Documentation Verification Report

Basic

πŸ“ Source: Mathlib/CategoryTheory/Enriched/Basic.lean

Statistics

MetricCount
DefinitionsEnrichedCategory, comp, id, EnrichedFunctor, category, comp, forget, forgetComp, forgetId, id, instInhabited, isoMk, map, obj, EnrichedNatTrans, out, ForgetEnrichment, homOf, homTo, of, to, GradedNatTrans, app, TransportEnrichment, categoryForgetEnrichment, categoryOfEnrichedCategoryType, eComp, eId, enrichedCategoryTypeEquivCategory, enrichedCategoryTypeOfCategory, enrichedFunctorTypeEquivFunctor, enrichedNatTransYoneda, enrichedNatTransYonedaTypeIsoYonedaNatTrans, instEnrichedCategoryTransportEnrichment, «term_⟢[_]_»
35
Theoremsassoc, comp_id, id_comp, category_comp_out, category_id_out, comp_map, comp_obj, ext, forgetComp_hom_app, forgetComp_inv_app, forgetId_hom_app, forgetId_inv_app, forget_map, forget_obj, hom_ext, hom_ext_iff, id_map, id_obj, isoMk_hom_out, isoMk_inv_out, map_comp, map_comp_assoc, map_id, map_id_assoc, homOf_comp, homOf_eId, homOf_homTo, homTo_comp, homTo_homOf, homTo_id, of_to, to_of, ext, ext_iff, naturality, naturality_assoc, eComp_eq, eId_eq, e_assoc, e_assoc', e_assoc'_assoc, e_assoc_assoc, e_comp_id, e_comp_id_assoc, e_id_comp, e_id_comp_assoc, enrichedFunctorTypeEquivFunctor_apply_map, enrichedFunctorTypeEquivFunctor_apply_obj, enrichedFunctorTypeEquivFunctor_symm_apply_map, enrichedFunctorTypeEquivFunctor_symm_apply_obj, enrichedNatTransYoneda_map_app, enrichedNatTransYoneda_obj
52
Total87

