| Name | Category | Theorems |
EnrichedCategory π | CompData | β |
EnrichedFunctor π | CompData | 16 mathmath: EnrichedCat.leftUnitor_hom_out_app, EnrichedCat.associator_inv_out_app, EnrichedCat.rightUnitor_hom_out_app, EnrichedFunctor.category_id_out, EnrichedCat.rightUnitor_inv_out_app, enrichedFunctorTypeEquivFunctor_symm_apply_obj, EnrichedCat.comp_whiskerRight, enrichedFunctorTypeEquivFunctor_apply_map, EnrichedCat.associator_hom_out_app, EnrichedCat.leftUnitor_inv_out_app, EnrichedCat.whisker_exchange, EnrichedFunctor.category_comp_out, enrichedFunctorTypeEquivFunctor_apply_obj, EnrichedFunctor.isoMk_inv_out, EnrichedFunctor.isoMk_hom_out, enrichedFunctorTypeEquivFunctor_symm_apply_map
|
EnrichedNatTrans π | CompData | β |
ForgetEnrichment π | CompOp | 44 mathmath: EnrichedCat.leftUnitor_hom_out_app, ForgetEnrichment.equivFunctor_obj, EnrichedFunctor.forgetComp_inv_app, ForgetEnrichment.equivFunctor_map, ForgetEnrichment.equivInverse_map, TransportEnrichment.forgetEnrichmentEquiv_counitIso, forgetEnrichmentOppositeEquivalence_functor, TransportEnrichment.forgetEnrichmentEquiv_functor, ForgetEnrichment.homOf_eId, EnrichedCat.associator_inv_out_app, EnrichedCat.rightUnitor_hom_out_app, EnrichedFunctor.category_id_out, EnrichedFunctor.forget_map, TransportEnrichment.forgetEnrichmentEquivInverse_obj, ForgetEnrichment.equiv_unitIso, EnrichedCat.rightUnitor_inv_out_app, forgetEnrichmentOppositeEquivalence_unitIso, EnrichedCat.comp_whiskerRight, TransportEnrichment.forgetEnrichmentEquivInverse_map, ForgetEnrichment.homOf_comp, EnrichedFunctor.forgetId_inv_app, EnrichedCat.associator_hom_out_app, EnrichedFunctor.forget_obj, EnrichedCat.leftUnitor_inv_out_app, ForgetEnrichment.homTo_comp, EnrichedFunctor.category_comp_out, ForgetEnrichment.equiv_inverse, ForgetEnrichment.equivInverse_obj, ForgetEnrichment.homTo_id, ForgetEnrichment.equiv_functor, forgetEnrichmentOppositeEquivalence_counitIso, forgetEnrichmentOppositeEquivalence_inverse, EnrichedFunctor.forgetId_hom_app, TransportEnrichment.forgetEnrichmentEquiv_inverse, EnrichedFunctor.forgetComp_hom_app, EnrichedCat.whiskerLeft_out_app, EnrichedFunctor.hom_ext_iff, ForgetEnrichment.equiv_counitIso, TransportEnrichment.forgetEnrichmentEquiv_unitIso, TransportEnrichment.forgetEnrichmentEquivFunctor_obj, EnrichedCat.whiskerRight_out_app, EnrichedFunctor.isoMk_inv_out, EnrichedFunctor.isoMk_hom_out, TransportEnrichment.forgetEnrichmentEquivFunctor_map
|
GradedNatTrans π | CompData | 1 mathmath: enrichedNatTransYoneda_obj
|
TransportEnrichment π | CompOp | 10 mathmath: TransportEnrichment.eId_eq, TransportEnrichment.forgetEnrichmentEquiv_counitIso, TransportEnrichment.forgetEnrichmentEquiv_functor, TransportEnrichment.forgetEnrichmentEquivInverse_obj, TransportEnrichment.forgetEnrichmentEquivInverse_map, TransportEnrichment.eComp_eq, TransportEnrichment.forgetEnrichmentEquiv_inverse, TransportEnrichment.forgetEnrichmentEquiv_unitIso, TransportEnrichment.forgetEnrichmentEquivFunctor_obj, TransportEnrichment.forgetEnrichmentEquivFunctor_map
|
categoryForgetEnrichment π | CompOp | 44 mathmath: EnrichedCat.leftUnitor_hom_out_app, ForgetEnrichment.equivFunctor_obj, EnrichedFunctor.forgetComp_inv_app, ForgetEnrichment.equivFunctor_map, ForgetEnrichment.equivInverse_map, TransportEnrichment.forgetEnrichmentEquiv_counitIso, forgetEnrichmentOppositeEquivalence_functor, TransportEnrichment.forgetEnrichmentEquiv_functor, ForgetEnrichment.homOf_eId, EnrichedCat.associator_inv_out_app, EnrichedCat.rightUnitor_hom_out_app, EnrichedFunctor.category_id_out, EnrichedFunctor.forget_map, TransportEnrichment.forgetEnrichmentEquivInverse_obj, ForgetEnrichment.equiv_unitIso, EnrichedCat.rightUnitor_inv_out_app, forgetEnrichmentOppositeEquivalence_unitIso, EnrichedCat.comp_whiskerRight, TransportEnrichment.forgetEnrichmentEquivInverse_map, ForgetEnrichment.homOf_comp, EnrichedFunctor.forgetId_inv_app, EnrichedCat.associator_hom_out_app, EnrichedFunctor.forget_obj, EnrichedCat.leftUnitor_inv_out_app, ForgetEnrichment.homTo_comp, EnrichedFunctor.category_comp_out, ForgetEnrichment.equiv_inverse, ForgetEnrichment.equivInverse_obj, ForgetEnrichment.homTo_id, ForgetEnrichment.equiv_functor, forgetEnrichmentOppositeEquivalence_counitIso, forgetEnrichmentOppositeEquivalence_inverse, EnrichedFunctor.forgetId_hom_app, TransportEnrichment.forgetEnrichmentEquiv_inverse, EnrichedFunctor.forgetComp_hom_app, EnrichedCat.whiskerLeft_out_app, EnrichedFunctor.hom_ext_iff, ForgetEnrichment.equiv_counitIso, TransportEnrichment.forgetEnrichmentEquiv_unitIso, TransportEnrichment.forgetEnrichmentEquivFunctor_obj, EnrichedCat.whiskerRight_out_app, EnrichedFunctor.isoMk_inv_out, EnrichedFunctor.isoMk_hom_out, TransportEnrichment.forgetEnrichmentEquivFunctor_map
|
categoryOfEnrichedCategoryType π | CompOp | 4 mathmath: enrichedFunctorTypeEquivFunctor_symm_apply_obj, enrichedFunctorTypeEquivFunctor_apply_map, enrichedFunctorTypeEquivFunctor_apply_obj, enrichedFunctorTypeEquivFunctor_symm_apply_map
|
eComp π | CompOp | 40 mathmath: eHom_whisker_cancel, EnrichedOrdinaryCategory.homEquiv_comp, Iso.eHomCongr_inv_comp_assoc, e_comp_id, Enriched.FunctorCategory.enrichedHom_condition', e_id_comp, MonoidalClosed.enrichedCategorySelf_comp, Iso.eHomCongr_comp_assoc, e_comp_id_assoc, eComp_eHomWhiskerRight, e_assoc_assoc, eComp_eHomWhiskerLeft_assoc, e_assoc', ForgetEnrichment.homOf_comp, Enriched.FunctorCategory.enrichedComp_Ο_assoc, eHom_whisker_cancel_assoc, e_id_comp_assoc, ForgetEnrichment.homTo_comp, eComp_op_eq_assoc, TransportEnrichment.eComp_eq, eComp_eHomWhiskerRight_assoc, EnrichedFunctor.map_comp_assoc, tensorHom_eComp_op_eq_assoc, CatEnriched.comp_eq, eComp_eHomWhiskerLeft, tensorHom_eComp_op_eq, EnrichedFunctor.map_comp, GradedNatTrans.naturality_assoc, Iso.eHomCongr_comp, eHom_whisker_cancel_inv_assoc, eHom_whisker_cancel_inv, eHomEquiv_comp, eHomEquiv_comp_assoc, Enriched.FunctorCategory.enrichedHom_condition'_assoc, e_assoc'_assoc, Enriched.FunctorCategory.enrichedComp_Ο, Iso.eHomCongr_inv_comp, eComp_op_eq, e_assoc, GradedNatTrans.naturality
|
eId π | CompOp | 15 mathmath: e_comp_id, eHomEquiv_id, TransportEnrichment.eId_eq, e_id_comp, ForgetEnrichment.homOf_eId, Enriched.FunctorCategory.enrichedId_Ο_assoc, MonoidalClosed.enrichedCategorySelf_id, e_comp_id_assoc, EnrichedOrdinaryCategory.homEquiv_id, EnrichedFunctor.map_id, e_id_comp_assoc, ForgetEnrichment.homTo_id, CatEnriched.id_eq, EnrichedFunctor.map_id_assoc, Enriched.FunctorCategory.enrichedId_Ο
|
enrichedCategoryTypeEquivCategory π | CompOp | β |
enrichedCategoryTypeOfCategory π | CompOp | β |
enrichedFunctorTypeEquivFunctor π | CompOp | 4 mathmath: enrichedFunctorTypeEquivFunctor_symm_apply_obj, enrichedFunctorTypeEquivFunctor_apply_map, enrichedFunctorTypeEquivFunctor_apply_obj, enrichedFunctorTypeEquivFunctor_symm_apply_map
|
enrichedNatTransYoneda π | CompOp | 2 mathmath: enrichedNatTransYoneda_obj, enrichedNatTransYoneda_map_app
|
enrichedNatTransYonedaTypeIsoYonedaNatTrans π | CompOp | β |
instEnrichedCategoryTransportEnrichment π | CompOp | 10 mathmath: TransportEnrichment.eId_eq, TransportEnrichment.forgetEnrichmentEquiv_counitIso, TransportEnrichment.forgetEnrichmentEquiv_functor, TransportEnrichment.forgetEnrichmentEquivInverse_obj, TransportEnrichment.forgetEnrichmentEquivInverse_map, TransportEnrichment.eComp_eq, TransportEnrichment.forgetEnrichmentEquiv_inverse, TransportEnrichment.forgetEnrichmentEquiv_unitIso, TransportEnrichment.forgetEnrichmentEquivFunctor_obj, TransportEnrichment.forgetEnrichmentEquivFunctor_map
|
Β«term_βΆ[_]_Β» π | CompOp | β |