategoryTheory.Endofunctor.Algebra
instCategory
functorOfNatTrans
functorOfNatTrans_obj_str 📖mathematicalstr
CategoryTheory.Functor.obj
CategoryTheory.Endofunctor.Algebra
instCategory
functorOfNatTrans
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
a
CategoryTheory.NatTrans.app
id_eq_id 📖mathematicalHom.id
CategoryTheory.CategoryStruct.id
CategoryTheory.Endofunctor.Algebra
instCategoryStruct
id_f 📖mathematicalHom.f
CategoryTheory.CategoryStruct.id
CategoryTheory.Endofunctor.Algebra
instCategoryStruct
CategoryTheory.Category.toCategoryStruct
a
isoMk_hom_f 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
a
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
str
Hom.f
CategoryTheory.Endofunctor.Algebra
instCategory
isoMk
isoMk_inv_f 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
a
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
str
Hom.f
CategoryTheory.Iso.inv
CategoryTheory.Endofunctor.Algebra
instCategory
isoMk
iso_of_iso 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Endofunctor.Algebra
instCategory
CategoryTheory.Functor.map_isIso
CategoryTheory.Functor.map_inv
CategoryTheory.Category.assoc
Hom.h
ext
CategoryTheory.IsIso.hom_inv_id
CategoryTheory.IsIso.inv_hom_id
mono_of_mono 📖mathematicalCategoryTheory.Mono
CategoryTheory.Endofunctor.Algebra
instCategory
CategoryTheory.Functor.mono_of_mono_map
CategoryTheory.Functor.reflectsMonomorphisms_of_faithful
forget_faithful

CategoryTheory.Endofunctor.Algebra.Hom

Definitions

NameCategoryTheorems
comp 📖CompOp
1 mathmath: CategoryTheory.Endofunctor.Algebra.comp_eq_comp
f 📖CompOp
31 mathmath: CategoryTheory.Endofunctor.Algebra.forget_map, h_assoc, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_unitIso_hom_app_f, CategoryTheory.Endofunctor.algebraPreadditive_homGroup_neg_f, CategoryTheory.Endofunctor.Adjunction.Algebra.homEquiv_naturality_str, CategoryTheory.Endofunctor.Algebra.functorOfNatTransId_inv_app_f, CategoryTheory.Endofunctor.Algebra.ext_iff, CategoryTheory.Endofunctor.Algebra.functorOfNatTransComp_hom_app_f, CategoryTheory.Endofunctor.algebraPreadditive_homGroup_zsmul_f, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_functor_map_f, CategoryTheory.Endofunctor.Adjunction.AlgCoalgEquiv.unitIso_inv_app_f, CategoryTheory.Endofunctor.Algebra.id_f, CategoryTheory.Endofunctor.Algebra.isoMk_inv_f, ext_iff, CategoryTheory.Endofunctor.Algebra.functorOfNatTransEq_inv_app_f, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_unitIso_inv_app_f, CategoryTheory.Endofunctor.Algebra.functorOfNatTrans_map_f, CategoryTheory.Endofunctor.Algebra.functorOfNatTransId_hom_app_f, CategoryTheory.Endofunctor.algebraPreadditive_homGroup_sub_f, CategoryTheory.Endofunctor.Algebra.comp_f, h, CategoryTheory.Endofunctor.Algebra.functorOfNatTransEq_hom_app_f, CategoryTheory.Endofunctor.Algebra.functorOfNatTransComp_inv_app_f, CategoryTheory.Endofunctor.algebraPreadditive_homGroup_zero_f, CategoryTheory.Endofunctor.Adjunction.Algebra.toCoalgebraOf_map_f, CategoryTheory.Endofunctor.algebraPreadditive_homGroup_add_f, CategoryTheory.Endofunctor.algebraPreadditive_homGroup_nsmul_f, CategoryTheory.Endofunctor.Adjunction.AlgCoalgEquiv.unitIso_hom_app_f, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_inverse_map_f, CategoryTheory.Endofunctor.Algebra.isoMk_hom_f, CategoryTheory.Endofunctor.Adjunction.Coalgebra.toAlgebraOf_map_f
id 📖CompOp
1 mathmath: CategoryTheory.Endofunctor.Algebra.id_eq_id
instInhabited 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
ext 📖f
ext_iff 📖mathematicalfext
h 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Endofunctor.Algebra.a
CategoryTheory.Functor.map
f
CategoryTheory.Endofunctor.Algebra.str
h_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Endofunctor.Algebra.a
CategoryTheory.Functor.map
f
CategoryTheory.Endofunctor.Algebra.str
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
h

