Documentation Verification Report

FunctorCategory

πŸ“ Source: Mathlib/CategoryTheory/Enriched/FunctorCategory.lean

Statistics

MetricCount
DefinitionsHasEnrichedHom, HasFunctorEnrichedHom, coneFunctorEnrichedHom, diagram, enrichedComp, enrichedHom, enrichedHomΟ€, enrichedId, enrichedOrdinaryCategory, functorEnrichedCategory, functorEnrichedComp, functorEnrichedHom, functorEnrichedId, functorEnrichedOrdinaryCategory, functorHomEquiv, homEquiv, isLimitConeFunctorEnrichedHom, precompEnrichedHom, precompEnrichedHom'
19
TheoremsconeFunctorEnrichedHom_pt, coneFunctorEnrichedHom_Ο€_app, diagram_map_app, diagram_obj_map, diagram_obj_obj, enrichedComp_Ο€, enrichedComp_Ο€_assoc, enrichedHom_condition, enrichedHom_condition', enrichedHom_condition'_assoc, enrichedHom_condition_assoc, enrichedId_Ο€, enrichedId_Ο€_assoc, enriched_assoc, enriched_assoc_assoc, enriched_comp_id, enriched_comp_id_assoc, enriched_id_comp, enriched_id_comp_assoc, functorEnrichedComp_app, functorEnrichedHom_map, functorEnrichedHom_obj, functorEnrichedId_app, functorEnriched_assoc, functorEnriched_assoc_assoc, functorEnriched_comp_id, functorEnriched_comp_id_assoc, functorEnriched_id_comp, functorEnriched_id_comp_assoc, functorHomEquiv_apply_app, functorHomEquiv_comp, functorHomEquiv_id, homEquiv_apply_Ο€, homEquiv_apply_Ο€_assoc, homEquiv_comp, homEquiv_comp_assoc, homEquiv_id, instHasEnrichedHomUnderCompMapForget, fac
39
Total58

