Documentation Verification Report

EpiMono

πŸ“ Source: Mathlib/CategoryTheory/EpiMono.lean

Statistics

MetricCount
DefinitionsofTruncSplitMono, IsSplitEpi, IsSplitMono, SplitEpi, comp, map, op, section_, splitMono, SplitEpiCategory, SplitMono, comp, map, op, retraction, splitEpi, SplitMonoCategory, retraction, section_
19
Theoremsof_epi_section, of_epi_section', of_mono_retraction, of_mono_retraction', epi, exists_splitEpi, id, id_assoc, mk', of_iso, exists_splitMono, id, id_assoc, mk', mono, of_iso, comp_section_, epi, ext, ext_iff, id, id_assoc, map_section_, isSplitEpi_of_epi, comp_retraction, ext, ext_iff, id, id_assoc, map_retraction, mono, isSplitMono_of_mono, epi_comp_iff_of_epi, epi_comp_iff_of_isIso, instIsSplitEpiComp, instIsSplitEpiMap, instIsSplitEpiOppositeOpOfIsSplitMono, instIsSplitMonoComp, instIsSplitMonoMap, instIsSplitMonoOppositeOpOfIsSplitEpi, isIso_of_epi_of_isSplitMono, isIso_of_mono_of_isSplitEpi, isSplitEpi_of_epi, isSplitMono_of_mono, mono_comp_iff_of_isIso, mono_comp_iff_of_mono, op_epi_iff, op_epi_of_mono, op_mono_iff, op_mono_of_epi, retraction_isSplitEpi, section_isSplitMono, unop_epi_iff, unop_epi_of_mono, unop_mono_iff, unop_mono_of_epi
56
Total75

CategoryTheory

Definitions

NameCategoryTheorems
IsSplitEpi πŸ“–CompData
35 mathmath: Functor.instIsSplitEpiBiproductComparison, Limits.pullback.instIsSplitEpiFst, SimplexCategoryGenRel.isSplitEpi_toSimplexCategory_map_of_P_σ, Comonad.isSplitEpi_iff_isIso_counit, CochainComplex.isSplitEpi_to_singleFunctor_obj_of_projective, Limits.isSplitEpi_prod_fst, Limits.pullback.instIsSplitEpiSnd, instIsSplitEpiOppositeOpOfIsSplitMono, instIsSplitEpiMap, SimplexCategoryGenRel.instIsSplitEpiσ, Limits.initial.isSplitEpi_to, Functor.instIsSplitEpiBiprodComparison, IsSplitEpi.of_iso, Adjunction.unit_isSplitEpi_of_L_full, Limits.isSplitEpi_pi_π, isSplitEpi_iff_surjective, Retract.instIsSplitEpiR, RetractArrow.instIsSplitEpiRightRArrow, Limits.biprod.fst_epi, Limits.biprod.snd_epi, Functor.instIsSplitEpiApp, Limits.BinaryBicone.instIsSplitEpiFst, ShortComplex.Splitting.isSplitEpi_g, Limits.BinaryBicone.instIsSplitEpiSnd, SimplexCategoryGenRel.isSplitEpi_P_σ, Limits.isSplitEpi_prod_snd, isSplitEpi_of_epi, Limits.IsInitial.isSplitEpi_to, RetractArrow.instIsSplitEpiLeftRArrow, Limits.biproduct.π_epi, instIsSplitEpiComp, SplitEpiCategory.isSplitEpi_of_epi, retraction_isSplitEpi, IsSplitEpi.mk', Functor.isSplitEpi_iff
IsSplitMono πŸ“–CompData
35 mathmath: Functor.instIsSplitMonoBiprodComparison', instIsSplitMonoMap, Limits.isSplitMono_coprod_inr, Monad.isSplitMono_iff_isIso_unit, Limits.BinaryBicone.instIsSplitMonoInl, instIsSplitMonoOppositeOpOfIsSplitEpi, SimplexCategoryGenRel.instIsSplitMonoΞ΄, Limits.terminal.isSplitMono_from, instIsSplitMonoComp, Functor.instIsSplitMonoApp, Functor.isSplitMono_iff, Limits.biproduct.ΞΉ_mono, Limits.instIsSplitMonoDiag, IsSplitMono.of_iso, SplitMonoCategory.isSplitMono_of_mono, isSplitMono_of_mono, Limits.isSplitMono_coprod_inl, CochainComplex.isSplitMono_from_singleFunctor_obj_of_injective, HasClassifier.truthIsSplitMono, Retract.instIsSplitMonoI, section_isSplitMono, SimplexCategoryGenRel.isSplitMono_P_Ξ΄, IsSplitMono.mk', ShortComplex.Splitting.isSplitMono_f, RetractArrow.instIsSplitMonoRightIArrow, Limits.isSplitMono_sigma_ΞΉ, Limits.IsTerminal.isSplitMono_from, Limits.biprod.inr_mono, Limits.biprod.inl_mono, RetractArrow.instIsSplitMonoLeftIArrow, Adjunction.counit_isSplitMono_of_R_full, SimplexCategoryGenRel.isSplitMono_toSimplexCategory_map_of_P_Ξ΄, Limits.BinaryBicone.instIsSplitMonoInr, Limits.pullback.instIsSplitMonoDiagonal, Functor.instIsSplitMonoBiproductComparison'
SplitEpi πŸ“–CompData
1 mathmath: IsSplitEpi.exists_splitEpi
SplitEpiCategory πŸ“–CompData
5 mathmath: NonemptyFinLinOrd.instSplitEpiCategory, SimplexCategory.instSplitEpiCategory, Functor.splitEpiCategoryImpOfIsEquivalence, Pretriangulated.instSplitEpiCategory, instSplitEpiCategoryType
SplitMono πŸ“–CompData
1 mathmath: IsSplitMono.exists_splitMono
SplitMonoCategory πŸ“–CompData
1 mathmath: Pretriangulated.instSplitMonoCategory
retraction πŸ“–CompOp
7 mathmath: Limits.coneOfIsSplitMono_ΞΉ, Limits.coneOfIsSplitMono_Ο€_app, IsSplitMono.id_assoc, IsSplitMono.id, Limits.coneOfIsSplitMono_pt, retraction_isSplitEpi, Limits.binaryBiconeOfIsSplitMonoOfCokernel_fst
section_ πŸ“–CompOp
7 mathmath: IsSplitEpi.id, Limits.coconeOfIsSplitEpi_pt, Limits.coconeOfIsSplitEpi_Ο€, section_isSplitMono, IsSplitEpi.id_assoc, Limits.coconeOfIsSplitEpi_ΞΉ_app, Limits.binaryBiconeOfIsSplitEpiOfKernel_inr