CategoryTheory.Endofunctor.Algebra.Initial

Definitions

NameCategoryTheorems
strInv 📖CompOp
3 mathmath: right_inv, left_inv', left_inv

Theorems

NameKindAssumesProvesValidatesDepends On
left_inv 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Endofunctor.Algebra.a
CategoryTheory.Functor.obj
strInv
CategoryTheory.Endofunctor.Algebra.str
CategoryTheory.CategoryStruct.id
left_inv'
left_inv' 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Endofunctor.Algebra.a
CategoryTheory.Functor.obj
strInv
CategoryTheory.Endofunctor.Algebra.str
CategoryTheory.CategoryStruct.id
CategoryTheory.Endofunctor.Algebra
CategoryTheory.Endofunctor.Algebra.instCategoryStruct
CategoryTheory.Limits.IsInitial.hom_ext
right_inv 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Endofunctor.Algebra.a
CategoryTheory.Endofunctor.Algebra.str
strInv
CategoryTheory.CategoryStruct.id
strInv.eq_1
CategoryTheory.Endofunctor.Algebra.Hom.h
CategoryTheory.Functor.map_id
CategoryTheory.Functor.map_comp
left_inv
str_isIso 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor.obj
CategoryTheory.Endofunctor.Algebra.a
CategoryTheory.Endofunctor.Algebra.str
right_inv
left_inv