CategoryTheory.Enriched.FunctorCategory

Definitions

NameCategoryTheorems
HasEnrichedHom πŸ“–MathDef
1 mathmath: instHasEnrichedHomUnderCompMapForget
HasFunctorEnrichedHom πŸ“–MathDefβ€”
coneFunctorEnrichedHom πŸ“–CompOp
3 mathmath: isLimitConeFunctorEnrichedHom.fac, coneFunctorEnrichedHom_Ο€_app, coneFunctorEnrichedHom_pt
diagram πŸ“–CompOp
7 mathmath: enrichedId_Ο€_assoc, diagram_map_app, enrichedComp_Ο€_assoc, diagram_obj_map, enrichedComp_Ο€, enrichedId_Ο€, diagram_obj_obj
enrichedComp πŸ“–CompOp
11 mathmath: enriched_id_comp, enriched_id_comp_assoc, enriched_comp_id_assoc, homEquiv_comp, enrichedComp_Ο€_assoc, functorEnrichedComp_app, enriched_assoc_assoc, enriched_assoc, homEquiv_comp_assoc, enrichedComp_Ο€, enriched_comp_id
enrichedHom πŸ“–CompOp
24 mathmath: enriched_id_comp, enrichedHom_condition', enrichedHom_condition, isLimitConeFunctorEnrichedHom.fac, enrichedHom_condition_assoc, enrichedId_Ο€_assoc, homEquiv_apply_Ο€, enriched_id_comp_assoc, coneFunctorEnrichedHom_Ο€_app, enriched_comp_id_assoc, homEquiv_comp, homEquiv_id, enrichedComp_Ο€_assoc, functorEnrichedHom_obj, enriched_assoc_assoc, coneFunctorEnrichedHom_pt, enriched_assoc, homEquiv_apply_Ο€_assoc, enrichedHom_condition'_assoc, homEquiv_comp_assoc, functorHomEquiv_apply_app, enrichedComp_Ο€, enrichedId_Ο€, enriched_comp_id
enrichedHomΟ€ πŸ“–CompOp
6 mathmath: enrichedHom_condition', enrichedHom_condition, enrichedHom_condition_assoc, homEquiv_apply_Ο€, homEquiv_apply_Ο€_assoc, enrichedHom_condition'_assoc
enrichedId πŸ“–CompOp
8 mathmath: enriched_id_comp, enrichedId_Ο€_assoc, enriched_id_comp_assoc, enriched_comp_id_assoc, homEquiv_id, enrichedId_Ο€, functorEnrichedId_app, enriched_comp_id
enrichedOrdinaryCategory πŸ“–CompOpβ€”
functorEnrichedCategory πŸ“–CompOpβ€”
functorEnrichedComp πŸ“–CompOp
9 mathmath: functorHomEquiv_comp, functorEnriched_id_comp, functorEnrichedComp_app, functorEnriched_id_comp_assoc, functorEnriched_comp_id_assoc, functorEnriched_assoc_assoc, functorEnriched_assoc, functorEnriched_comp_id, CategoryTheory.MonoidalClosed.FunctorCategory.homEquiv_naturality_three
functorEnrichedHom πŸ“–CompOp
20 mathmath: functorHomEquiv_comp, isLimitConeFunctorEnrichedHom.fac, coneFunctorEnrichedHom_Ο€_app, CategoryTheory.Presheaf.functorEnrichedHomCoyonedaObjEquiv_naturality, functorEnriched_id_comp, functorEnrichedComp_app, functorEnrichedHom_obj, CategoryTheory.Presheaf.isSheaf_functorEnrichedHom, coneFunctorEnrichedHom_pt, functorEnriched_id_comp_assoc, CategoryTheory.MonoidalClosed.FunctorCategory.homEquiv_naturality_two_symm, functorEnriched_comp_id_assoc, functorEnriched_assoc_assoc, functorHomEquiv_apply_app, functorHomEquiv_id, functorEnriched_assoc, functorEnrichedHom_map, functorEnriched_comp_id, CategoryTheory.MonoidalClosed.FunctorCategory.homEquiv_naturality_three, functorEnrichedId_app
functorEnrichedId πŸ“–CompOp
6 mathmath: functorEnriched_id_comp, functorEnriched_id_comp_assoc, functorEnriched_comp_id_assoc, functorHomEquiv_id, functorEnriched_comp_id, functorEnrichedId_app
functorEnrichedOrdinaryCategory πŸ“–CompOpβ€”
functorHomEquiv πŸ“–CompOp
4 mathmath: functorHomEquiv_comp, functorHomEquiv_apply_app, functorHomEquiv_id, CategoryTheory.MonoidalClosed.FunctorCategory.homEquiv_naturality_three
homEquiv πŸ“–CompOp
6 mathmath: homEquiv_apply_Ο€, homEquiv_comp, homEquiv_id, homEquiv_apply_Ο€_assoc, homEquiv_comp_assoc, functorHomEquiv_apply_app
isLimitConeFunctorEnrichedHom πŸ“–CompOpβ€”
precompEnrichedHom πŸ“–CompOp
2 mathmath: coneFunctorEnrichedHom_Ο€_app, functorHomEquiv_apply_app
precompEnrichedHom' πŸ“–CompOp
2 mathmath: CategoryTheory.Presheaf.functorEnrichedHomCoyonedaObjEquiv_naturality, functorEnrichedHom_map

