Documentation Verification Report

HomCongr

📁 Source: Mathlib/CategoryTheory/Enriched/HomCongr.lean

Statistics

MetricCount
DefinitionseHomCongr
1
TheoremseHomCongr_comp, eHomCongr_comp_assoc, eHomCongr_hom, eHomCongr_inv, eHomCongr_inv_comp, eHomCongr_inv_comp_assoc, eHomCongr_refl, eHomCongr_symm, eHomCongr_trans
9
Total10

CategoryTheory.Iso

Definitions

NameCategoryTheorems
eHomCongr 📖CompOp
9 mathmath: eHomCongr_refl, eHomCongr_inv_comp_assoc, eHomCongr_hom, eHomCongr_symm, eHomCongr_comp_assoc, eHomCongr_trans, eHomCongr_comp, eHomCongr_inv, eHomCongr_inv_comp

Theorems

NameKindAssumesProvesValidatesDepends On
eHomCongr_comp 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.EnrichedCategory.Hom
CategoryTheory.EnrichedOrdinaryCategory.toEnrichedCategory
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.eHomEquiv
hom
eHomCongr
CategoryTheory.MonoidalCategoryStruct.tensorObj
inv
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.eComp
CategoryTheory.MonoidalCategory.whiskerRight_id
CategoryTheory.Category.assoc
CategoryTheory.MonoidalCategory.whiskerLeft_comp
CategoryTheory.MonoidalCategory.rightUnitor_inv_naturality_assoc
hom_inv_id_assoc
CategoryTheory.MonoidalCategory.whisker_exchange_assoc
CategoryTheory.eComp_eHomWhiskerLeft
CategoryTheory.eHom_whisker_cancel_assoc
CategoryTheory.eComp_eHomWhiskerRight_assoc
CategoryTheory.MonoidalCategory.tensorHom_def_assoc
CategoryTheory.eHomEquiv_comp_assoc
eHomCongr_comp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.EnrichedCategory.Hom
CategoryTheory.EnrichedOrdinaryCategory.toEnrichedCategory
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.eHomEquiv
hom
eHomCongr
CategoryTheory.MonoidalCategoryStruct.tensorObj
inv
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.eComp
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
eHomCongr_comp
eHomCongr_hom 📖mathematicalhom
CategoryTheory.EnrichedCategory.Hom
CategoryTheory.EnrichedOrdinaryCategory.toEnrichedCategory
eHomCongr
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.eHomWhiskerRight
inv
CategoryTheory.eHomWhiskerLeft
eHomCongr_inv 📖mathematicalinv
CategoryTheory.EnrichedCategory.Hom
CategoryTheory.EnrichedOrdinaryCategory.toEnrichedCategory
eHomCongr
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.eHomWhiskerRight
hom
CategoryTheory.eHomWhiskerLeft
eHomCongr_inv_comp 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.EnrichedCategory.Hom
CategoryTheory.EnrichedOrdinaryCategory.toEnrichedCategory
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.eHomEquiv
inv
eHomCongr
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.eComp
eHomCongr_comp
eHomCongr_inv_comp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.EnrichedCategory.Hom
CategoryTheory.EnrichedOrdinaryCategory.toEnrichedCategory
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.eHomEquiv
inv
eHomCongr
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.eComp
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
eHomCongr_inv_comp
eHomCongr_refl 📖mathematicaleHomCongr
refl
CategoryTheory.EnrichedCategory.Hom
CategoryTheory.EnrichedOrdinaryCategory.toEnrichedCategory
ext
CategoryTheory.eHomWhiskerRight_id
CategoryTheory.eHomWhiskerLeft_id
CategoryTheory.Category.comp_id
eHomCongr_symm 📖mathematicalsymm
CategoryTheory.EnrichedCategory.Hom
CategoryTheory.EnrichedOrdinaryCategory.toEnrichedCategory
eHomCongr
eHomCongr_trans 📖mathematicaleHomCongr
trans
CategoryTheory.EnrichedCategory.Hom
CategoryTheory.EnrichedOrdinaryCategory.toEnrichedCategory
ext
CategoryTheory.eHomWhiskerRight_comp
CategoryTheory.eHomWhiskerLeft_comp
CategoryTheory.Category.assoc
CategoryTheory.eHom_whisker_exchange_assoc

---

← Back to Index