Theorems

NameKindAssumesProvesValidatesDepends On
epi_comp_iff_of_epi πŸ“–mathematicalβ€”Epi
CategoryStruct.comp
Category.toCategoryStruct
β€”epi_of_epi
epi_comp
epi_comp_iff_of_isIso πŸ“–mathematicalβ€”Epi
CategoryStruct.comp
Category.toCategoryStruct
β€”Category.assoc
IsIso.hom_inv_id
Category.comp_id
epi_comp
IsSplitEpi.epi
IsSplitEpi.of_iso
IsIso.inv_isIso
instIsSplitEpiComp πŸ“–mathematicalβ€”IsSplitEpi
CategoryStruct.comp
Category.toCategoryStruct
β€”IsSplitEpi.mk'
IsSplitEpi.exists_splitEpi
instIsSplitEpiMap πŸ“–mathematicalβ€”IsSplitEpi
Functor.obj
Functor.map
β€”IsSplitEpi.mk'
IsSplitEpi.exists_splitEpi
instIsSplitEpiOppositeOpOfIsSplitMono πŸ“–mathematicalβ€”IsSplitEpi
Opposite
Category.opposite
Opposite.op
Quiver.Hom.op
CategoryStruct.toQuiver
Category.toCategoryStruct
β€”IsSplitEpi.mk'
IsSplitMono.exists_splitMono
instIsSplitMonoComp πŸ“–mathematicalβ€”IsSplitMono
CategoryStruct.comp
Category.toCategoryStruct
β€”IsSplitMono.mk'
IsSplitMono.exists_splitMono
instIsSplitMonoMap πŸ“–mathematicalβ€”IsSplitMono
Functor.obj
Functor.map
β€”IsSplitMono.mk'
IsSplitMono.exists_splitMono
instIsSplitMonoOppositeOpOfIsSplitEpi πŸ“–mathematicalβ€”IsSplitMono
Opposite
Category.opposite
Opposite.op
Quiver.Hom.op
CategoryStruct.toQuiver
Category.toCategoryStruct
β€”IsSplitMono.mk'
IsSplitEpi.exists_splitEpi
isIso_of_epi_of_isSplitMono πŸ“–mathematicalβ€”IsIsoβ€”IsSplitMono.id
cancel_epi
IsSplitMono.id_assoc
Category.comp_id
isIso_of_mono_of_isSplitEpi πŸ“–mathematicalβ€”IsIsoβ€”cancel_mono
Category.assoc
IsSplitEpi.id
Category.comp_id
Category.id_comp
isSplitEpi_of_epi πŸ“–mathematicalβ€”IsSplitEpiβ€”SplitEpiCategory.isSplitEpi_of_epi
isSplitMono_of_mono πŸ“–mathematicalβ€”IsSplitMonoβ€”SplitMonoCategory.isSplitMono_of_mono
mono_comp_iff_of_isIso πŸ“–mathematicalβ€”Mono
CategoryStruct.comp
Category.toCategoryStruct
β€”IsIso.inv_hom_id_assoc
mono_comp
IsSplitMono.mono
IsSplitMono.of_iso
IsIso.inv_isIso
mono_comp_iff_of_mono πŸ“–mathematicalβ€”Mono
CategoryStruct.comp
Category.toCategoryStruct
β€”mono_of_mono
mono_comp
op_epi_iff πŸ“–mathematicalβ€”Epi
Opposite
Category.opposite
Opposite.op
Quiver.Hom.op
CategoryStruct.toQuiver