CategoryTheory.Endofunctor.Coalgebra

Definitions

NameCategoryTheorems
V 📖CompOp
38 mathmath: id_f, functorOfNatTransComp_inv_app_f, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_inverse_obj_str, functorOfNatTrans_obj_str, CategoryTheory.Endofunctor.coalgebraPreadditive_homGroup_sub_f, CategoryTheory.Endofunctor.coalgebraPreadditive_homGroup_zero_f, CategoryTheory.Endofunctor.coalgebraPreadditive_homGroup_neg_f, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_inverse_obj_a, Hom.h_assoc, CategoryTheory.Endofunctor.Adjunction.AlgCoalgEquiv.counitIso_inv_app_f, functorOfNatTransId_inv_app_f, Terminal.left_inv, Terminal.right_inv, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_counitIso_inv_app_f, CategoryTheory.Endofunctor.coalgebraPreadditive_homGroup_zsmul_f, Terminal.str_isIso, CategoryTheory.Endofunctor.Adjunction.AlgCoalgEquiv.counitIso_hom_app_f, functorOfNatTransEq_hom_app_f, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_functor_obj_V, Hom.h, CategoryTheory.Endofunctor.Adjunction.Coalgebra.toAlgebraOf_obj_a, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_counitIso_hom_app_f, forget_obj, ext_iff, functorOfNatTrans_obj_V, CategoryTheory.Endofunctor.Adjunction.Algebra.toCoalgebraOf_obj_V, functorOfNatTransId_hom_app_f, CategoryTheory.Endofunctor.Adjunction.Coalgebra.toAlgebraOf_obj_str, CategoryTheory.Endofunctor.coalgebraPreadditive_homGroup_add_f, CategoryTheory.Endofunctor.Adjunction.Coalgebra.homEquiv_naturality_str_symm, functorOfNatTransEq_inv_app_f, Terminal.right_inv', CategoryTheory.Endofunctor.coalgebraPreadditive_homGroup_nsmul_f, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_inverse_map_f, functorOfNatTrans_map_f, functorOfNatTransComp_hom_app_f, comp_f, CategoryTheory.Endofunctor.Adjunction.Coalgebra.toAlgebraOf_map_f
equivOfNatIso 📖CompOp
4 mathmath: equivOfNatIso_inverse, equivOfNatIso_counitIso, equivOfNatIso_unitIso, equivOfNatIso_functor
forget 📖CompOp
5 mathmath: forget_faithful, forget_map, forget_obj, CategoryTheory.Coalgebra.forget_additive, forget_reflects_iso
functorOfNatTrans 📖CompOp
13 mathmath: functorOfNatTransComp_inv_app_f, equivOfNatIso_inverse, functorOfNatTrans_obj_str, functorOfNatTransId_inv_app_f, equivOfNatIso_counitIso, equivOfNatIso_unitIso, functorOfNatTransEq_hom_app_f, equivOfNatIso_functor, functorOfNatTrans_obj_V, functorOfNatTransId_hom_app_f, functorOfNatTransEq_inv_app_f, functorOfNatTrans_map_f, functorOfNatTransComp_hom_app_f
functorOfNatTransComp 📖CompOp
4 mathmath: functorOfNatTransComp_inv_app_f, equivOfNatIso_counitIso, equivOfNatIso_unitIso, functorOfNatTransComp_hom_app_f
functorOfNatTransEq 📖CompOp
4 mathmath: equivOfNatIso_counitIso, equivOfNatIso_unitIso, functorOfNatTransEq_hom_app_f, functorOfNatTransEq_inv_app_f
functorOfNatTransId 📖CompOp
4 mathmath: functorOfNatTransId_inv_app_f, equivOfNatIso_counitIso, equivOfNatIso_unitIso, functorOfNatTransId_hom_app_f
instCategory 📖CompOp