CategoryTheory

Definitions

NameCategoryTheorems
EnrichedCategory πŸ“–CompDataβ€”
EnrichedFunctor πŸ“–CompData
16 mathmath: EnrichedCat.leftUnitor_hom_out_app, EnrichedCat.associator_inv_out_app, EnrichedCat.rightUnitor_hom_out_app, EnrichedFunctor.category_id_out, EnrichedCat.rightUnitor_inv_out_app, enrichedFunctorTypeEquivFunctor_symm_apply_obj, EnrichedCat.comp_whiskerRight, enrichedFunctorTypeEquivFunctor_apply_map, EnrichedCat.associator_hom_out_app, EnrichedCat.leftUnitor_inv_out_app, EnrichedCat.whisker_exchange, EnrichedFunctor.category_comp_out, enrichedFunctorTypeEquivFunctor_apply_obj, EnrichedFunctor.isoMk_inv_out, EnrichedFunctor.isoMk_hom_out, enrichedFunctorTypeEquivFunctor_symm_apply_map
EnrichedNatTrans πŸ“–CompDataβ€”
ForgetEnrichment πŸ“–CompOp
44 mathmath: EnrichedCat.leftUnitor_hom_out_app, ForgetEnrichment.equivFunctor_obj, EnrichedFunctor.forgetComp_inv_app, ForgetEnrichment.equivFunctor_map, ForgetEnrichment.equivInverse_map, TransportEnrichment.forgetEnrichmentEquiv_counitIso, forgetEnrichmentOppositeEquivalence_functor, TransportEnrichment.forgetEnrichmentEquiv_functor, ForgetEnrichment.homOf_eId, EnrichedCat.associator_inv_out_app, EnrichedCat.rightUnitor_hom_out_app, EnrichedFunctor.category_id_out, EnrichedFunctor.forget_map, TransportEnrichment.forgetEnrichmentEquivInverse_obj, ForgetEnrichment.equiv_unitIso, EnrichedCat.rightUnitor_inv_out_app, forgetEnrichmentOppositeEquivalence_unitIso, EnrichedCat.comp_whiskerRight, TransportEnrichment.forgetEnrichmentEquivInverse_map, ForgetEnrichment.homOf_comp, EnrichedFunctor.forgetId_inv_app, EnrichedCat.associator_hom_out_app, EnrichedFunctor.forget_obj, EnrichedCat.leftUnitor_inv_out_app, ForgetEnrichment.homTo_comp, EnrichedFunctor.category_comp_out, ForgetEnrichment.equiv_inverse, ForgetEnrichment.equivInverse_obj, ForgetEnrichment.homTo_id, ForgetEnrichment.equiv_functor, forgetEnrichmentOppositeEquivalence_counitIso, forgetEnrichmentOppositeEquivalence_inverse, EnrichedFunctor.forgetId_hom_app, TransportEnrichment.forgetEnrichmentEquiv_inverse, EnrichedFunctor.forgetComp_hom_app, EnrichedCat.whiskerLeft_out_app, EnrichedFunctor.hom_ext_iff, ForgetEnrichment.equiv_counitIso, TransportEnrichment.forgetEnrichmentEquiv_unitIso, TransportEnrichment.forgetEnrichmentEquivFunctor_obj, EnrichedCat.whiskerRight_out_app, EnrichedFunctor.isoMk_inv_out, EnrichedFunctor.isoMk_hom_out, TransportEnrichment.forgetEnrichmentEquivFunctor_map
GradedNatTrans πŸ“–CompData
1 mathmath: enrichedNatTransYoneda_obj
TransportEnrichment πŸ“–CompOp
10 mathmath: TransportEnrichment.eId_eq, TransportEnrichment.forgetEnrichmentEquiv_counitIso, TransportEnrichment.forgetEnrichmentEquiv_functor, TransportEnrichment.forgetEnrichmentEquivInverse_obj, TransportEnrichment.forgetEnrichmentEquivInverse_map, TransportEnrichment.eComp_eq, TransportEnrichment.forgetEnrichmentEquiv_inverse, TransportEnrichment.forgetEnrichmentEquiv_unitIso, TransportEnrichment.forgetEnrichmentEquivFunctor_obj, TransportEnrichment.forgetEnrichmentEquivFunctor_map
categoryForgetEnrichment πŸ“–CompOp
44 mathmath: EnrichedCat.leftUnitor_hom_out_app, ForgetEnrichment.equivFunctor_obj, EnrichedFunctor.forgetComp_inv_app, ForgetEnrichment.equivFunctor_map, ForgetEnrichment.equivInverse_map, TransportEnrichment.forgetEnrichmentEquiv_counitIso, forgetEnrichmentOppositeEquivalence_functor, TransportEnrichment.forgetEnrichmentEquiv_functor, ForgetEnrichment.homOf_eId, EnrichedCat.associator_inv_out_app, EnrichedCat.rightUnitor_hom_out_app, EnrichedFunctor.category_id_out, EnrichedFunctor.forget_map, TransportEnrichment.forgetEnrichmentEquivInverse_obj, ForgetEnrichment.equiv_unitIso, EnrichedCat.rightUnitor_inv_out_app, forgetEnrichmentOppositeEquivalence_unitIso, EnrichedCat.comp_whiskerRight, TransportEnrichment.forgetEnrichmentEquivInverse_map, ForgetEnrichment.homOf_comp, EnrichedFunctor.forgetId_inv_app, EnrichedCat.associator_hom_out_app, EnrichedFunctor.forget_obj, EnrichedCat.leftUnitor_inv_out_app, ForgetEnrichment.homTo_comp, EnrichedFunctor.category_comp_out, ForgetEnrichment.equiv_inverse, ForgetEnrichment.equivInverse_obj, ForgetEnrichment.homTo_id, ForgetEnrichment.equiv_functor, forgetEnrichmentOppositeEquivalence_counitIso, forgetEnrichmentOppositeEquivalence_inverse, EnrichedFunctor.forgetId_hom_app, TransportEnrichment.forgetEnrichmentEquiv_inverse, EnrichedFunctor.forgetComp_hom_app, EnrichedCat.whiskerLeft_out_app, EnrichedFunctor.hom_ext_iff, ForgetEnrichment.equiv_counitIso, TransportEnrichment.forgetEnrichmentEquiv_unitIso, TransportEnrichment.forgetEnrichmentEquivFunctor_obj, EnrichedCat.whiskerRight_out_app, EnrichedFunctor.isoMk_inv_out, EnrichedFunctor.isoMk_hom_out, TransportEnrichment.forgetEnrichmentEquivFunctor_map
categoryOfEnrichedCategoryType πŸ“–CompOp
4 mathmath: enrichedFunctorTypeEquivFunctor_symm_apply_obj, enrichedFunctorTypeEquivFunctor_apply_map, enrichedFunctorTypeEquivFunctor_apply_obj, enrichedFunctorTypeEquivFunctor_symm_apply_map
eComp πŸ“–CompOp
40 mathmath: eHom_whisker_cancel, EnrichedOrdinaryCategory.homEquiv_comp, Iso.eHomCongr_inv_comp_assoc, e_comp_id, Enriched.FunctorCategory.enrichedHom_condition', e_id_comp, MonoidalClosed.enrichedCategorySelf_comp, Iso.eHomCongr_comp_assoc, e_comp_id_assoc, eComp_eHomWhiskerRight, e_assoc_assoc, eComp_eHomWhiskerLeft_assoc, e_assoc', ForgetEnrichment.homOf_comp, Enriched.FunctorCategory.enrichedComp_Ο€_assoc, eHom_whisker_cancel_assoc, e_id_comp_assoc, ForgetEnrichment.homTo_comp, eComp_op_eq_assoc, TransportEnrichment.eComp_eq, eComp_eHomWhiskerRight_assoc, EnrichedFunctor.map_comp_assoc, tensorHom_eComp_op_eq_assoc, CatEnriched.comp_eq, eComp_eHomWhiskerLeft, tensorHom_eComp_op_eq, EnrichedFunctor.map_comp, GradedNatTrans.naturality_assoc, Iso.eHomCongr_comp, eHom_whisker_cancel_inv_assoc, eHom_whisker_cancel_inv, eHomEquiv_comp, eHomEquiv_comp_assoc, Enriched.FunctorCategory.enrichedHom_condition'_assoc, e_assoc'_assoc, Enriched.FunctorCategory.enrichedComp_Ο€, Iso.eHomCongr_inv_comp, eComp_op_eq, e_assoc, GradedNatTrans.naturality
eId πŸ“–CompOp
15 mathmath: e_comp_id, eHomEquiv_id, TransportEnrichment.eId_eq, e_id_comp, ForgetEnrichment.homOf_eId, Enriched.FunctorCategory.enrichedId_Ο€_assoc, MonoidalClosed.enrichedCategorySelf_id, e_comp_id_assoc, EnrichedOrdinaryCategory.homEquiv_id, EnrichedFunctor.map_id, e_id_comp_assoc, ForgetEnrichment.homTo_id, CatEnriched.id_eq, EnrichedFunctor.map_id_assoc, Enriched.FunctorCategory.enrichedId_Ο€
enrichedCategoryTypeEquivCategory πŸ“–CompOpβ€”
enrichedCategoryTypeOfCategory πŸ“–CompOpβ€”
enrichedFunctorTypeEquivFunctor πŸ“–CompOp
4 mathmath: enrichedFunctorTypeEquivFunctor_symm_apply_obj, enrichedFunctorTypeEquivFunctor_apply_map, enrichedFunctorTypeEquivFunctor_apply_obj, enrichedFunctorTypeEquivFunctor_symm_apply_map
enrichedNatTransYoneda πŸ“–CompOp
2 mathmath: enrichedNatTransYoneda_obj, enrichedNatTransYoneda_map_app
enrichedNatTransYonedaTypeIsoYonedaNatTrans πŸ“–CompOpβ€”
instEnrichedCategoryTransportEnrichment πŸ“–CompOp
10 mathmath: TransportEnrichment.eId_eq, TransportEnrichment.forgetEnrichmentEquiv_counitIso, TransportEnrichment.forgetEnrichmentEquiv_functor, TransportEnrichment.forgetEnrichmentEquivInverse_obj, TransportEnrichment.forgetEnrichmentEquivInverse_map, TransportEnrichment.eComp_eq, TransportEnrichment.forgetEnrichmentEquiv_inverse, TransportEnrichment.forgetEnrichmentEquiv_unitIso, TransportEnrichment.forgetEnrichmentEquivFunctor_obj, TransportEnrichment.forgetEnrichmentEquivFunctor_map
Β«term_⟢[_]_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
e_assoc πŸ“–mathematicalβ€”CategoryStruct.comp
Category.toCategoryStruct
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
EnrichedCategory.Hom
Iso.inv
MonoidalCategoryStruct.associator
MonoidalCategoryStruct.whiskerRight
eComp
MonoidalCategoryStruct.whiskerLeft
β€”EnrichedCategory.assoc
e_assoc' πŸ“–mathematicalβ€”CategoryStruct.comp
Category.toCategoryStruct
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
EnrichedCategory.Hom
Iso.hom
MonoidalCategoryStruct.associator
MonoidalCategoryStruct.whiskerLeft
eComp
MonoidalCategoryStruct.whiskerRight
β€”e_assoc
Iso.hom_inv_id_assoc
e_assoc'_assoc πŸ“–mathematicalβ€”CategoryStruct.comp
Category.toCategoryStruct