Category.toCategoryStruct
Mono
β€”unop_mono_of_epi
op_epi_of_mono
op_epi_of_mono πŸ“–mathematicalβ€”Epi
Opposite
Category.opposite
Opposite.op
Quiver.Hom.op
CategoryStruct.toQuiver
Category.toCategoryStruct
β€”cancel_mono
op_mono_iff πŸ“–mathematicalβ€”Mono
Opposite
Category.opposite
Opposite.op
Quiver.Hom.op
CategoryStruct.toQuiver
Category.toCategoryStruct
Epi
β€”unop_epi_of_mono
op_mono_of_epi
op_mono_of_epi πŸ“–mathematicalβ€”Mono
Opposite
Category.opposite
Opposite.op
Quiver.Hom.op
CategoryStruct.toQuiver
Category.toCategoryStruct
β€”cancel_epi
retraction_isSplitEpi πŸ“–mathematicalβ€”IsSplitEpi
retraction
β€”IsSplitEpi.mk'
IsSplitMono.exists_splitMono
section_isSplitMono πŸ“–mathematicalβ€”IsSplitMono
section_
β€”IsSplitMono.mk'
IsSplitEpi.exists_splitEpi
unop_epi_iff πŸ“–mathematicalβ€”Epi
Opposite.unop
Quiver.Hom.unop
CategoryStruct.toQuiver
Category.toCategoryStruct
Mono
Opposite
Category.opposite
β€”op_mono_of_epi
unop_epi_of_mono
unop_epi_of_mono πŸ“–mathematicalβ€”Epi
Opposite.unop
Quiver.Hom.unop
CategoryStruct.toQuiver
Category.toCategoryStruct
β€”cancel_mono
unop_mono_iff πŸ“–mathematicalβ€”Mono
Opposite.unop
Quiver.Hom.unop
CategoryStruct.toQuiver
Category.toCategoryStruct
Epi
Opposite
Category.opposite
β€”op_epi_of_mono
unop_mono_of_epi
unop_mono_of_epi πŸ“–mathematicalβ€”Mono
Opposite.unop
Quiver.Hom.unop
CategoryStruct.toQuiver
Category.toCategoryStruct
β€”cancel_epi

CategoryTheory.Groupoid

Definitions

NameCategoryTheorems
ofTruncSplitMono πŸ“–CompOpβ€”

CategoryTheory.IsIso

Theorems

NameKindAssumesProvesValidatesDepends On
of_epi_section πŸ“–mathematicalβ€”CategoryTheory.IsIsoβ€”of_epi_section'
CategoryTheory.IsSplitEpi.exists_splitEpi
of_epi_section' πŸ“–mathematicalβ€”CategoryTheory.IsIsoβ€”CategoryTheory.cancel_epi_id
CategoryTheory.SplitEpi.id_assoc
CategoryTheory.SplitEpi.id
of_mono_retraction πŸ“–mathematicalβ€”CategoryTheory.IsIsoβ€”of_mono_retraction'
CategoryTheory.IsSplitMono.exists_splitMono
of_mono_retraction' πŸ“–mathematicalβ€”CategoryTheory.IsIsoβ€”CategoryTheory.SplitMono.id
CategoryTheory.cancel_mono_id
CategoryTheory.Category.assoc
CategoryTheory.Category.comp_id