49 mathmath: functorOfNatTransComp_inv_app_f, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_unitIso_hom_app_f, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_inverse_obj_str, equivOfNatIso_inverse, forget_faithful, functorOfNatTrans_obj_str, CategoryTheory.Endofunctor.coalgebraPreadditive_homGroup_sub_f, CategoryTheory.Endofunctor.coalgebraPreadditive_homGroup_zero_f, CategoryTheory.Endofunctor.coalgebraPreadditive_homGroup_neg_f, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_inverse_obj_a, CategoryTheory.Endofunctor.Adjunction.AlgCoalgEquiv.counitIso_inv_app_f, forget_map, functorOfNatTransId_inv_app_f, equivOfNatIso_counitIso, isoMk_hom_f, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_functor_map_f, CategoryTheory.Endofunctor.Adjunction.AlgCoalgEquiv.unitIso_inv_app_f, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_counitIso_inv_app_f, iso_of_iso, isoMk_inv_f, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_unitIso_inv_app_f, CategoryTheory.Endofunctor.coalgebraPreadditive_homGroup_zsmul_f, CategoryTheory.Endofunctor.Adjunction.AlgCoalgEquiv.counitIso_hom_app_f, equivOfNatIso_unitIso, functorOfNatTransEq_hom_app_f, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_functor_obj_V, CategoryTheory.Endofunctor.Adjunction.Coalgebra.toAlgebraOf_obj_a, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_counitIso_hom_app_f, equivOfNatIso_functor, forget_obj, functorOfNatTrans_obj_V, CategoryTheory.Endofunctor.Adjunction.Algebra.toCoalgebraOf_obj_V, CategoryTheory.Coalgebra.forget_additive, epi_of_epi, CategoryTheory.Endofunctor.Adjunction.Algebra.toCoalgebraOf_map_f, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_functor_obj_str, CategoryTheory.Endofunctor.Adjunction.Algebra.toCoalgebraOf_obj_str, functorOfNatTransId_hom_app_f, mono_of_mono, CategoryTheory.Endofunctor.Adjunction.Coalgebra.toAlgebraOf_obj_str, CategoryTheory.Endofunctor.coalgebraPreadditive_homGroup_add_f, CategoryTheory.Endofunctor.Adjunction.AlgCoalgEquiv.unitIso_hom_app_f, functorOfNatTransEq_inv_app_f, CategoryTheory.Endofunctor.coalgebraPreadditive_homGroup_nsmul_f, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_inverse_map_f, functorOfNatTrans_map_f, functorOfNatTransComp_hom_app_f, CategoryTheory.Endofunctor.Adjunction.Coalgebra.toAlgebraOf_map_f, forget_reflects_iso
instCategoryStruct 📖CompOp
5 mathmath: id_f, comp_eq_comp, id_eq_id, Terminal.right_inv', comp_f
isoMk 📖CompOp
2 mathmath: isoMk_hom_f, isoMk_inv_f
str 📖CompOp
15 mathmath: CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_inverse_obj_str, functorOfNatTrans_obj_str, Hom.h_assoc, Terminal.left_inv, Terminal.right_inv, Terminal.str_isIso, Hom.h, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_functor_obj_str, CategoryTheory.Endofunctor.Adjunction.Algebra.toCoalgebraOf_obj_str, CategoryTheory.Endofunctor.Adjunction.Coalgebra.toAlgebraOf_obj_str, CategoryTheory.Endofunctor.Adjunction.Coalgebra.homEquiv_naturality_str_symm, Terminal.right_inv', CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_inverse_map_f, functorOfNatTrans_map_f, CategoryTheory.Endofunctor.Adjunction.Coalgebra.toAlgebraOf_map_f

