EpiMono
π Source: Mathlib/CategoryTheory/EpiMono.lean
Statistics
CategoryTheory
Definitions
Theorems
CategoryTheory.Groupoid
Definitions
| Name | Category | Theorems |
|---|---|---|
ofTruncSplitMono π | CompOp | β |
CategoryTheory.IsIso
Theorems
CategoryTheory.IsSplitEpi
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
epi π | mathematical | β | CategoryTheory.Epi | β | CategoryTheory.SplitEpi.epiexists_splitEpi |
exists_splitEpi π | mathematical | β | CategoryTheory.SplitEpi | β | β |
id π | mathematical | β | CategoryTheory.CategoryStruct.compCategoryTheory.Category.toCategoryStructCategoryTheory.section_CategoryTheory.CategoryStruct.id | β | CategoryTheory.SplitEpi.idexists_splitEpi |
id_assoc π | mathematical | β | CategoryTheory.CategoryStruct.compCategoryTheory.Category.toCategoryStructCategoryTheory.section_ | β | CategoryTheory.Category.assocCategoryTheory.Category.id_compMathlib.Tactic.Reassoc.eq_whisker'id |
mk' π | mathematical | β | CategoryTheory.IsSplitEpi | β | β |
of_iso π | mathematical | β | CategoryTheory.IsSplitEpi | β | mk'CategoryTheory.IsIso.inv_hom_id |
CategoryTheory.IsSplitMono
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
exists_splitMono π | mathematical | β | CategoryTheory.SplitMono | β | β |
id π | mathematical | β | CategoryTheory.CategoryStruct.compCategoryTheory.Category.toCategoryStructCategoryTheory.retractionCategoryTheory.CategoryStruct.id | β | CategoryTheory.SplitMono.idexists_splitMono |
id_assoc π | mathematical | β | CategoryTheory.CategoryStruct.compCategoryTheory.Category.toCategoryStructCategoryTheory.retraction | β | CategoryTheory.Category.assocCategoryTheory.Category.id_compMathlib.Tactic.Reassoc.eq_whisker'id |
mk' π | mathematical | β | CategoryTheory.IsSplitMono | β | β |
mono π | mathematical | β | CategoryTheory.Mono | β | CategoryTheory.SplitMono.monoexists_splitMono |
of_iso π | mathematical | β | CategoryTheory.IsSplitMono | β | mk'CategoryTheory.IsIso.hom_inv_id |
CategoryTheory.SplitEpi
Definitions
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
comp_section_ π | mathematical | β | section_CategoryTheory.CategoryStruct.compCategoryTheory.Category.toCategoryStructcomp | β | β |
epi π | mathematical | β | CategoryTheory.Epi | β | CategoryTheory.whisker_eqid_assoc |
ext π | β | section_ | β | β | β |
ext_iff π | mathematical | β | section_ | β | ext |
id π | mathematical | β | CategoryTheory.CategoryStruct.compCategoryTheory.Category.toCategoryStructsection_CategoryTheory.CategoryStruct.id | β | β |
id_assoc π | mathematical | β | CategoryTheory.CategoryStruct.compCategoryTheory.Category.toCategoryStructsection_ | β | CategoryTheory.Category.assocCategoryTheory.Category.id_compMathlib.Tactic.Reassoc.eq_whisker'id |
map_section_ π | mathematical | β | section_CategoryTheory.Functor.objCategoryTheory.Functor.mapmap | β | β |
CategoryTheory.SplitEpiCategory
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
isSplitEpi_of_epi π | mathematical | β | CategoryTheory.IsSplitEpi | β | β |
CategoryTheory.SplitMono
Definitions
| Name | Category | Theorems |
|---|---|---|
comp π | CompOp | |
map π | CompOp | |
op π | CompOp | β |
retraction π | CompOp | 10 mathmath:CategoryTheory.Retract.splitMono_retraction, map_retraction, CategoryTheory.ShortComplex.Splitting.splitMono_f_retraction, id_assoc, CategoryTheory.Functor.splitMonoBiproductComparison'_retraction, comp_retraction, id, CategoryTheory.Functor.splitMonoBiprodComparison'_retraction, CategoryTheory.Limits.splitMonoOfIdempotentOfIsLimitFork_retraction, ext_iff |
splitEpi π | CompOp | β |
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
comp_retraction π | mathematical | β | retractionCategoryTheory.CategoryStruct.compCategoryTheory.Category.toCategoryStructcomp | β | β |
ext π | β | retraction | β | β | β |
ext_iff π | mathematical | β | retraction | β | ext |
id π | mathematical | β | CategoryTheory.CategoryStruct.compCategoryTheory.Category.toCategoryStructretractionCategoryTheory.CategoryStruct.id | β | β |
id_assoc π | mathematical | β | CategoryTheory.CategoryStruct.compCategoryTheory.Category.toCategoryStructretraction | β | CategoryTheory.Category.assocCategoryTheory.Category.id_compMathlib.Tactic.Reassoc.eq_whisker'id |
map_retraction π | mathematical | β | retractionCategoryTheory.Functor.objCategoryTheory.Functor.mapmap | β | β |
mono π | mathematical | β | CategoryTheory.Mono | β | CategoryTheory.eq_whiskerCategoryTheory.Category.associdCategoryTheory.Category.comp_id |
CategoryTheory.SplitMonoCategory
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
isSplitMono_of_mono π | mathematical | β | CategoryTheory.IsSplitMono | β | β |
---