| Name | Category | Theorems |
HasEnrichedHom π | MathDef | 1 mathmath: instHasEnrichedHomUnderCompMapForget
|
HasFunctorEnrichedHom π | MathDef | β |
coneFunctorEnrichedHom π | CompOp | 3 mathmath: isLimitConeFunctorEnrichedHom.fac, coneFunctorEnrichedHom_Ο_app, coneFunctorEnrichedHom_pt
|
diagram π | CompOp | 7 mathmath: enrichedId_Ο_assoc, diagram_map_app, enrichedComp_Ο_assoc, diagram_obj_map, enrichedComp_Ο, enrichedId_Ο, diagram_obj_obj
|
enrichedComp π | CompOp | 11 mathmath: enriched_id_comp, enriched_id_comp_assoc, enriched_comp_id_assoc, homEquiv_comp, enrichedComp_Ο_assoc, functorEnrichedComp_app, enriched_assoc_assoc, enriched_assoc, homEquiv_comp_assoc, enrichedComp_Ο, enriched_comp_id
|
enrichedHom π | CompOp | 24 mathmath: enriched_id_comp, enrichedHom_condition', enrichedHom_condition, isLimitConeFunctorEnrichedHom.fac, enrichedHom_condition_assoc, enrichedId_Ο_assoc, homEquiv_apply_Ο, enriched_id_comp_assoc, coneFunctorEnrichedHom_Ο_app, enriched_comp_id_assoc, homEquiv_comp, homEquiv_id, enrichedComp_Ο_assoc, functorEnrichedHom_obj, enriched_assoc_assoc, coneFunctorEnrichedHom_pt, enriched_assoc, homEquiv_apply_Ο_assoc, enrichedHom_condition'_assoc, homEquiv_comp_assoc, functorHomEquiv_apply_app, enrichedComp_Ο, enrichedId_Ο, enriched_comp_id
|
enrichedHomΟ π | CompOp | 6 mathmath: enrichedHom_condition', enrichedHom_condition, enrichedHom_condition_assoc, homEquiv_apply_Ο, homEquiv_apply_Ο_assoc, enrichedHom_condition'_assoc
|
enrichedId π | CompOp | 8 mathmath: enriched_id_comp, enrichedId_Ο_assoc, enriched_id_comp_assoc, enriched_comp_id_assoc, homEquiv_id, enrichedId_Ο, functorEnrichedId_app, enriched_comp_id
|
enrichedOrdinaryCategory π | CompOp | β |
functorEnrichedCategory π | CompOp | β |
functorEnrichedComp π | CompOp | 9 mathmath: functorHomEquiv_comp, functorEnriched_id_comp, functorEnrichedComp_app, functorEnriched_id_comp_assoc, functorEnriched_comp_id_assoc, functorEnriched_assoc_assoc, functorEnriched_assoc, functorEnriched_comp_id, CategoryTheory.MonoidalClosed.FunctorCategory.homEquiv_naturality_three
|
functorEnrichedHom π | CompOp | 20 mathmath: functorHomEquiv_comp, isLimitConeFunctorEnrichedHom.fac, coneFunctorEnrichedHom_Ο_app, CategoryTheory.Presheaf.functorEnrichedHomCoyonedaObjEquiv_naturality, functorEnriched_id_comp, functorEnrichedComp_app, functorEnrichedHom_obj, CategoryTheory.Presheaf.isSheaf_functorEnrichedHom, coneFunctorEnrichedHom_pt, functorEnriched_id_comp_assoc, CategoryTheory.MonoidalClosed.FunctorCategory.homEquiv_naturality_two_symm, functorEnriched_comp_id_assoc, functorEnriched_assoc_assoc, functorHomEquiv_apply_app, functorHomEquiv_id, functorEnriched_assoc, functorEnrichedHom_map, functorEnriched_comp_id, CategoryTheory.MonoidalClosed.FunctorCategory.homEquiv_naturality_three, functorEnrichedId_app
|
functorEnrichedId π | CompOp | 6 mathmath: functorEnriched_id_comp, functorEnriched_id_comp_assoc, functorEnriched_comp_id_assoc, functorHomEquiv_id, functorEnriched_comp_id, functorEnrichedId_app
|
functorEnrichedOrdinaryCategory π | CompOp | β |
functorHomEquiv π | CompOp | 4 mathmath: functorHomEquiv_comp, functorHomEquiv_apply_app, functorHomEquiv_id, CategoryTheory.MonoidalClosed.FunctorCategory.homEquiv_naturality_three
|
homEquiv π | CompOp | 6 mathmath: homEquiv_apply_Ο, homEquiv_comp, homEquiv_id, homEquiv_apply_Ο_assoc, homEquiv_comp_assoc, functorHomEquiv_apply_app
|
isLimitConeFunctorEnrichedHom π | CompOp | β |
precompEnrichedHom π | CompOp | 2 mathmath: coneFunctorEnrichedHom_Ο_app, functorHomEquiv_apply_app
|
precompEnrichedHom' π | CompOp | 2 mathmath: CategoryTheory.Presheaf.functorEnrichedHomCoyonedaObjEquiv_naturality, functorEnrichedHom_map
|