Theorems

NameKindAssumesProvesValidatesDepends On
comp_eq_comp 📖mathematicalHom.comp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Endofunctor.Coalgebra
instCategoryStruct
comp_f 📖mathematicalHom.f
CategoryTheory.CategoryStruct.comp
CategoryTheory.Endofunctor.Coalgebra
instCategoryStruct
CategoryTheory.Category.toCategoryStruct
V
epi_of_epi 📖mathematicalCategoryTheory.Epi
CategoryTheory.Endofunctor.Coalgebra
instCategory
CategoryTheory.Functor.epi_of_epi_map
CategoryTheory.Functor.reflectsEpimorphisms_of_faithful
forget_faithful
equivOfNatIso_counitIso 📖mathematicalCategoryTheory.Equivalence.counitIso
CategoryTheory.Endofunctor.Coalgebra
instCategory
equivOfNatIso
CategoryTheory.Iso.trans
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
functorOfNatTrans
CategoryTheory.Iso.inv
CategoryTheory.Iso.hom
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.id
CategoryTheory.Iso.symm
functorOfNatTransComp
CategoryTheory.CategoryStruct.id
functorOfNatTransEq
functorOfNatTransId
equivOfNatIso_functor 📖mathematicalCategoryTheory.Equivalence.functor
CategoryTheory.Endofunctor.Coalgebra
instCategory
equivOfNatIso
functorOfNatTrans
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
equivOfNatIso_inverse 📖mathematicalCategoryTheory.Equivalence.inverse
CategoryTheory.Endofunctor.Coalgebra
instCategory
equivOfNatIso
functorOfNatTrans
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
equivOfNatIso_unitIso 📖mathematicalCategoryTheory.Equivalence.unitIso
CategoryTheory.Endofunctor.Coalgebra
instCategory
equivOfNatIso
CategoryTheory.Iso.trans
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
functorOfNatTrans
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.comp
CategoryTheory.Iso.hom
CategoryTheory.Iso.inv
CategoryTheory.Iso.symm
functorOfNatTransId
CategoryTheory.CategoryStruct.comp
functorOfNatTransEq
functorOfNatTransComp
ext 📖Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
V
Hom.f
Hom.ext
ext_iff 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
V
Hom.f
ext
forget_faithful 📖mathematicalCategoryTheory.Functor.Faithful
CategoryTheory.Endofunctor.Coalgebra
instCategory
forget
ext
forget_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Endofunctor.Coalgebra
instCategory
forget
Hom.f
forget_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Endofunctor.Coalgebra
instCategory
forget
V
forget_reflects_iso 📖mathematicalCategoryTheory.Functor.ReflectsIsomorphisms
CategoryTheory.Endofunctor.Coalgebra
instCategory
forget
iso_of_iso
functorOfNatTransComp_hom_app_f 📖mathematicalHom.f
CategoryTheory.Functor.obj
CategoryTheory.Endofunctor.Coalgebra
instCategory
functorOfNatTrans
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
functorOfNatTransComp
CategoryTheory.CategoryStruct.id
V
functorOfNatTransComp_inv_app_f 📖mathematicalHom.f
CategoryTheory.Functor.obj
CategoryTheory.Endofunctor.Coalgebra
instCategory
CategoryTheory.Functor.comp
functorOfNatTrans
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
functorOfNatTransComp
CategoryTheory.CategoryStruct.id
V
functorOfNatTransEq_hom_app_f 📖mathematicalHom.f
CategoryTheory.Functor.obj
CategoryTheory.Endofunctor.Coalgebra
instCategory
functorOfNatTrans
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
functorOfNatTransEq
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
V
functorOfNatTransEq_inv_app_f 📖mathematicalHom.f
CategoryTheory.Functor.obj
CategoryTheory.Endofunctor.Coalgebra
instCategory
functorOfNatTrans
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
functorOfNatTransEq
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
V
functorOfNatTransId_hom_app_f 📖mathematicalHom.f
CategoryTheory.Functor.obj
CategoryTheory.Endofunctor.Coalgebra
instCategory
functorOfNatTrans
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
functorOfNatTransId
V
functorOfNatTransId_inv_app_f 📖mathematicalHom.f
CategoryTheory.Functor.obj
CategoryTheory.Endofunctor.Coalgebra
instCategory
CategoryTheory.Functor.id
functorOfNatTrans
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
functorOfNatTransId
V
functorOfNatTrans_map_f 📖mathematicalHom.f
V
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
str
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
CategoryTheory.Endofunctor.Coalgebra
instCategory
functorOfNatTrans
functorOfNatTrans_obj_V 📖mathematicalV
CategoryTheory.Functor.obj
CategoryTheory.Endofunctor.Coalgebra
instCategory
functorOfNatTrans
functorOfNatTrans_obj_str 📖mathematicalstr
CategoryTheory.Functor.obj
CategoryTheory.Endofunctor.Coalgebra
instCategory
functorOfNatTrans
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
V
CategoryTheory.NatTrans.app
id_eq_id 📖mathematicalHom.id
CategoryTheory.CategoryStruct.id
CategoryTheory.Endofunctor.Coalgebra
instCategoryStruct
id_f 📖mathematicalHom.f
CategoryTheory.CategoryStruct.id
CategoryTheory.Endofunctor.Coalgebra
instCategoryStruct
CategoryTheory.Category.toCategoryStruct
V
isoMk_hom_f 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
V
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.comp
str
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
Hom.f
CategoryTheory.Endofunctor.Coalgebra
instCategory
isoMk
isoMk_inv_f 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
V
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.comp
str
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
Hom.f
CategoryTheory.Iso.inv
CategoryTheory.Endofunctor.Coalgebra
instCategory
isoMk
iso_of_iso 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Endofunctor.Coalgebra
instCategory
CategoryTheory.IsIso.eq_inv_comp
CategoryTheory.Category.assoc
Hom.h
CategoryTheory.Functor.map_isIso
CategoryTheory.Functor.map_inv
CategoryTheory.IsIso.hom_inv_id
CategoryTheory.Category.comp_id
ext
CategoryTheory.IsIso.inv_hom_id
mono_of_mono 📖mathematicalCategoryTheory.Mono
CategoryTheory.Endofunctor.Coalgebra
instCategory
CategoryTheory.Functor.mono_of_mono_map
CategoryTheory.Functor.reflectsMonomorphisms_of_faithful
forget_faithful