Theorems

NameKindAssumesProvesValidatesDepends On
coneFunctorEnrichedHom_pt πŸ“–mathematicalHasFunctorEnrichedHomCategoryTheory.Limits.Cone.pt
functorEnrichedHom
coneFunctorEnrichedHom
enrichedHom
β€”β€”
coneFunctorEnrichedHom_Ο€_app πŸ“–mathematicalHasFunctorEnrichedHomCategoryTheory.NatTrans.app
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
enrichedHom
functorEnrichedHom
CategoryTheory.Limits.Cone.Ο€
coneFunctorEnrichedHom
precompEnrichedHom
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Under.forget
β€”β€”
diagram_map_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.eHomFunctor
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.op
CategoryTheory.Functor.map
diagram
CategoryTheory.eHomWhiskerRight
Opposite.unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
β€”β€”
diagram_obj_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
diagram
CategoryTheory.eHomWhiskerLeft
Opposite.unop
β€”β€”
diagram_obj_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
diagram
CategoryTheory.EnrichedCategory.Hom
CategoryTheory.EnrichedOrdinaryCategory.toEnrichedCategory
Opposite.unop
β€”β€”
enrichedComp_Ο€ πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
enrichedHom
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
diagram
Opposite.op
enrichedComp
CategoryTheory.Limits.end_.Ο€
CategoryTheory.Limits.end_
CategoryTheory.EnrichedCategory.Hom
CategoryTheory.EnrichedOrdinaryCategory.toEnrichedCategory
Opposite.unop
CategoryTheory.Functor.op
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.eComp
β€”CategoryTheory.Limits.end_.lift_Ο€
enrichedComp_Ο€_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
enrichedHom
enrichedComp
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
diagram
Opposite.op
CategoryTheory.Limits.end_.Ο€
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.Limits.end_
CategoryTheory.eComp
CategoryTheory.EnrichedOrdinaryCategory.toEnrichedCategory
Opposite.unop
CategoryTheory.Functor.op
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
enrichedComp_Ο€
enrichedHom_condition πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
enrichedHom
CategoryTheory.EnrichedCategory.Hom
CategoryTheory.EnrichedOrdinaryCategory.toEnrichedCategory
CategoryTheory.Functor.obj
enrichedHomΟ€
CategoryTheory.eHomWhiskerLeft
CategoryTheory.Functor.map
CategoryTheory.eHomWhiskerRight
β€”CategoryTheory.Limits.end_.condition
enrichedHom_condition' πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
enrichedHom
CategoryTheory.EnrichedCategory.Hom
CategoryTheory.EnrichedOrdinaryCategory.toEnrichedCategory
CategoryTheory.Functor.obj
enrichedHomΟ€
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.eHomEquiv
CategoryTheory.Functor.map
CategoryTheory.eComp
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.MonoidalCategoryStruct.whiskerRight
β€”CategoryTheory.Limits.end_.condition
enrichedHom_condition'_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
enrichedHom
CategoryTheory.EnrichedCategory.Hom
CategoryTheory.EnrichedOrdinaryCategory.toEnrichedCategory
CategoryTheory.Functor.obj
enrichedHomΟ€
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.eHomEquiv
CategoryTheory.Functor.map
CategoryTheory.eComp
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.MonoidalCategoryStruct.whiskerRight
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
enrichedHom_condition'
enrichedHom_condition_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
enrichedHom
CategoryTheory.EnrichedCategory.Hom
CategoryTheory.EnrichedOrdinaryCategory.toEnrichedCategory
CategoryTheory.Functor.obj
enrichedHomΟ€
CategoryTheory.eHomWhiskerLeft
CategoryTheory.Functor.map
CategoryTheory.eHomWhiskerRight
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
enrichedHom_condition
enrichedId_Ο€ πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
enrichedHom
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
diagram
Opposite.op
enrichedId
CategoryTheory.Limits.end_.Ο€
CategoryTheory.eId
CategoryTheory.EnrichedOrdinaryCategory.toEnrichedCategory
β€”homEquiv_apply_Ο€
CategoryTheory.eHomEquiv_id
enrichedId_Ο€_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
enrichedHom
enrichedId
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
diagram
Opposite.op
CategoryTheory.Limits.end_.Ο€
CategoryTheory.eId
CategoryTheory.EnrichedOrdinaryCategory.toEnrichedCategory
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
enrichedId_Ο€
enriched_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
enrichedHom
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.whiskerRight
enrichedComp
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
β€”CategoryTheory.Limits.end_.hom_ext
CategoryTheory.Category.assoc
enrichedComp_Ο€
CategoryTheory.MonoidalCategory.tensorHom_def_assoc
CategoryTheory.MonoidalCategory.comp_whiskerRight_assoc
CategoryTheory.MonoidalCategory.whisker_exchange_assoc
CategoryTheory.MonoidalCategory.tensorHom_def'_assoc
CategoryTheory.MonoidalCategory.associator_inv_naturality_assoc
CategoryTheory.MonoidalCategory.whiskerLeft_comp_assoc
CategoryTheory.e_assoc
enriched_assoc_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
enrichedHom
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.whiskerRight