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
EnrichedCategory.Hom
Iso.hom
MonoidalCategoryStruct.associator
MonoidalCategoryStruct.whiskerLeft
eComp
MonoidalCategoryStruct.whiskerRight
β€”Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
e_assoc'
e_assoc_assoc πŸ“–mathematicalβ€”CategoryStruct.comp
Category.toCategoryStruct
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
EnrichedCategory.Hom
Iso.inv
MonoidalCategoryStruct.associator
MonoidalCategoryStruct.whiskerRight
eComp
MonoidalCategoryStruct.whiskerLeft
β€”Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
e_assoc
e_comp_id πŸ“–mathematicalβ€”CategoryStruct.comp
Category.toCategoryStruct
EnrichedCategory.Hom
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
MonoidalCategoryStruct.tensorUnit
Iso.inv
MonoidalCategoryStruct.rightUnitor
MonoidalCategoryStruct.whiskerLeft
eId
eComp
CategoryStruct.id
β€”EnrichedCategory.comp_id
e_comp_id_assoc πŸ“–mathematicalβ€”CategoryStruct.comp
Category.toCategoryStruct
EnrichedCategory.Hom
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
MonoidalCategoryStruct.tensorUnit
Iso.inv
MonoidalCategoryStruct.rightUnitor
MonoidalCategoryStruct.whiskerLeft
eId
eComp
β€”Category.assoc
Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
e_comp_id
e_id_comp πŸ“–mathematicalβ€”CategoryStruct.comp
Category.toCategoryStruct
EnrichedCategory.Hom
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
MonoidalCategoryStruct.tensorUnit
Iso.inv
MonoidalCategoryStruct.leftUnitor
MonoidalCategoryStruct.whiskerRight
eId
eComp
CategoryStruct.id
β€”EnrichedCategory.id_comp
e_id_comp_assoc πŸ“–mathematicalβ€”CategoryStruct.comp
Category.toCategoryStruct
EnrichedCategory.Hom
MonoidalCategoryStruct.tensorObj
MonoidalCategory.toMonoidalCategoryStruct
MonoidalCategoryStruct.tensorUnit
Iso.inv
MonoidalCategoryStruct.leftUnitor
MonoidalCategoryStruct.whiskerRight
eId
eComp
β€”Category.assoc
Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
e_id_comp
enrichedFunctorTypeEquivFunctor_apply_map πŸ“–mathematicalβ€”Functor.map
categoryOfEnrichedCategoryType
DFunLike.coe
Equiv
EnrichedFunctor
types
SemiCartesianMonoidalCategory.toMonoidalCategory
CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
typesCartesianMonoidalCategory
Functor
EquivLike.toFunLike
Equiv.instEquivLike
enrichedFunctorTypeEquivFunctor
EnrichedFunctor.map
β€”β€”
enrichedFunctorTypeEquivFunctor_apply_obj πŸ“–mathematicalβ€”Functor.obj
categoryOfEnrichedCategoryType
DFunLike.coe
Equiv
EnrichedFunctor
types
SemiCartesianMonoidalCategory.toMonoidalCategory
CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
typesCartesianMonoidalCategory
Functor
EquivLike.toFunLike
Equiv.instEquivLike
enrichedFunctorTypeEquivFunctor
EnrichedFunctor.obj
β€”β€”
enrichedFunctorTypeEquivFunctor_symm_apply_map πŸ“–mathematicalβ€”EnrichedFunctor.map
types
SemiCartesianMonoidalCategory.toMonoidalCategory
CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
typesCartesianMonoidalCategory
DFunLike.coe
Equiv
Functor
categoryOfEnrichedCategoryType
EnrichedFunctor
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
enrichedFunctorTypeEquivFunctor
Functor.map
β€”β€”
enrichedFunctorTypeEquivFunctor_symm_apply_obj πŸ“–mathematicalβ€”EnrichedFunctor.obj
types
SemiCartesianMonoidalCategory.toMonoidalCategory
CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
typesCartesianMonoidalCategory
DFunLike.coe
Equiv
Functor
categoryOfEnrichedCategoryType
EnrichedFunctor
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
enrichedFunctorTypeEquivFunctor
Functor.obj
β€”β€”
enrichedNatTransYoneda_map_app πŸ“–mathematicalβ€”GradedNatTrans.app
Functor.obj
Center
Center.instCategory
Center.ofBraided
Opposite.unop
Functor.map
Opposite
Category.opposite
types
enrichedNatTransYoneda
CategoryStruct.comp
Category.toCategoryStruct
HalfBraiding
EnrichedCategory.Hom
EnrichedFunctor.obj
Quiver.Hom.unop
CategoryStruct.toQuiver
β€”β€”
enrichedNatTransYoneda_obj πŸ“–mathematicalβ€”Functor.obj
Opposite
Category.opposite
types
enrichedNatTransYoneda
GradedNatTrans
Center
Center.instCategory
Center.ofBraided
Opposite.unop
β€”β€”