CategoryTheory.IsSplitEpi

Theorems

NameKindAssumesProvesValidatesDepends On
epi πŸ“–mathematicalβ€”CategoryTheory.Epiβ€”CategoryTheory.SplitEpi.epi
exists_splitEpi
exists_splitEpi πŸ“–mathematicalβ€”CategoryTheory.SplitEpiβ€”β€”
id πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.section_
CategoryTheory.CategoryStruct.id
β€”CategoryTheory.SplitEpi.id
exists_splitEpi
id_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.section_
β€”CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
id
mk' πŸ“–mathematicalβ€”CategoryTheory.IsSplitEpiβ€”β€”
of_iso πŸ“–mathematicalβ€”CategoryTheory.IsSplitEpiβ€”mk'
CategoryTheory.IsIso.inv_hom_id

CategoryTheory.IsSplitMono

Theorems

NameKindAssumesProvesValidatesDepends On
exists_splitMono πŸ“–mathematicalβ€”CategoryTheory.SplitMonoβ€”β€”
id πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.retraction
CategoryTheory.CategoryStruct.id
β€”CategoryTheory.SplitMono.id
exists_splitMono
id_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.retraction
β€”CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
id
mk' πŸ“–mathematicalβ€”CategoryTheory.IsSplitMonoβ€”β€”
mono πŸ“–mathematicalβ€”CategoryTheory.Monoβ€”CategoryTheory.SplitMono.mono
exists_splitMono
of_iso πŸ“–mathematicalβ€”CategoryTheory.IsSplitMonoβ€”mk'
CategoryTheory.IsIso.hom_inv_id

CategoryTheory.SplitEpi

Definitions

NameCategoryTheorems
comp πŸ“–CompOp
1 mathmath: comp_section_
map πŸ“–CompOp
1 mathmath: map_section_
op πŸ“–CompOpβ€”
section_ πŸ“–CompOp
11 mathmath: CategoryTheory.Retract.splitEpi_section_, id, comp_section_, CategoryTheory.Functor.splitEpiBiproductComparison_section_, id_assoc, CategoryTheory.ShortComplex.Splitting.splitEpi_g_section_, ext_iff, CategoryTheory.Limits.splitEpiOfIdempotentOfIsColimitCofork_section_, CategoryTheory.Arrow.AugmentedCechNerve.ExtraDegeneracy.s_comp_Ο€_0, map_section_, CategoryTheory.Functor.splitEpiBiprodComparison_section_
splitMono πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
comp_section_ πŸ“–mathematicalβ€”section_
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
comp
β€”β€”
epi πŸ“–mathematicalβ€”CategoryTheory.Epiβ€”CategoryTheory.whisker_eq
id_assoc
ext πŸ“–β€”section_β€”β€”β€”
ext_iff πŸ“–mathematicalβ€”section_β€”ext
id πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
section_
CategoryTheory.CategoryStruct.id
β€”β€”
id_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
section_
β€”CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
id
map_section_ πŸ“–mathematicalβ€”section_
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
map
β€”β€”

CategoryTheory.SplitEpiCategory

Theorems

NameKindAssumesProvesValidatesDepends On
isSplitEpi_of_epi πŸ“–mathematicalβ€”CategoryTheory.IsSplitEpiβ€”β€”

CategoryTheory.SplitMono

Definitions

NameCategoryTheorems
comp πŸ“–CompOp
1 mathmath: comp_retraction
map πŸ“–CompOp
1 mathmath: map_retraction
op πŸ“–CompOpβ€”
retraction πŸ“–CompOp
10 mathmath: CategoryTheory.Retract.splitMono_retraction, map_retraction, CategoryTheory.ShortComplex.Splitting.splitMono_f_retraction, id_assoc, CategoryTheory.Functor.splitMonoBiproductComparison'_retraction, comp_retraction, id, CategoryTheory.Functor.splitMonoBiprodComparison'_retraction, CategoryTheory.Limits.splitMonoOfIdempotentOfIsLimitFork_retraction, ext_iff
splitEpi πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
comp_retraction πŸ“–mathematicalβ€”retraction
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
comp
β€”β€”
ext πŸ“–β€”retractionβ€”β€”β€”
ext_iff πŸ“–mathematicalβ€”retractionβ€”ext
id πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
retraction
CategoryTheory.CategoryStruct.id
β€”β€”
id_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
retraction
β€”CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
id
map_retraction πŸ“–mathematicalβ€”retraction
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
map
β€”β€”
mono πŸ“–mathematicalβ€”CategoryTheory.Monoβ€”CategoryTheory.eq_whisker
CategoryTheory.Category.assoc
id
CategoryTheory.Category.comp_id

CategoryTheory.SplitMonoCategory

Theorems

NameKindAssumesProvesValidatesDepends On
isSplitMono_of_mono πŸ“–mathematicalβ€”CategoryTheory.IsSplitMonoβ€”β€”

---

← Back to Index