enrichedComp
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
enriched_assoc
enriched_comp_id πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
enrichedHom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
enrichedId
enrichedComp
CategoryTheory.CategoryStruct.id
β€”CategoryTheory.Limits.end_.hom_ext
CategoryTheory.Category.assoc
enrichedComp_Ο€
CategoryTheory.Category.id_comp
CategoryTheory.MonoidalCategory.tensorHom_def'
CategoryTheory.MonoidalCategory.whiskerLeft_comp_assoc
enrichedId_Ο€
CategoryTheory.MonoidalCategory.whisker_exchange_assoc
CategoryTheory.MonoidalCategory.whiskerRight_id
CategoryTheory.Iso.inv_hom_id_assoc
CategoryTheory.e_comp_id
CategoryTheory.Category.comp_id
enriched_comp_id_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
enrichedHom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
enrichedId
enrichedComp
β€”CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
enriched_comp_id
enriched_id_comp πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
enrichedHom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.MonoidalCategoryStruct.whiskerRight
enrichedId
enrichedComp
CategoryTheory.CategoryStruct.id
β€”CategoryTheory.Limits.end_.hom_ext
CategoryTheory.Category.assoc
enrichedComp_Ο€
CategoryTheory.Category.id_comp
CategoryTheory.MonoidalCategory.tensorHom_def
CategoryTheory.MonoidalCategory.comp_whiskerRight_assoc
enrichedId_Ο€
CategoryTheory.MonoidalCategory.whisker_exchange_assoc
CategoryTheory.MonoidalCategory.id_whiskerLeft
CategoryTheory.Iso.inv_hom_id_assoc
CategoryTheory.e_id_comp
CategoryTheory.Category.comp_id
enriched_id_comp_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
enrichedHom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.MonoidalCategoryStruct.whiskerRight
enrichedId
enrichedComp
β€”CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
enriched_id_comp
functorEnrichedComp_app πŸ“–mathematicalHasFunctorEnrichedHomCategoryTheory.NatTrans.app
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Monoidal.functorCategoryMonoidalStruct
functorEnrichedHom
functorEnrichedComp
enrichedComp
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.comp
CategoryTheory.Under.forget
β€”β€”
functorEnrichedHom_map πŸ“–mathematicalHasFunctorEnrichedHomCategoryTheory.Functor.map
functorEnrichedHom
precompEnrichedHom'
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.comp
CategoryTheory.Under.forget
CategoryTheory.Under.map
CategoryTheory.Iso.refl
CategoryTheory.Functor
CategoryTheory.Functor.category
β€”β€”
functorEnrichedHom_obj πŸ“–mathematicalHasFunctorEnrichedHomCategoryTheory.Functor.obj
functorEnrichedHom
enrichedHom
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.comp
CategoryTheory.Under.forget
β€”β€”
functorEnrichedId_app πŸ“–mathematicalHasFunctorEnrichedHomCategoryTheory.NatTrans.app
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Monoidal.functorCategoryMonoidalStruct
functorEnrichedHom
functorEnrichedId
enrichedId
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.comp
CategoryTheory.Under.forget
β€”β€”
functorEnriched_assoc πŸ“–mathematicalHasFunctorEnrichedHomCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Monoidal.functorCategoryMonoidalStruct
functorEnrichedHom
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.whiskerRight
functorEnrichedComp
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
β€”CategoryTheory.NatTrans.ext'
enriched_assoc
functorEnriched_assoc_assoc πŸ“–mathematicalHasFunctorEnrichedHomCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Monoidal.functorCategoryMonoidalStruct
functorEnrichedHom
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.whiskerRight
functorEnrichedComp
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
functorEnriched_assoc
functorEnriched_comp_id πŸ“–mathematicalHasFunctorEnrichedHomCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
functorEnrichedHom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Monoidal.functorCategoryMonoidalStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
functorEnrichedId
functorEnrichedComp
CategoryTheory.CategoryStruct.id
β€”CategoryTheory.NatTrans.ext'
enriched_comp_id
functorEnriched_comp_id_assoc πŸ“–mathematicalHasFunctorEnrichedHomCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
functorEnrichedHom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Monoidal.functorCategoryMonoidalStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
functorEnrichedId
functorEnrichedComp
β€”CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
functorEnriched_comp_id
functorEnriched_id_comp πŸ“–mathematicalHasFunctorEnrichedHomCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
functorEnrichedHom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Monoidal.functorCategoryMonoidalStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.MonoidalCategoryStruct.whiskerRight
functorEnrichedId
functorEnrichedComp
CategoryTheory.CategoryStruct.id
β€”CategoryTheory.NatTrans.ext'
enriched_id_comp
functorEnriched_id_comp_assoc πŸ“–mathematicalHasFunctorEnrichedHomCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