CategoryTheory.EnrichedCategory

Definitions

NameCategoryTheorems
comp πŸ“–CompOp
3 mathmath: comp_id, id_comp, assoc
id πŸ“–CompOp
2 mathmath: comp_id, id_comp

Theorems

NameKindAssumesProvesValidatesDepends On
assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
Hom
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.whiskerRight
comp
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
β€”β€”
comp_id πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Hom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
id
comp
CategoryTheory.CategoryStruct.id
β€”β€”
id_comp πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Hom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.MonoidalCategoryStruct.whiskerRight
id
comp
CategoryTheory.CategoryStruct.id
β€”β€”

CategoryTheory.EnrichedFunctor

Definitions

NameCategoryTheorems
category πŸ“–CompOp
12 mathmath: CategoryTheory.EnrichedCat.leftUnitor_hom_out_app, CategoryTheory.EnrichedCat.associator_inv_out_app, CategoryTheory.EnrichedCat.rightUnitor_hom_out_app, category_id_out, CategoryTheory.EnrichedCat.rightUnitor_inv_out_app, CategoryTheory.EnrichedCat.comp_whiskerRight, CategoryTheory.EnrichedCat.associator_hom_out_app, CategoryTheory.EnrichedCat.leftUnitor_inv_out_app, CategoryTheory.EnrichedCat.whisker_exchange, category_comp_out, isoMk_inv_out, isoMk_hom_out
comp πŸ“–CompOp
15 mathmath: CategoryTheory.EnrichedCat.leftUnitor_hom_out_app, forgetComp_inv_app, CategoryTheory.EnrichedCat.associator_inv_out_app, CategoryTheory.EnrichedCat.rightUnitor_hom_out_app, comp_map, CategoryTheory.EnrichedCat.rightUnitor_inv_out_app, CategoryTheory.EnrichedCat.comp_whiskerRight, CategoryTheory.EnrichedCat.associator_hom_out_app, CategoryTheory.EnrichedCat.leftUnitor_inv_out_app, CategoryTheory.EnrichedCat.whisker_exchange, forgetComp_hom_app, comp_obj, CategoryTheory.EnrichedCat.whiskerLeft_out_app, CategoryTheory.EnrichedCat.whiskerRight_out_app, CategoryTheory.SimplicialThickening.functor_comp
forget πŸ“–CompOp
20 mathmath: CategoryTheory.EnrichedCat.leftUnitor_hom_out_app, forgetComp_inv_app, CategoryTheory.EnrichedCat.associator_inv_out_app, CategoryTheory.EnrichedCat.rightUnitor_hom_out_app, category_id_out, forget_map, CategoryTheory.EnrichedCat.rightUnitor_inv_out_app, CategoryTheory.EnrichedCat.comp_whiskerRight, forgetId_inv_app, CategoryTheory.EnrichedCat.associator_hom_out_app, forget_obj, CategoryTheory.EnrichedCat.leftUnitor_inv_out_app, category_comp_out, forgetId_hom_app, forgetComp_hom_app, CategoryTheory.EnrichedCat.whiskerLeft_out_app, hom_ext_iff, CategoryTheory.EnrichedCat.whiskerRight_out_app, isoMk_inv_out, isoMk_hom_out
forgetComp πŸ“–CompOp
2 mathmath: forgetComp_inv_app, forgetComp_hom_app
forgetId πŸ“–CompOp
2 mathmath: forgetId_inv_app, forgetId_hom_app
id πŸ“–CompOp
9 mathmath: CategoryTheory.EnrichedCat.leftUnitor_hom_out_app, CategoryTheory.EnrichedCat.rightUnitor_hom_out_app, id_map, CategoryTheory.EnrichedCat.rightUnitor_inv_out_app, forgetId_inv_app, CategoryTheory.EnrichedCat.leftUnitor_inv_out_app, forgetId_hom_app, id_obj, CategoryTheory.SimplicialThickening.functor_id
instInhabited πŸ“–CompOpβ€”
isoMk πŸ“–CompOp
2 mathmath: isoMk_inv_out, isoMk_hom_out
map πŸ“–CompOp
13 mathmath: forget_map, id_map, comp_map, CategoryTheory.SimplicialThickening.functor_map, CategoryTheory.enrichedFunctorTypeEquivFunctor_apply_map, map_id, map_comp_assoc, map_comp, CategoryTheory.GradedNatTrans.naturality_assoc, CategoryTheory.EnrichedCat.whiskerRight_out_app, map_id_assoc, CategoryTheory.GradedNatTrans.naturality, CategoryTheory.enrichedFunctorTypeEquivFunctor_symm_apply_map
obj πŸ“–CompOp
25 mathmath: CategoryTheory.EnrichedCat.leftUnitor_hom_out_app, forgetComp_inv_app, CategoryTheory.EnrichedCat.associator_inv_out_app, CategoryTheory.EnrichedCat.rightUnitor_hom_out_app, forget_map, comp_map, CategoryTheory.EnrichedCat.rightUnitor_inv_out_app, CategoryTheory.enrichedFunctorTypeEquivFunctor_symm_apply_obj, map_id, CategoryTheory.EnrichedCat.associator_hom_out_app, forget_obj, CategoryTheory.EnrichedCat.leftUnitor_inv_out_app, map_comp_assoc, map_comp, CategoryTheory.GradedNatTrans.naturality_assoc, CategoryTheory.enrichedFunctorTypeEquivFunctor_apply_obj, forgetComp_hom_app, comp_obj, CategoryTheory.EnrichedCat.whiskerLeft_out_app, CategoryTheory.EnrichedCat.whiskerRight_out_app, id_obj, map_id_assoc, CategoryTheory.SimplicialThickening.functor_obj_as, CategoryTheory.GradedNatTrans.naturality, CategoryTheory.enrichedNatTransYoneda_map_app