CategoryTheory.Endofunctor.Coalgebra.Hom

Definitions

NameCategoryTheorems
comp 📖CompOp
1 mathmath: CategoryTheory.Endofunctor.Coalgebra.comp_eq_comp
f 📖CompOp
31 mathmath: CategoryTheory.Endofunctor.Coalgebra.id_f, CategoryTheory.Endofunctor.Coalgebra.functorOfNatTransComp_inv_app_f, CategoryTheory.Endofunctor.coalgebraPreadditive_homGroup_sub_f, CategoryTheory.Endofunctor.coalgebraPreadditive_homGroup_zero_f, CategoryTheory.Endofunctor.coalgebraPreadditive_homGroup_neg_f, h_assoc, CategoryTheory.Endofunctor.Adjunction.AlgCoalgEquiv.counitIso_inv_app_f, CategoryTheory.Endofunctor.Coalgebra.forget_map, CategoryTheory.Endofunctor.Coalgebra.functorOfNatTransId_inv_app_f, CategoryTheory.Endofunctor.Coalgebra.isoMk_hom_f, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_functor_map_f, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_counitIso_inv_app_f, CategoryTheory.Endofunctor.Coalgebra.isoMk_inv_f, CategoryTheory.Endofunctor.coalgebraPreadditive_homGroup_zsmul_f, CategoryTheory.Endofunctor.Adjunction.AlgCoalgEquiv.counitIso_hom_app_f, CategoryTheory.Endofunctor.Coalgebra.functorOfNatTransEq_hom_app_f, h, ext_iff, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_counitIso_hom_app_f, CategoryTheory.Endofunctor.Coalgebra.ext_iff, CategoryTheory.Endofunctor.Adjunction.Algebra.toCoalgebraOf_map_f, CategoryTheory.Endofunctor.Coalgebra.functorOfNatTransId_hom_app_f, CategoryTheory.Endofunctor.coalgebraPreadditive_homGroup_add_f, CategoryTheory.Endofunctor.Adjunction.Coalgebra.homEquiv_naturality_str_symm, CategoryTheory.Endofunctor.Coalgebra.functorOfNatTransEq_inv_app_f, CategoryTheory.Endofunctor.coalgebraPreadditive_homGroup_nsmul_f, CategoryTheory.Endofunctor.Adjunction.algebraCoalgebraEquiv_inverse_map_f, CategoryTheory.Endofunctor.Coalgebra.functorOfNatTrans_map_f, CategoryTheory.Endofunctor.Coalgebra.functorOfNatTransComp_hom_app_f, CategoryTheory.Endofunctor.Coalgebra.comp_f, CategoryTheory.Endofunctor.Adjunction.Coalgebra.toAlgebraOf_map_f
id 📖CompOp
1 mathmath: CategoryTheory.Endofunctor.Coalgebra.id_eq_id
instInhabited 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
ext 📖f
ext_iff 📖mathematicalfext
h 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Endofunctor.Coalgebra.V
CategoryTheory.Functor.obj
CategoryTheory.Endofunctor.Coalgebra.str
CategoryTheory.Functor.map
f
h_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Endofunctor.Coalgebra.V
CategoryTheory.Functor.obj
CategoryTheory.Endofunctor.Coalgebra.str
CategoryTheory.Functor.map
f
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
h

CategoryTheory.Endofunctor.Coalgebra.Terminal

Definitions

NameCategoryTheorems
strInv 📖CompOp
3 mathmath: left_inv, right_inv, right_inv'

Theorems

NameKindAssumesProvesValidatesDepends On
left_inv 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Endofunctor.Coalgebra.V
strInv
CategoryTheory.Endofunctor.Coalgebra.str
CategoryTheory.CategoryStruct.id
strInv.eq_1
CategoryTheory.Endofunctor.Coalgebra.Hom.h
CategoryTheory.Functor.map_id
CategoryTheory.Functor.map_comp
right_inv
right_inv 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Endofunctor.Coalgebra.V
CategoryTheory.Functor.obj
CategoryTheory.Endofunctor.Coalgebra.str
strInv
CategoryTheory.CategoryStruct.id
right_inv'
right_inv' 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Endofunctor.Coalgebra.V
CategoryTheory.Functor.obj
CategoryTheory.Endofunctor.Coalgebra.str
strInv
CategoryTheory.CategoryStruct.id
CategoryTheory.Endofunctor.Coalgebra
CategoryTheory.Endofunctor.Coalgebra.instCategoryStruct
CategoryTheory.Limits.IsTerminal.hom_ext
str_isIso 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Endofunctor.Coalgebra.V
CategoryTheory.Functor.obj
CategoryTheory.Endofunctor.Coalgebra.str
right_inv
left_inv

---

← Back to Index