functorEnrichedHom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Monoidal.functorCategoryMonoidalStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.MonoidalCategoryStruct.whiskerRight
functorEnrichedId
functorEnrichedComp
β€”CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
functorEnriched_id_comp
functorHomEquiv_apply_app πŸ“–mathematicalHasFunctorEnrichedHomCategoryTheory.NatTrans.app
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Monoidal.functorCategoryMonoidalStruct
functorEnrichedHom
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
functorHomEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
enrichedHom
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.comp
CategoryTheory.Under.forget
homEquiv
precompEnrichedHom
β€”β€”
functorHomEquiv_comp πŸ“–mathematicalHasFunctorEnrichedHomDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Functor
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Monoidal.functorCategoryMonoidalStruct
functorEnrichedHom
EquivLike.toFunLike
Equiv.instEquivLike
functorHomEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.MonoidalCategoryStruct.tensorHom
functorEnrichedComp
β€”CategoryTheory.NatTrans.ext'
CategoryTheory.Limits.end_.hom_ext
homEquiv_comp
CategoryTheory.Category.assoc
CategoryTheory.Limits.end_.lift_Ο€
enrichedComp_Ο€
CategoryTheory.eHomWhiskerRight_id
CategoryTheory.eHomWhiskerLeft_id
CategoryTheory.Category.comp_id
CategoryTheory.MonoidalCategory.tensorHom_comp_tensorHom_assoc
homEquiv_apply_Ο€
functorHomEquiv_id πŸ“–mathematicalHasFunctorEnrichedHomDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Functor
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Monoidal.functorCategoryMonoidalStruct
functorEnrichedHom
EquivLike.toFunLike
Equiv.instEquivLike
functorHomEquiv
CategoryTheory.CategoryStruct.id
functorEnrichedId
β€”CategoryTheory.NatTrans.ext'
CategoryTheory.Limits.end_.hom_ext
CategoryTheory.Category.assoc
CategoryTheory.Limits.end_.lift_Ο€
CategoryTheory.eHomWhiskerRight_id
CategoryTheory.eHomWhiskerLeft_id
CategoryTheory.Category.comp_id
enrichedId_Ο€
homEquiv_apply_Ο€ πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
enrichedHom
CategoryTheory.EnrichedCategory.Hom
CategoryTheory.EnrichedOrdinaryCategory.toEnrichedCategory
CategoryTheory.Functor.obj
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Functor
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Functor.category
EquivLike.toFunLike
Equiv.instEquivLike
homEquiv
enrichedHomΟ€
CategoryTheory.eHomEquiv
CategoryTheory.NatTrans.app
β€”CategoryTheory.Limits.end_.lift_Ο€
homEquiv_apply_Ο€_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
enrichedHom
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Functor
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Functor.category
EquivLike.toFunLike
Equiv.instEquivLike
homEquiv
CategoryTheory.EnrichedCategory.Hom
CategoryTheory.EnrichedOrdinaryCategory.toEnrichedCategory
CategoryTheory.Functor.obj
enrichedHomΟ€
CategoryTheory.eHomEquiv
CategoryTheory.NatTrans.app
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
homEquiv_apply_Ο€
homEquiv_comp πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Functor
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
enrichedHom
EquivLike.toFunLike
Equiv.instEquivLike
homEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.MonoidalCategoryStruct.tensorHom
enrichedComp
β€”CategoryTheory.Limits.end_.hom_ext
homEquiv_apply_Ο€
CategoryTheory.eHomEquiv_comp
CategoryTheory.Category.assoc
enrichedComp_Ο€
CategoryTheory.MonoidalCategory.tensorHom_comp_tensorHom_assoc
homEquiv_comp_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
enrichedHom
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Functor
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Functor.category
EquivLike.toFunLike
Equiv.instEquivLike
homEquiv
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.MonoidalCategoryStruct.tensorHom
enrichedComp
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
homEquiv_comp
homEquiv_id πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Functor
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
enrichedHom
EquivLike.toFunLike
Equiv.instEquivLike
homEquiv
CategoryTheory.CategoryStruct.id
enrichedId
β€”β€”
instHasEnrichedHomUnderCompMapForget πŸ“–mathematicalHasFunctorEnrichedHomHasEnrichedHom
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.comp
CategoryTheory.Under.map
CategoryTheory.Under.forget
β€”β€”

CategoryTheory.Enriched.FunctorCategory.isLimitConeFunctorEnrichedHom

Theorems

NameKindAssumesProvesValidatesDepends On
fac πŸ“–mathematicalCategoryTheory.Enriched.FunctorCategory.HasFunctorEnrichedHomCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Enriched.FunctorCategory.functorEnrichedHom
CategoryTheory.Enriched.FunctorCategory.enrichedHom
CategoryTheory.Functor.obj
lift
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Enriched.FunctorCategory.coneFunctorEnrichedHom
CategoryTheory.Limits.Cone.Ο€
β€”CategoryTheory.Limits.end_.hom_ext
CategoryTheory.Limits.Cone.w
CategoryTheory.Category.assoc
CategoryTheory.Limits.end_.lift_Ο€
CategoryTheory.eHomWhiskerRight_id
CategoryTheory.eHomWhiskerLeft_id
CategoryTheory.Category.comp_id

---

← Back to Index