Theorems

NameKindAssumesProvesValidatesDepends On
category_comp_out πŸ“–mathematicalβ€”CategoryTheory.EnrichedNatTrans.out
CategoryTheory.CategoryStruct.comp
CategoryTheory.EnrichedFunctor
CategoryTheory.Category.toCategoryStruct
category
CategoryTheory.Functor
CategoryTheory.ForgetEnrichment
CategoryTheory.categoryForgetEnrichment
CategoryTheory.Functor.category
forget
β€”β€”
category_id_out πŸ“–mathematicalβ€”CategoryTheory.EnrichedNatTrans.out
CategoryTheory.CategoryStruct.id
CategoryTheory.EnrichedFunctor
CategoryTheory.Category.toCategoryStruct
category
CategoryTheory.Functor
CategoryTheory.ForgetEnrichment
CategoryTheory.categoryForgetEnrichment
CategoryTheory.Functor.category
forget
β€”β€”
comp_map πŸ“–mathematicalβ€”map
comp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.EnrichedCategory.Hom
obj
β€”β€”
comp_obj πŸ“–mathematicalβ€”obj
comp
β€”β€”
ext πŸ“–β€”obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.EnrichedCategory.Hom
map
CategoryTheory.eqToHom
β€”β€”CategoryTheory.Category.comp_id
forgetComp_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.ForgetEnrichment
CategoryTheory.categoryForgetEnrichment
forget
comp
CategoryTheory.Functor.comp
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
forgetComp
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ForgetEnrichment.of
obj
CategoryTheory.ForgetEnrichment.to
β€”β€”
forgetComp_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.ForgetEnrichment
CategoryTheory.categoryForgetEnrichment
CategoryTheory.Functor.comp
forget
comp
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
forgetComp
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ForgetEnrichment.of
obj
CategoryTheory.ForgetEnrichment.to
β€”β€”
forgetId_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.ForgetEnrichment
CategoryTheory.categoryForgetEnrichment
forget
id
CategoryTheory.Functor.id
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
forgetId
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”β€”
forgetId_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.ForgetEnrichment
CategoryTheory.categoryForgetEnrichment
CategoryTheory.Functor.id
forget
id
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
forgetId
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”β€”
forget_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.ForgetEnrichment
CategoryTheory.categoryForgetEnrichment
forget
CategoryTheory.ForgetEnrichment.homOf
obj
CategoryTheory.ForgetEnrichment.to
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.EnrichedCategory.Hom
CategoryTheory.ForgetEnrichment.homTo
map
β€”β€”
forget_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.ForgetEnrichment
CategoryTheory.categoryForgetEnrichment
forget
CategoryTheory.ForgetEnrichment.of
obj
CategoryTheory.ForgetEnrichment.to
β€”β€”
hom_ext πŸ“–β€”CategoryTheory.NatTrans.app
CategoryTheory.ForgetEnrichment
CategoryTheory.categoryForgetEnrichment
forget
CategoryTheory.EnrichedNatTrans.out
β€”β€”CategoryTheory.NatTrans.ext'
hom_ext_iff πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.ForgetEnrichment
CategoryTheory.categoryForgetEnrichment
forget
CategoryTheory.EnrichedNatTrans.out
β€”hom_ext
id_map πŸ“–mathematicalβ€”map
id
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.EnrichedCategory.Hom
β€”β€”
id_obj πŸ“–mathematicalβ€”obj
id
β€”β€”
isoMk_hom_out πŸ“–mathematicalβ€”CategoryTheory.EnrichedNatTrans.out
CategoryTheory.Iso.hom
CategoryTheory.EnrichedFunctor
category
isoMk
CategoryTheory.Functor
CategoryTheory.ForgetEnrichment
CategoryTheory.categoryForgetEnrichment
CategoryTheory.Functor.category
forget
β€”β€”
isoMk_inv_out πŸ“–mathematicalβ€”CategoryTheory.EnrichedNatTrans.out
CategoryTheory.Iso.inv
CategoryTheory.EnrichedFunctor
category
isoMk
CategoryTheory.Functor
CategoryTheory.ForgetEnrichment
CategoryTheory.categoryForgetEnrichment
CategoryTheory.Functor.category
forget
β€”β€”
map_comp πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.EnrichedCategory.Hom
obj
CategoryTheory.eComp
map
CategoryTheory.MonoidalCategoryStruct.tensorHom
β€”β€”
map_comp_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.EnrichedCategory.Hom
CategoryTheory.eComp
obj
map
CategoryTheory.MonoidalCategoryStruct.tensorHom
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_comp
map_id πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.EnrichedCategory.Hom
obj
CategoryTheory.eId
map
β€”β€”
map_id_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.EnrichedCategory.Hom
CategoryTheory.eId
obj
map
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_id

CategoryTheory.EnrichedNatTrans

Definitions

NameCategoryTheorems
out πŸ“–CompOp
14 mathmath: CategoryTheory.EnrichedCat.leftUnitor_hom_out_app, CategoryTheory.EnrichedCat.associator_inv_out_app, CategoryTheory.EnrichedCat.rightUnitor_hom_out_app, CategoryTheory.EnrichedFunctor.category_id_out, CategoryTheory.EnrichedCat.rightUnitor_inv_out_app, CategoryTheory.EnrichedCat.comp_whiskerRight, CategoryTheory.EnrichedCat.associator_hom_out_app, CategoryTheory.EnrichedCat.leftUnitor_inv_out_app, CategoryTheory.EnrichedFunctor.category_comp_out, CategoryTheory.EnrichedCat.whiskerLeft_out_app, CategoryTheory.EnrichedFunctor.hom_ext_iff, CategoryTheory.EnrichedCat.whiskerRight_out_app, CategoryTheory.EnrichedFunctor.isoMk_inv_out, CategoryTheory.EnrichedFunctor.isoMk_hom_out

CategoryTheory.ForgetEnrichment

Definitions

NameCategoryTheorems
homOf πŸ“–CompOp
9 mathmath: equivInverse_map, homOf_eId, CategoryTheory.EnrichedFunctor.forget_map, CategoryTheory.TransportEnrichment.forgetEnrichmentEquivInverse_map, homOf_comp, homTo_homOf, homOf_homTo, CategoryTheory.EnrichedCat.whiskerRight_out_app, CategoryTheory.TransportEnrichment.forgetEnrichmentEquivFunctor_map
homTo πŸ“–CompOp
9 mathmath: equivFunctor_map, CategoryTheory.EnrichedFunctor.forget_map, CategoryTheory.TransportEnrichment.forgetEnrichmentEquivInverse_map, homTo_comp, homTo_id, homTo_homOf, homOf_homTo, CategoryTheory.EnrichedCat.whiskerRight_out_app, CategoryTheory.TransportEnrichment.forgetEnrichmentEquivFunctor_map
of πŸ“–CompOp
19 mathmath: CategoryTheory.EnrichedCat.leftUnitor_hom_out_app, CategoryTheory.EnrichedFunctor.forgetComp_inv_app, homOf_eId, CategoryTheory.EnrichedCat.associator_inv_out_app, CategoryTheory.EnrichedCat.rightUnitor_hom_out_app, CategoryTheory.TransportEnrichment.forgetEnrichmentEquivInverse_obj, CategoryTheory.EnrichedCat.rightUnitor_inv_out_app, of_to, homOf_comp, CategoryTheory.EnrichedCat.associator_hom_out_app, CategoryTheory.EnrichedFunctor.forget_obj, CategoryTheory.EnrichedCat.leftUnitor_inv_out_app, equivInverse_obj, homTo_homOf, CategoryTheory.EnrichedFunctor.forgetComp_hom_app, CategoryTheory.EnrichedCat.whiskerLeft_out_app, CategoryTheory.TransportEnrichment.forgetEnrichmentEquivFunctor_obj, CategoryTheory.EnrichedCat.whiskerRight_out_app, to_of
to πŸ“–CompOp
21 mathmath: CategoryTheory.EnrichedCat.leftUnitor_hom_out_app, equivFunctor_obj, CategoryTheory.EnrichedFunctor.forgetComp_inv_app, equivFunctor_map, CategoryTheory.EnrichedCat.associator_inv_out_app, CategoryTheory.EnrichedCat.rightUnitor_hom_out_app, CategoryTheory.EnrichedFunctor.forget_map, CategoryTheory.TransportEnrichment.forgetEnrichmentEquivInverse_obj, CategoryTheory.EnrichedCat.rightUnitor_inv_out_app, of_to, CategoryTheory.TransportEnrichment.forgetEnrichmentEquivInverse_map, CategoryTheory.EnrichedCat.associator_hom_out_app, CategoryTheory.EnrichedFunctor.forget_obj, CategoryTheory.EnrichedCat.leftUnitor_inv_out_app, homTo_comp, homTo_id, CategoryTheory.EnrichedFunctor.forgetComp_hom_app, CategoryTheory.EnrichedCat.whiskerLeft_out_app, homOf_homTo, CategoryTheory.EnrichedCat.whiskerRight_out_app, to_of

Theorems

NameKindAssumesProvesValidatesDepends On
homOf_comp πŸ“–mathematicalβ€”homOf
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.EnrichedCategory.Hom
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.eComp
CategoryTheory.ForgetEnrichment
CategoryTheory.categoryForgetEnrichment
of
β€”CategoryTheory.Category.assoc
homOf_eId πŸ“–mathematicalβ€”homOf
CategoryTheory.eId
CategoryTheory.CategoryStruct.id
CategoryTheory.ForgetEnrichment
CategoryTheory.Category.toCategoryStruct
CategoryTheory.categoryForgetEnrichment
of
β€”homTo_id
homOf_homTo πŸ“–mathematicalβ€”homOf
to
homTo
β€”β€”
homTo_comp πŸ“–mathematicalβ€”homTo
CategoryTheory.CategoryStruct.comp
CategoryTheory.ForgetEnrichment
CategoryTheory.Category.toCategoryStruct
CategoryTheory.categoryForgetEnrichment
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.EnrichedCategory.Hom
to
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.eComp
β€”β€”
homTo_homOf πŸ“–mathematicalβ€”homTo
of
homOf
β€”β€”
homTo_id πŸ“–mathematicalβ€”homTo
CategoryTheory.CategoryStruct.id
CategoryTheory.ForgetEnrichment
CategoryTheory.Category.toCategoryStruct
CategoryTheory.categoryForgetEnrichment
CategoryTheory.eId
to
β€”CategoryTheory.Category.id_comp
of_to πŸ“–mathematicalβ€”of
to
β€”β€”
to_of πŸ“–mathematicalβ€”to
of
β€”β€”

CategoryTheory.GradedNatTrans

Definitions

NameCategoryTheorems
app πŸ“–CompOp
4 mathmath: ext_iff, naturality_assoc, naturality, CategoryTheory.enrichedNatTransYoneda_map_app

Theorems

NameKindAssumesProvesValidatesDepends On
ext πŸ“–β€”appβ€”β€”β€”
ext_iff πŸ“–mathematicalβ€”appβ€”ext
naturality πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.HalfBraiding
CategoryTheory.EnrichedCategory.Hom
CategoryTheory.EnrichedFunctor.obj
CategoryTheory.Iso.hom
CategoryTheory.HalfBraiding.Ξ²
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.EnrichedFunctor.map
app
CategoryTheory.eComp
β€”β€”
naturality_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.HalfBraiding
CategoryTheory.EnrichedCategory.Hom
CategoryTheory.Iso.hom
CategoryTheory.HalfBraiding.Ξ²
CategoryTheory.EnrichedFunctor.obj
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.EnrichedFunctor.map
app
CategoryTheory.eComp
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
naturality

CategoryTheory.TransportEnrichment

Theorems

NameKindAssumesProvesValidatesDepends On
eComp_eq πŸ“–mathematicalβ€”CategoryTheory.eComp
CategoryTheory.TransportEnrichment
CategoryTheory.instEnrichedCategoryTransportEnrichment
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.EnrichedCategory.Hom
CategoryTheory.Functor.LaxMonoidal.ΞΌ
CategoryTheory.Functor.map
β€”β€”
eId_eq πŸ“–mathematicalβ€”CategoryTheory.eId
CategoryTheory.TransportEnrichment
CategoryTheory.instEnrichedCategoryTransportEnrichment
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.EnrichedCategory.Hom
CategoryTheory.Functor.LaxMonoidal.Ξ΅
CategoryTheory.Functor.map
β€”β€”

---

← Back to Index